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Abstract

Background: Parkinson’s Disease (PD) and Hutchinson-Gilford Progeria Syndrome (HGPS) are two heterogeneous
disorders, which both display molecular and clinical alterations associated with the aging process. However,
similarities and differences between molecular changes in these two disorders have not yet been investigated
systematically at the level of individual biomolecules and shared molecular network alterations.

Methods: Here, we perform a comparative meta-analysis and network analysis of human transcriptomics data from
case-control studies for both diseases to investigate common susceptibility genes and sub-networks in PD and HGPS.
Alzheimer’s disease (AD) and primary melanoma (PM) were included as controls to confirm that the identified
overlapping susceptibility genes for PD and HGPS are non-generic.

Results: We find statistically significant, overlapping genes and cellular processes with significant alterations in both
diseases. Interestingly, the majority of these shared affected genes display changes with opposite directionality,
indicating that shared susceptible cellular processes undergo different mechanistic changes in PD and HGPS. A
complementary regulatory network analysis also reveals that the altered genes in PD and HGPS both contain targets
controlled by the upstream regulator CDC5L.

Conclusions: Overall, our analyses reveal a significant overlap of affected cellular processes and molecular
sub-networks in PD and HGPS, including changes in aging-related processes that may reflect key susceptibility factors
associated with age-related risk for PD.
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Background
Parkinson’s disease (PD) is one of the most common neu-
rodegenerative disorders, with approximately 10 million
affected persons worldwide [1]. Despite major advances
in understanding PD genetics, no preventive or disease-
modifying therapy is available [2]. Several studies have
linked PD with aging-related cellular processes [3–5],
showing that PD and aging share molecular hallmarks
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such as neuroinflammation [6], impaired DNA repair [7]
and mitochondrial dysfunction [8]. Furthermore, PD has
been hypothesized to represent an accelerated or pre-
mature form of aging, due to molecular changes that
resemble aging-associated alterations but progress faster
and/or occur earlier [3, 9, 10].
Among other aging-related disorders, Hutchinson–

Gilford progeria syndrome (HGPS) at first sight does not
resemble PD. As opposed to PD, HGPS mainly affects
children and involves symptoms such as growth delay,
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short height, small face and hair loss [11], differing sub-
stantially from the typical motor- and non-motor symp-
toms observed in PD. However, previous studies have
shown that many of the features associated with HGPS
reflect a premature onset of pathologies commonly asso-
ciated with adult aging and age-related neurodegenerative
diseases [12, 13]. These observations suggest that a more
systematic investigation of sharedmolecular alterations or
shared susceptibility factors in PD and HGPS could pro-
vide new insights on a subset of generic, aging-associated
pathological changes in PD that may already influence the
early, pre-motor stages of the disease.
Most of the prior research on the molecular changes

in PD or HGPS has focused on the analysis of transcrip-
tomics data from a single study, e.g. PD brain microarray
gene expression datasets from the substantia nigra mid-
brain region [14–20] and HGPS gene expression data
from human fibroblasts [21–23]. However, to the best
of our knowledge, an integrated meta-analysis and direct
comparative investigation of molecular high-throughput
data for PD and HGPS has not been conducted so far.
Here, to address this gap we have applied independent
meta-analyses for public PD and HGPS case-control tran-
scriptomic datasets and then compared the aggregated
statistics for the two diseases to identify significant shared
variations at the level of single genes, pre-defined gene
sets and local molecular subnetworks. For this purpose,
we have interlinked differential expression meta-analyses
with subsequent comparative pathway, network and co-
expression analyses, assessing the significance of the over-
lap between PD and HGPS for each analysis type.
Several methods for microarray meta-analysis have been
developed [24–26], which can be divided into five cat-
egories. A first category covers methods that directly
merge the raw data [27, 28]. A drawback of these meth-
ods is that systematic differences between studies often
cannot be completely removed [25]. A second type of
approaches combines effect sizes across studies. This
approach may be suitable in particular when the effect
size is the main statistic of interest. An example is the
random effects model (REM) [29], implemented in the R
Bioconductor package GeneMeta [30]. A third category
combines ranks of differentially expressed genes. A rep-
resentative approach is the Rank Product method, imple-
mented in the RankProd Bioconductor package, which
ranks the genes in each data set based on their fold
change (FC) and combines the ranks by calculating their
product [31]. A fourth type of methods involves the com-
putation of latent variables, i.e. variables inferred using
models from observed data. An example is the probability
of expression (POE), implemented in the R Bioconduc-
tor metaArray package [32]. Finally, a further category of
methods combines significance scores. These approaches
may be preferred in particular when the p-value

significance is the main statistic of interest. Examples are
Fisher’s method [33] and Stouffer’s method [34] imple-
mented in the metaDE R package, the combined p-value
methods for paired and unpaired data in the metaMA R
package [35], and the weighted meta-analysis method by
Marot and Mayer [36] used in this study because of the
sensitive combined p-value estimates it provides.
When performing a comparative analysis of two ormore

diseases, one has to take into account that differentially
expressed genes (DEGs) potentially arising from alter-
ations of generic processes can be detected in unrelated
conditions [37]. Therefore, we included another aging-
related disease (Alzheimer’s disease, AD) and another
unrelated disease (primary melanoma, PM) as disorder
controls to confirm that the observed overlapping affected
genes and processes are non-generic.
Crow et al. [37] introduced the differential expression

(DE) prior as a measure for a gene’s prior probability of
being a DEG. The lower the DE prior, the higher the prob-
ability that a DEG is non-generic. By ranking a list of DEGs
by their DE prior, candidate non-generic genes of interest
for further investigation can be selected.
In summary, the comparative analysis of PD and HGPS

data presented here extends beyond previous studies by:
(1) providing a first systems-level statistical comparison
of molecular changes in PD and HGPS derived from
robust meta-analyses, and (2) revealing significant shared
affected molecular factors in PD and HGPS at the level
of individual genes, pre-defined gene sets and molecular
subnetworks, which could pave the way towards the iden-
tification of new susceptibility genes and processes for
early aging-associated pathological changes in PD.

Methods
The overal workflow of the statistical analysis procedures
is depicted in Fig. 1. Since the available PD, HGPS, AD
and PM data sets cover different disease conditions and
are derived from different tissues, they were analyzed
via separate meta-analyses. First, after pre-processing
the transcriptomics data, differentially expressed genes
(DEGs) between cases and controls were derived inde-
pendently for each data set and, subsequently, a separate
meta-analysis was conducted for each disease. Second,
the lists of DEGs for each disease were further explored
using cellular pathway and network analyses. Third, for
each disease, key transcription factors (TFs) undergoing
co-ordinated expression changes with their downstream
target genes were determined by applying a co-expression
analysis using the Regulatory Impact Factor (RIF) anal-
ysis approach and the TF-to-target pairs from UCSC
(http://genome.ucsc.edu/). For each disease, the normal-
ized expression data of the common genes across all
datasets for the disease were combined, and the combined
data set was used as input for the RIF analysis.

http://genome.ucsc.edu/
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Fig. 1 Overview of the workflow for the integrated meta-analysis of molecular high-throughput data for PD and HGPS, with AD and PM as control
conditions. DEGs: differentially expressed genes; TF: transcription factors; RIF: regulatory impact factor analysis

For all analysis types, the intersections among the
results for the four diseases were determined. Only signif-
icant DEGs, pathways, networks and TFs only observed
for PD and HGPS, but not significant for any of the
other two diseases, were selected for further biological
interpretation.
Although the main affected tissues differ between PD

and HGPS, both disorders are characterized by a strong
genetic component (HGPS is caused by the lamin A
(LMNA) gene [38] and the total heritability of idiopathic
PD has been estimated to be at least 0.27 [39]), suggesting
that if their genetic susceptibility factors influence gene
expression levels in overlapping pathways related to cellu-
lar aging, shared significant expression variation affecting
these pathways can be identified across the expressed
genes for different tissue types.
Given the strong genetic component in both

diseases, we hypothesize that there are shared genetic
susceptibility factors that result in a subset of transcript

expression alterations in patients compared to con-
trols which are independent of the age and the tissue
context.

Data sets for meta-analyses
Microarray gene expression data for PD, HGPS, AD and
PM were collected from public case-control studies (see
data source information in the section “Availability of data
and materials”). For PD, the samples originate from post
mortem biospecimens from the substantia nigramidbrain
region. Samples for HGPS were derived from human cul-
tured dermal fibroblasts. For AD, samples were taken
from post mortem biospecimens from the hippocampus.
PM case-control studies included skin samples from PM
and normal skin. In order to pre-process all data using the
same procedure, only Affymetrix microarray data sets for
which the raw .CEL files were available were collected. In
total, we extracted 11 data sets on PD, 3 on HGPS, 3 on
AD and 2 on PM (see Table S1).
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Pre-processing and quality control
The Single-Channel Array Normalization (SCAN)
pre-processing procedure [40], implemented in the
SCAN.UPC package (version 2.24.1) from Bioconductor
[41, 42], was applied on all microarray data sets for probe
correction, normalization and removal of array-specific
background noise. SCAN is a single-sample normal-
ization method that adjusts for array type. Therefore,
SCAN is particularly suited for integrative analyses of
microarray data derived from different Affymetrix array
platforms [40].
Quality control of all raw and pre-processed microar-

ray data was conducted using the arrayQualityMetrics
package (version 3.38.0) [43] from Bioconductor.

Differential expression analyses
Before conducting differential expression analyses, the
data were checked for covariates that could influence
subsequent analyses. Significance of continuous and cat-
egorical covariates was determined using the t-test and
Fisher’s exact test, respectively.
Differential gene expression analyses were applied at the

probeset level to each dataset separately using the empir-
ical Bayes moderated t-statistic [44] implemented in the
Bioconductor limma package (version 3.38.3) [45], cor-
recting for confounding covariates. Probes were mapped
to genes using Bioconductor annotation packages (see
Table S3 for an overview of annotation packages used in
this study). Data for probes not corresponding to a gene
were filtered out. In case multiple probes were assigned
to the same gene, the probe with the highest absolute
average expression level was chosen as the representative
probe for that gene, sincemeasurements from probes with
lower average expression levels are less reliable. Nomi-
nal p-values of all PD (resp. HGPS, AD, PM) datasets
were combined using the weighted meta-analysis method
by Marot and Mayer [36]. This method uses weights for
the number of samples in each data set to calculate a
combined p-value. Next, the resulting combined p-values
per gene were adjusted for multiple hypothesis testing
using the Benjamini-Hochberg procedure [46], and a false
discovery rate threshold of 0.05 was applied to select dif-
ferentially expressed genes (DEGs). Because combination
of p-values does not consider gene up/down regulation
direction of each individual study, we applied an addi-
tional filtering step by selecting the genes that change
consistently across all data sets, and only considered the
selected genes for further analyses.
We then compared the obtained lists of DEGs

via Venn diagrams using the web-application Venny
[47]. To determine the significance of the overlap
between two lists of DEGs, Fisher’s Exact test was
applied.

Gene set analysis
Alterations in the activity of pathways and biological pro-
cesses were investigated using the software tool GeneGO
MetaCoreTM (https://portal.genego.com/). Output tables
from the differential expression analyses for PD, HGPS,
AD and PM were used as input, including the adjusted p-
value and median log fold change across all PD, HGPS,
AD and PM data sets, respectively. To determine the
top-ranked list of DEGs an adjusted p-value threshold of
0.05 was used. Apart from the p-value threshold, no fur-
ther log fold change threshold was applied, in order to
ensure that potentially relevant small-effect size changes
in transcription factors with significant p-values are incor-
porated into the pathway analysis. Based on the gene
table, GeneGO MetaCoreTM derives lists of significantly
altered network objects, where genes are represented by
the proteins they encode. For each of the four diseases, the
list of DEGs was mapped onto GeneGO MetaCoreTM’s
canonical pathway maps and GO processes. To deter-
mine the enrichment of the top-ranked network objects
in a particular canonical pathway map or GO pro-
cess, GeneGO MetaCoreTM enrichment analysis applies
the hypergeometric distribution test. In all analyses, p-
values were corrected for multiple hypothesis testing
using the false discovery rate approach by Benjamini and
Hochberg [46].
The resulting lists of significantly altered canonical

pathways and GO biological processes for the four dis-
eases were compared via Venn diagrams. Pathways and
GO processes significantly altered in PD and HGPS, but
not in the other two diseases, were selected for further
biological interpretation.
The list of significant processes only observed for PD

and HGPS was further summarized and visualized using
the web server REVIGO [48]. REVIGO forms clusters of
highly similar GO terms for a user-provided similarity
measure and a cut-off value for the similarity. In this study,
the default settings using the simRel similarity measure
of Schlicker et al. [49] and a similarity cut-off of 0.7 were
used.

Network analysis
In addition to the gene set analyses, GeneGO
MetaCoreTM network analyses were applied to the lists
of DEGs for the four diseases. In contrast to the gene set
analysis, network analysis does not use pre-defined gene
sets, but maps complete gene-level statistics to a genome
scale protein-protein interaction network. This proce-
dure identified multiple significantly altered molecular
sub-networks for each of the diseases.
Here, we used the default “Analyze network“ algorithm

in GeneGO MetaCoreTM, with the maximum number of
nodes in a sub-network limited to 50. This procedure

https://portal.genego.com/
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determines the local altered molecular sub-networks sur-
rounding the network objects from the input gene list as
seed nodes using molecular interaction data and canoni-
cal pathway information from the GeneGO MetaCoreTM
database. First, the lists of DEGs were mapped to their
gene products (proteins, protein complexes). Then the
gene products of the DEGs were connected with the
proteins or protein complexes that have the highest con-
nectivity with these gene products in the genome-scale
protein-protein interaction network. This step is repeated
iteratively until (maximum 30) sub-networks with a max-
imum of 50 nodes have been built (default). The sub-
networks can have overlapping nodes, but no overlapping
edges.
The lists ofmolecular sub-networks for the four diseases

were compared using Venn diagrams, and only networks
significantly altered in PD and HGPS, but not in the
other two diseases, were selected for further biological
interpretation.

Regulatory impact factor analysis
In order to study potential shared upstream regulators
for the four diseases, transcription factors (TFs) undergo-
ing co-ordinated expression changes with the downstream
target genes were determined from the collected microar-
ray datasets using a Regulatory Impact Factor (RIF) anal-
ysis [50]. For each disease, the normalized expression data
of the genes in all available data sets were combined into a
single table and used as input for the RIF analysis. The RIF
analysis was applied using the RIF implementation in the
DCGL R-package (version 2.1.2) [51]. Prior to the com-
putation of RIF scores, a gene filtration step was applied,
filtering out genes with a Between-Experiment Mean
Expression (BEMES) lower than themedian of the BEMES
for all genes and the genes that are not significantly more
variable than the median gene, using a p-value thresh-
old of 0.05. RIF scores were then determined on each of
the four filtered lists using the current 199,950 TF-to-
target interaction pairs from UCSC (http://genome.ucsc.
edu). The resulting lists of TFs were compared via Venn
diagrams, and the significance of the overlap between two
lists of TFs was assessed using Fisher’s Exact test. Only TFs
shared between PD and HGPS, but not significant for any
of the other two control diseases were selected for further
biological interpretation.

Results
Differential expression analyses
For each data set, Table S2 shows the clinical and demo-
graphic factors which were found significantly different
between cases and controls based on a Fischer’s exact test
(categorical variables) or a t-test (continuous variables).
A correction for these confounders was applied in the
differential expression analyses.

When conducting differential expression analysis on
each data set separately, we noticed that 53% of the genes
changed in the opposite direction in data set GSE54282
as compared to the majority of the other data sets (see
Table S4). Data set GSE54282 was also the data set includ-
ing the smallest number of samples (only 6 samples in
total), see Table S1. Therefore it was excluded before
applying the meta-analysis on PD.
The differential expression analyses identified 807, 880,

2664 and 4720 DEGs for PD, HGPS, AD and PM respec-
tively. When comparing disease-associated changes in PD
and HGPS, 66 shared DEGs were identified (see Fig. 2),
reflecting a significant overlap according to Fisher’s Exact
test (p-value = 0.00026). From the 66 shared genes 13
were only observed for PD and HGPS, and not differen-
tially expressed in any of the other two diseases. Table 1
shows the full name and the DE prior for these genes
according to Crow et al. [37].
Of the 13 DEGs, 4 had the same fold change direc-

tion for PD and HGPS (KCNS3, CDH10, PTPRN,
DGKQ)(Table 1). The other nine DEGs (CDH8, SRP19,
ARL3, DNAJC12, RTL8C, NEDD8, APOOL, CCR10,
RABEPK)(Table 1) changed in opposite directions
in PD and HGPS, suggesting that different alter-
ations may affect shared susceptibility genes in these
disorders.
The 13 DEGs only found in PD and HGPS were com-

pared with the 307 genes in the GenAge benchmark
database of genes involved in aging (http://genomics.
senescence.info/genes/index.html) [52], and none of the
13 genes was found in this database, suggesting that
generic genes involved in aging were already removed by
excluding genes involved in AD and PM.

Gene set analysis
When applying GeneGOMetaCoreTM enrichment analy-
sis on the list of DEGs for each disease, we identified 20,
307, 193 and 429 significantly altered pathways for PD,
HGPS, AD and PM respectively. After determining the
overlap of the results, we observed that 6 canonical path-
ways were shared between PD and HGPS (see Fig. 3a).
However, all of these pathways were also significant for
AD and five of them were for PM.
The GO analysis identified 2222, 2588, 2002 and 3452

significantly altered GO processes for PD, HGPS, AD and
PM respectively. Furthermore, 1057 significantly altered
GO biological processes were shared between PD and
HGPS (see Fig. 3b). 66 of these GO processes were only
observed for PD and HGPS, and were not significantly
altered for any of the other two diseases. After summariz-
ing the list of GO terms with REVIGO [48], the reduced
list contained 48 GO biological processes. GO IDs, total
size, directionality in PD and HGPS, and FDR for these
GO terms are presented in Table S6.

http://genome.ucsc.edu
http://genome.ucsc.edu
http://genomics.senescence.info/genes/index.html
http://genomics.senescence.info/genes/index.html
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Fig. 2 Shared significantly DEGs between PD, HGPS, AD and PM, determined using limma (adjusted p-value ≤0.05). *: significant overlap by Fisher’s
exact test (p-value ≤0.05)

Network analysis
When mapping the gene lists to a genome scale protein-
protein interaction network using GeneGO MetaCoreTM
network analysis, a maximum number of 30 sub-networks
for each disease was identified, but the identified sub-
networks show no overlap between any of the diseases
(see Fig. 4a). The network analysis identified 145, 132,
116 and 108 GO-terms related to the sub-networks for
PD, HGPS, AD and PM respectively, which partially over-
lap (see Fig. 4b). Twelve GO biological processes were
associated with the sub-networks for PD and HGPS, but
not with any of the other two diseases. For these 12 GO

terms, Table 3 presents the key network objects of the
sub-networks for PD and HGPS and the overlap with the
seed nodes (gene products from the DEG lists) in these
sub-networks. Moreover, the direction (up/down) of the
alterations of these seed nodes is indicated.

Regulatory impact factor analysis
Apart from altered biological processes and subnetworks
in PD and HGPS, we also identified changes in key
regulatory genes, which can explain shared downstream
variations. In particular, in order to find shared variations
in key transcription factors (TFs), a Regulatory Impact

Table 1 DEGs found for PD and HGPS, but not for AD or PM

Direction in PD and HGPS Gene symbol Full name DE prior

Opposite CDH8 Cadherin 8 0.704543

SRP19 Signal Recognition Particle 19 0.30116

ARL3 ADP Ribosylation Factor Like GTPase 3 0.550125

DNAJC12 DnaJ Heat Shock Protein Family (Hsp40) Member C12 0.969904

RTL8C Retrotransposon Gag Like 8C 0.567651

NEDD8 NEDD8 Ubiquitin Like Modifier n/a

APOOL Apolipoprotein O Like 0.665789

CCR10 C-C Motif Chemokine Receptor 10 0.643647

RABEPK Rab9 Effector Protein With Kelch Motifs 0.136345

Same KCNS3 Potassium Voltage-Gated Channel Modifier Subfamily S Member 3 0.782235

CDH10 Cadherin 10 0.825788

PTPRN Protein Tyrosine Phosphatase Receptor Type N 0.683862

DGKQ Diacylglycerol Kinase Theta 0.361517

DE prior according to Crow et al. [37]. n/a: not reported
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Fig. 3 Shared significantly altered gene sets between PD, HGPS, AD and PM, determined using GeneGO MetaCoreTM enrichment analysis (adjusted
p-value ≤0.05): a) shared canonical pathways; b) shared GO biological processes. *: significant overlap by Fisher’s exact test (p-value ≤0.05)

Factor (RIF) analysis was conducted (see Methods). We
identified 17, 33, 35 and 36 TFs for PD, HGPS, AD and PM
respectively. In total, 6 shared TFs were found between PD
and HGPS (see Fig. 5) and the overlap between the TFs for
both diseases was statistically significant (p-value = 0.04,
Fisher’s exact test). From the 6 shared TFs one (CDC5L)
was only observed for PD and HGPS, and not identified in
any of the two other diseases.

Discussion
In this study we have presented the first transcriptome-
wide comparison of expression changes in Parkinson’s
disease (PD) and Hutchinson-Gilford Progeria Syndrome
(HGPS) at the level of individual genes, cellular processes
and molecular subnetworks. We included Alzheimer’s

disease (AD) and primary melanoma (PM) as disorder
controls to filter the results for overlapping, non-generic
variations only observed for PD and HGPS, and per-
formed robust case/control meta-analyses for each of the
four diseases.
We identified 13 DEGs, 66 GO biological processes,

12 GO terms associated with molecular subnetworks and
one TF with shared significance in PD and HGPS, and no
significant alteration for the two control diseases.

Shared DEGs only observed for PD and HGPS
We distinguish between two types of shared DEGs:

• DEGs changing in the same direction in PD and
HGPS: these genes may serve for further

Fig. 4 a Overlap of significantly altered subnetworks between PD, HGPS, AD and PM, determined using GeneGO MetaCoreTM network analysis. b
Shared GO biological processes among the subnetworks for PD, HGPS, AD and PM. *: significant overlap by Fisher’s exact test (p-value ≤0.05)
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Fig. 5 Overlap of key transcription factor alterations for PD, HGPS, AD and PM, determined using RIF analysis (p-value ≤0.05). *: significant overlap by
Fisher’s exact test (p-value ≤0.05)

investigation as candidate surrogate biomarkers for
PD risk stratification and/or early diagnosis of PD;

• DEGs changing in opposite direction: these genes
may represent shared susceptibility genes between
the two diseases, which are altered by different
disease-specific mechanisms.

To determine which of these genes are most likely non-
generic DEGs, and therefore of particular interest for
further study as shared susceptibility genes for PD and
HGPS, we retrieved their DE prior from Crow et al. [37]
(Table 1).
Among the 4 genes (DGKQ, KCNS3, CDH10, PTPRN)

changing in the same direction, DGKQ has the lowest
DE prior (0.36) and its deregulation is more likely to be
non-generic and only occurring in PD and HGPS than
the other 3 genes. DGKQ is one of the genes in the in
the 4p16.3 region, which has been reported as one of
the strongest PD risk loci by GWAS [53, 54], and has
been associated with increased expression of α-synuclein
[53]. Similarly, the second gene KCNS3 was identified
within a PD risk locus in a meta-analysis of GenomeWide
Association Studies (GWAS) [55]. For the other two genes
(CDH10, PTPRN) no PD- or HGPS-relevant information
has been reported in previous studies.
For NEDD8, one of the genes changing in opposite

direction for PD and HGPS, no DE prior is reported,
which indicates that this gene was not differentially
expressed in any of the 635 data sets analyzed by Crow et
al. NEDD8, a gene associated with protein misfolding and

aggregation, showed over-expression in progerin-induced
aging in human induced pluripotent stem cells (iPSCs)
[13]. Progerin is a truncated form of LMNA, the gene har-
boring mutations causing HGPS. Furthermore, a study in
Drosophila suggests that impaired NEDD8-based mod-
ification of the PD-related proteins parkin and PINK1
may contribute to PD pathogenesis [56]. Associations
with PD are also corroborated by the observed accumu-
lation of NEDD8 in Lewy bodies in brain sections of PD
patients [57].
Of the remaining 8 genes changing in opposite direc-

tion, RABEPK, a Rab9 effector protein has the lowest DE
prior (0.14), and may therefore be of interest for further
investigation as a candidate non-generic shared suscepti-
bility gene only observed for PD and HGPS. Rab signaling
has been implicated in PD due to the role of Rab proteins
in intracellular vescicle trafficking [58].
Next, CDH8 has been suggested to regulate dendritic

spine morphogenesis based on rat experiments in the
hippocampus [59]. Furthermore, experiments in human
embryos have suggested that CDH8 has a role in early
cortical development [60]. DNAJC12 plays an important
role in biosynthesis and transport of dopamine, vesicle
regeneration and protein folding [61]. In studies of unre-
lated families, mutations of DNAJC12 have been asso-
ciated with early-onset parkinsonism [62], dystonia and
intellectual disability [63, 64].
A complete overview of references to further reported

PD / HGPS associations for the identified 13 shared DEGs
is provided in Supplementary Table S5.
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Potential mechanistic link between lamin a and
neurodegeneration
Interestingly, PPME1, a gene previously linked to the
HGPS-mutated gene lamin A (LMNA) [65], was signifi-
cantly altered in both HGPS and the neurodegenerative
disorders PD and AD, but not in the cancer disease
PM. Dysregulation of PPME1 has also been reported
for the Parkinsonian age-related disorder Progressive
Supranuclear Palsy by Park et al. [66]. LMNA is essen-
tial for PP2A-mediated dephosphorylations, which may
be mediated by PPME1 [65], which has been shown to
limit the activity of PP2A by demethylating its catalytic
subunit [67].

Shared cellular process alterations only observed for PD
and HGPS
The 66 shared GO biological processes only observed
for PD and HGPS, identified by GeneGO MetaCoreTM
enrichment analysis, tend to undergo alterations with dif-
ferent directionality (see Table S6). This suggests that
the two diseases share multiple susceptibility-related pro-
cesses, but these processes are perturbed through differ-
ent mechanisms.
One of the identified clusters of robust shared signifi-

cant GO terms (Table 2, cluster 1 Table S6) mainly con-
tains processes related to movement of adaptive immune
cells (helper T cells, CD8 cells). Interestingly, while

Table 2 Clusters of shared significantly altered GO biological processes, determined by REVIGO (see Table S6)

Cluster representative Direction of regulation Keywords Prior literature findings

regulation of intracellular calcium
activated chloride channel activity

down in PD, up in HGPS movement of adaptive
immune cells

adaptive immunity reduced during aging
[68]

regulation of peptidyl-threonine
phosphorylation

down in PD, majority of genes
down in HGPS (a few up)

DNA replication, telomere
capping

genomic instability is a hallmark of aging
[68] involved in premature aging and
neurodegenerative diseases [12]

interleukin-8-mediated signaling
pathway

cytokine pathways: down in PD, up
in HGPS; adiponectin pathway:
down in both PD and HGPS

cytokine signaling,
adiponectin pathway

cytokine secretion in senescent cells
during aging [68]

negative regulation of eosinophil
activation

down in PD, up in HGPS GPCR signaling,
neuropeptide signaling

GPCRs in aging and PD [69]; GPCRs in
(premature) cellular senescence [70];
neuropeptide in brain - neuromodulators
[71]; neuropeptides in skin - wound
healing [72]

response to axon injury down in PD, majority of genes
down in HGPS (a few up)

response to ROS Increased levels of ROS related to aging
[13, 68]

angiotensin-mediated vasodilation
involved in regulation of systemic
arterial blood pressure

down in PD, up in HGPS blood pressure,
metanephros (kidney)

None. GO terms only show up because of
overlap with brain and skin processes.

regulation of cell projection
assembly

down in PD, majority of genes
down in HGPS (a few up)

cell projection
organization

genes from cell projection GO terms as
modifiers of neurodegeneration in PD
[73]; cell projection in GO analysis of
progerin-associated proteins [74]

viral genome replication down in PD, majority of genes
down in HGPS (a few up)

viral processes Viral immunity decreases during aging
[75]

myoblast development down in PD, majority of genes
down in HGPS (a few up)

nervous system
development

PD might be associated with
neurodevelopment [76]

morphogenesis of an endothelium down in PD, majority of genes
down in HGPS (a few up)

endothelial
morphogenesis

application in neural stem cell-based
therapy for PD [77]

circadian rhythm down in PD, majority of genes
down in HGPS (a few up)

circadian rhythm Decrease of circadian rhythm associated
with neurodegenerative disorders [78]
and premature aging [79]

dopamine biosynthetic process down in PD, up in HGPS dopamine dopamine in diagnosis and treatment of
PD [80]; dopamine-specific processes in
progerin-induced aging [13]

regulation of cytokinesis down in PD, majority of genes up
in HGPS (a few down)

cytokinesis decrease of the number of cell divisions
related to aging [81]

response to electrical stimulus down in PD, majority of genes up
in HGPS (a few down)

electrical stimulus effect of electrical stimulation on gait in
PD patients [82]

calcium-mediated signaling using
intracellular calcium source

majority of genes down in PD and
HGPS

calcium signaling role in cellular senescence [83]; candidate
hallmark of aging [68]; calcium signaling
in premature aging [12]
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adaptive immunity has been reported to be reduced
during aging [68], these processes change in oppo-
site direction in PD and HGPS (down in PD, up in
HGPS).
A second cluster of GO terms (Table 2, cluster 2

Table S6) includes the related terms “GO:0045740: pos-
itive regulation of DNA replication“ and “GO:1904353:
regulation of telomere capping“. In HGPS, the majority of
the genes within these processes show lower expression,
while in PD all genes show lower expression. Genomic
instability, the accumulation of DNA damage, is known
as one of the hallmarks of aging [68], and thought to be
involved in both premature aging and age-related neu-
rodegenerative diseases [12].
Alterations are also observed in the regulation of

cytokine signaling, including the chemokines interleukin-
8 (IL-8 or CXCL8) and CXCR4, and the inflammatory
cytokine macrophage migration inhibitory factor (MIF).
The corresponding cluster (Table 2, cluster 3 Table S6)
also covers the adiponectin-activated signaling pathway,
which has been reported to modify cytokine expres-
sion in endothelial cells according to experiments in
mouse brains [84]. While the majority of the genes in
the adiponectin pathway show lower expression in both
PD and HGPS, the cytokine pathways change in oppo-
site directions (down in PD, up in HGPS). Secretion
of pro-inflammatory cytokines has been observed in
senescent cells, which are known to accumulate during
aging [68].
A complete list of the clusters of shared significant GO

term alterations is shown in Table 2.

Shared cellular processes related to deregulated
subnetworks only observed for PD and HGPS
The GeneGO MetaCoreTM network analysis identified
12 shared GO biological processes reflecting altered sub-
networks for both PD and HGPS. Seed node DEGs
associated with the same GO processes for PD and
HGPS differ both in composition and, for the overlap-
ping nodes, in the direction of the alteration, point-
ing to diverse mechanisms operating on function-
ally related sets of genes. Specifically, four processes
showed a similar overlap of seed nodes, but are reg-
ulated in different expression directions for PD and
HGPS (Table 3): “GO:0042320: regulation of circadian
sleep/wake cycle, REM sleep“, “GO:0022410: circadian
sleep/wake cycle process“, “GO:0070458: cellular detox-
ification of nitrogen compound“, “GO:0032956: regula-
tion of actin cytoskeleton organization“ and “GO:0007167:
enzyme-linked receptor protein signaling pathway“. Two
of them are related to circadian rhythm, correspond-
ing to the results of the gene set analysis. For PD, the
seed nodes are regulated by genes which show lower

expression, while for HGPS they are regulated by a combi-
nation of genes regulated in different directions (Table 3).
A similar relationship also applies to the GO terms
“GO:0032956: regulation of actin cytoskeleton organi-
zation“ and “GO:0007167: enzyme-linked receptor pro-
tein signaling pathway“. For the shared stress response
“GO:0070458: cellular detoxification of nitrogen com-
pound“, the seed nodes change in opposite directions in
PD and HGPS (down in PD, up in HGPS, see Table 3).
Three processes show similar overlap of GO terms

and subnetworks for PD and HGPS, but direct regu-
lation through seed node genes is only observed for
one of the diseases (either PD or HGPS) (Tables 3
and S7): “GO:0007076: mitotic chromosome condensa-
tion“, “GO:0060024: rhythmic synaptic transmission“ and
“GO:0022900: electron transport chain“. These observa-
tions point to processes that are directly regulated by
DEGs in one disease, but indirectly regulated in the
other. Specifically, for the cell cycle process “GO:0007076:
mitotic chromosome condensation“, an overlap is only
observed between this GO term and the network neigh-
borhood surrounding of the seed nodes for PD, whereas
for HGPS the overlap contains seed node genes with
decreased expression. Indeed, lower expression of cell
cycle activity has been observed in stem cells of agingmice
[81]. For PD, an overlap is observed between “rhythmic
synaptic transmission (GO:0060024)“ and the seed nodes,
whereas for HGPS there is only an overlap with the seed
node neighborhood.
Similarly, the observed overlap between the subnet-

works and the process “GO:0022900: electron transport
chain“ includes seed nodes which are lower expressed
in PD, whereas for HGPS, only nodes in the seed node
neighborhood were present. Destabilization of the elec-
tron transport chain leads to mitochondrial dysfunction
and the generation of reactive oxygen species (ROS),
which has been associated with cellular aging [12, 68].
The response to ROS also occured among the significant
processes in the gene set analysis.
All other shared processes (“GO:0006370: 7-

methylguanosine mRNA capping“, “GO:0009452:
7-methylguanosine RNA capping“, “GO:0014054: positive
regulation of gamma-aminobutyric acid secretion“ and
“GO:0007166: cell surface receptor signaling pathway“)
show a different overlap with the subnetworks for PD and
HGPS (see Tables 3 and S8). In summary, our network
analyses reveal significant shared biological processes
between PD and HGPS that differ in regulation direction-
ality, direct or indirect regulation by the DEGs or through
the mechanisms by which they are regulated. These
observations indicate that shared susceptible molecular
subnetworks between PD and HGPS are modulated in a
disease-specific manner.
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Table 3 Shared GO processes between the subnetworks for PD and HGPS identified by the network analysis, but not related to
subnetworks for AD or PM

GO term(s) Network PD - key
network objects

Seed nodes
PD

Directionality
PD

Network HGPS -
key network
objects

Seed nodes HGPS Directionality
HGPS

GO:0042320: regulation of
circadian sleep/wake
cycle, REM sleep

SLC18A1,
NDUFB3,
MPPED2, Matrilin
3, CELSR1

Galpha(q)-
specific
peptide
GPCRs

down GPR39, LCMT1,
GLT25D2, BBS7,
FAM126B

Galpha(q)-
specific peptide
GPCRs

both

GO:0022410: circadian
sleep/wake cycle process

AKAP12,
Neurocan,
Alpha-internexin,
CBARA1,
PR61beta

Galpha(q)-
specific
peptide
GPCRs,
Galpha(i)-
specific
peptide
GPCRs

down RY1, p42 KKIALRE,
ITM2A, Tho2,
C11orf1

Galpha(q)-
specific peptide
GPCRs,
Galpha(i)-specific
peptide GPCRs

both

GO:0007076: mitotic
chromosome
condensation

CDK5,
Doublecortin,
SNAP19, ELOVL4,
LDHD

none n/a GPR39, LCMT1,
GLT25D2, BBS7,
FAM126B

CAP-G, CAPG/G2 down

GO:0060024: rhythmic
synaptic transmission

SDHC, M9,
NDUFB6, AGAL,
CACNA2D2

CACNA2D2,
CACNA2D,
Ca(II)channel
R-type

down VPS54, Rhophilin
2, RNF144,
NDUFB6, FAM76B

none n/a

GO:0006370:
7-methylguanosine mRNA
capping, GO:0009452:
7-methylguanosine RNA
capping

MLF1, CCK8,
PGMU, OATP-E,
FLJ22028

TBF5, TFIIH
subunit

down, up GSTM3, PDK
(PDPK1), POLR2B,
ATP6V0E2,
C9orf16

POLR2B down

GO:0014054: positive
regulation of
gamma-aminobutyric acid
secretion

SNX4,
LOH11CR2A,
VPS41, MRPL46,
ENDOGL1

none n/a MASP1, FUT8,
Cubilin, SNX25,
ARL13B

none n/a

GO:0022900: electron
transport chain

POLR3C, ATP1A4,
nAChR beta-3,
TMS-1, GATA-1

NDUFA2,
NDUFA3

down PPP1R3D, FOLR3,
ERMAP, DNA
polymerase
sigma, WHDC1

none n/a

GO:0070458: cellular
detoxification of nitrogen
compound

MANA, Rab-6B,
LDB2,
Exostosin-2,
Rab-6

GSTM1, GSTs down TUB, PLEKHM2,
ZNF507,
SH3PXD2B,
GATA-1

GSTs up

GO:0007166: cell surface
receptor signaling
pathway

Tcf(Lef), PLC-beta,
G-protein
beta/gamma,
MEK4 (MAP2K4),
PKR

MAP3K1,
p38alpha,
GSK3-beta,
TCF7L2(TCF4),
Tcf(Lef)

down(3),
up(2)

JAK1, Axin,
Frizzled, Jagged1,
LRP5

Dsh, SMAD3,
TGF-beta 2,
NOTCH1 recep-
tor, FZD7, LRP6,
NCOA3(pCIP/SRC3),
RBP-J
kappa(CBF1)

down(2),
up(6)

GO:0032956: regulation of
actin cytoskeleton
organization

DCTN6, PGRMC1,
SEZ6L2, SCN9A,
Cdc42 subfamily

RHO6, Cdc42
subfamily,
Rho GTPase

down PQLC1, TSHZ1,
ZNF317, Cdc42
subfamily, FAN

SPTA1, Rho
GTPase, Rac1,
Rho3

down(1),
up(1),
both(2)

GO:0007167:
enzyme-linked receptor
protein signaling pathway

Ephrin-A, H-Ras,
P13K reg class IA,
Ephrin-A5, RHO6

Ephrin-A
receptor 8,
H-Ras,
Ephrin-A
receptor 2

down ERK1/2, c-Src,
VEGFR-2, JAK1,
Ephrin-A

Ephrin-B,
Ephrin-A receptor
2, Ephrin-A2,
Ephrin-A

down(3),
up(1)

Each GO term is presented together with the subnetworks for PD and HGPS, shared seed nodes between the subnetwork and the GO processes, and regulation directionality
of the seed nodes. n/a: not applicable
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Shared key transcription factor (TF) alterations only
observed for PD and HGPS
A shared altered TF only observed for PD and HGPS
was identified in the RIF analysis: the spliceosome
component CDC5L. Interestingly, this gene has previ-
ously been reported to contribute to increased chomo-
somal changes (aneuploidy) associated with the aging
process [85].

Shared susceptibility factors independent of age and tissue
The statistically significant overlaps between transcrip-
tome alterations in PD and HGPS we observed lend
further support to our hypothesis that there are shared
genetic susceptibility factors which are independent of
age and tissue. We acknowledge that further study will
be needed to delineate the underlying genetic factors
and corroborate the associated gene, pathway and net-
work alterations that may be involved in conferring shared
susceptibility.

Comparison with other meta-analyses on PD and AD
Several other research groups have conducted meta-
analyses on PD and/or AD. Kelly et al. performed a meta-
analysis on public data sets for PD from the substantia
nigra, using an approach that combines effect sizes [86].
They identified 1046 DEGs, of which 632 were measured
in all PD data sets in our study. The 632 DEGs found by
Kelly et al. have a significant overlap of 303 genes with
the DEGs for PD found in our study (Fisher’s exact test p-
value = 1.84e-151). Furthermore, they found an overlap
of 436 DEGs with a previous meta-analysis on AD by Li
et al. [87], of with 271 genes were measured in all PD and
AD data sets in our study. There was a significant over-
lap of 108 genes of these 271 genes with the intersection
of DEGs for PD and AD in our study (Fisher’s exact test
p-value = 7.55e-65).
Li et al. [87] conducted a meta-analysis on AD using the

same combined p-value approach as in our study, but col-
lected public data sets originating from the frontal cortex
instead of the hippocampus. They found 3124 DEGs, of
which 2586 weremeasured in all AD data sets in our study.
These 2586 DEGs show a significant overlap of 728 genes
with the DEGs from AD in our study (Fisher’s exact test
p-value = 6.14e-70).
Su et al. performed a meta-analysis on five public PD

data sets from the substantia nigra by determining the
intersection of the DEGs from the five individual data
sets, and identified 17 common DEGs [88]. Three of these
genes were also DEGs for PD in our study, 2 of them
were not measured in all PD data sets in our study, and
the remaining 12 were not differentially expressed in our
study, which was based on twice as many data sets as the
study of Su et al.

Zheng et al. applied the combined p-value method from
the R package metaMA to conduct a meta-analysis on
three public data sets on AD from the hippocampus and
compared their results with those of a data set on normal
aging [89]. They found 6205 DEGs for the AD meta-
analysis, of which 1291 were also found for normal aging.
They did not report the full list of 1291 genes, but only
the top 50. Of these top 50 genes, 47 were measured for
all AD data sets in our study. Of these 47 genes, 31 were
also DEGs for AD in our study, of which 12 occurred in
AD only, 13 in AD and PD but not in HGPS, 3 in AD
and HGPS but not in PD, and 3 in all of the aging-related
diseases.
Moradifard et al. conducted a meta-analysis on 6

datasets for AD from various brain tissues using the
ranking-based approach from the R package RobustRank-
Aggreg [90]. They identified 1404 DEGs, of which 1218
were measured in all AD data sets in our study. These
1218 DEGs displayed a significant overlap of 413 DEGs
with those found in our study (Fisher’s exact test p-value
= 2.37e-60).

Limitations of this study
In order to enable pre-processing of all data sets using
the same procedure, only Affymetrix microarray data sets
for which the raw .CEL files were publicly available were
collected.
Another shortcoming related to data availability con-

cerns the meta-data that is shared together with the
microarray data sets, which differs between studies. Avail-
ability of sufficient meta-data is important to check for an
influence of potential confounding factors in the clinical
and demographic data.
The study focused on a single key affected tissue per

disease, hence, the outcome would differ if data from
another affected tissue had been chosen. However, the
comparison with other meta-analyses above shows that
results from meta-analyses in different tissues display a
significant overlap.
Finally, as the meta-analysis approach used in this study

is based on combining p-values, the results are limited to
genes that were measured in all data sets for the studied
disease. However, an advantage of the weighted p-value
approach is that, in contrast to the majority of other meta-
analysis methods, this method can take into account the
size of the different data sets, and in this way assigns more
weight to data sets with larger sample sizes.

Conclusions
Parkinson’s Disease (PD) and Hutchinson-Gilford Proge-
ria Syndrome (HGPS) are both disorders associated with
the aging process, which had not yet been compared at
a molecular level. Although different tissues are affected
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in these diseases, a molecular-level comparison is jus-
tified by the fact that genetic alterations, with poten-
tial shared aging-associated susceptibility factors, play an
important role in both disorders. Here, we have conducted
a transcriptome-wide comparison, including Alzheimer’s
disease (AD) and primary melanoma (PM) as control dis-
eases. Overall, the integrative analysis revealed significant
shared alterations at all the investigated scales (single
gene, gene set and network level) and identified a shared
non-generic change in a key transcription factor (CDC5L),
correlating with downstream expression changes for both
PD and HGPS.
When studying the non-generic shared significant genes

at the level of gene set and network alterations, the results
indicate that the two diseases undergo differentmechanis-
tic alterations, but that these alterations often operate on
the same susceptible cellular processes. In line with previ-
ously known associations of the two disorders with aging,
several of the molecular changes affect age-related cellular
processes, e.g. DNA damage response, ROS signaling, cell
cycle activity and mitochondrial dysfunction. In particu-
lar, shared processes previously implicated in premature
aging (decreased circadian rhythm, calcium signaling)
were identified. Interestingly, expression alterations linked
with developmental andmorphogenic processes were also
observed.
Since HGPS is characterized by a premature onset of

cellular pathologies resembling those in age-related neu-
rodegenerative diseases, such as PD, the significant shared
transcriptomic changes in PD and HGPS identified here
may coincide with a subset of susceptibility-associated
genes and processes which may be involved in mediat-
ing the effects of cellular aging on PD. Follow-up studies
will need to extend these analyses to longitudinal expres-
sion profiling experiments and measurements in atypical
forms of Parkinsonism and other neurodegenerative dis-
orders in order to better understand the time-dependence
and specificity of deregulations in these aging- and PD-
associated processes.
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tf2target data) and includes 199,950 TF-to-target interactions from the
University of California Santa Cruz (UCSC) Genome Browser (http://genome.
ucsc.edu/).
The GenAge benchmark database of genes related to ageing can be accessed
via http://genomics.senescence.info/genes/index.html.
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