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Abstract

Background: Differential expression (DE) analysis of transcriptomic data enables genome-wide analysis of gene
expression changes associated with biological conditions of interest. Such analysis often provides a wide list of
genes that are differentially expressed between two or more groups. In general, identified differentially expressed
genes (DEGs) can be subject to further downstream analysis for obtaining more biological insights such as
determining enriched functional pathways or gene ontologies. Furthermore, DEGs are treated as candidate
biomarkers and a small set of DEGs might be identified as biomarkers using either biological knowledge or data-
driven approaches.

Methods: In this work, we present a novel approach for identifying biomarkers from a list of DEGs by re-ranking
them according to the Minimum Redundancy Maximum Relevance (MRMR) criteria using repeated cross-validation
feature selection procedure.

Results: Using gene expression profiles for 199 children with sepsis and septic shock, we identify 108 DEGs and
propose a 10-gene signature for reliably predicting pediatric sepsis mortality with an estimated Area Under ROC
Curve (AUC) score of 0.89.

Conclusions: Machine learning based refinement of DE analysis is a promising tool for prioritizing DEGs and
discovering biomarkers from gene expression profiles. Moreover, our reported 10-gene signature for pediatric sepsis
mortality may facilitate the development of reliable diagnosis and prognosis biomarkers for sepsis.

Keywords: Biomarkers discovery, Differential expression analysis, Refined differential gene expression analysis,
Feature selection

Background
Pediatric sepsis is a life-threatening condition that is
considered a leading cause of morbidity and mortality in
infants and children [1, 2]. Sepsis is a systematic re-
sponse to infection that is characterized by a generalized
pro-inflammatory cascade, which may lead to extensive
tissue damage [3]. Early recognition of sepsis and septic
shock will help pediatric care physicians to intervene be-
fore the onset of advanced organ dysfunction and thus

reduce the mortality and length of stay as well as post
critical care complications [4]. However, reliable risk
stratification of sepsis, especially in children, is a chal-
lenge due to significant patient heterogeneity [5] and
existing poor definitions of sepsis in pediatric popula-
tions [6].

Existing physiological scoring tools commonly used in
intensive care units (ICUs), such as Acute Physiologic
and Chronic Health Evaluation (APACHE) [7] and
Sepsis-related Organ Failure Assessment (SOFA) [8], use
clinical and laboratory measurements to quantify critical
illness severity but provide little information about the
risk for poor outcome (e.g., mortality) at the onset of the
disease [2]. Several recent studies have proposed sepsis
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prognostic biomarkers (e.g., [5, 9, 10]) as well as sepsis
diagnostic biomarkers (e.g., [11–13]) by differentiating
between infectious and non-infectious systemic inflam-
matory response syndrome. To date, transcriptomic,
proteomic, and metabolomic data have been used to
identify sets of genes, proteins, or metabolites that are
differentially expressed among patients [14]. However, a
major challenge for developing clinically feasible sepsis
biomarkers is to have a fast turnaround time [14, 15].

Recent advances in high-throughput transcriptomic
technology have created opportunities for precision crit-
ical care medicine by enabling fast and clinically feasible
profiling of gene expressions within few hours. For ex-
ample, Wong et al. [16] used a multiplex messenger
RNA quantification platform (NanoString nCounter) to
profile the expressions of previously identified 100 three
subclass-defining genes [17] in 8–12 h. Differential gene
expression analysis is a commonly used computational
approach for identifying genes whose expressions are
significantly different between two phenotypes. Given
gene expression profiles for septic patients annotated
with targeted outcome (e.g., survivals vs. non-survivals),
this analysis typically associates a p-value (that could be
corrected for multiple hypothesis testing) with each gene
from the two groups (e.g. survivals and non-survivals).
Then, DEGs are those genes with p-values lower than a
specific threshold (typically, 0.05) and user-specified
thresholds for fold change (FC) for up- and down-
regulated genes [18]. A typical DE analysis of gene ex-
pression profiles often return hundred or more DEGs,
where considerable number of them might be highly
correlated with one or more other DEGs.

Against this background, we present a novel method
for refining the results of the statistical DE analysis
methods via re-ranking and prioritizing the genes from
the outcome of DE analysis. Specifically, we propose a
hybrid approach that leverages: i) statistical DE analysis
for identifying a wide list of DEGs; ii) supervised feature
selection methods for selecting an optimal subset of
DEGs with maximum relevance for predicting the target
variable and minimum redundancy among selected
genes; iii) supervised machine learning methods for
assessing the discriminatory power of the selected genes.
Using gene expression profiles from the blood samples
extracted from 199 children admitted to ICU and diag-
nosed with sepsis or septic shock, we first report a list of
108 DEGs and associated enriched functional pathways.
Then, we demonstrate the viability of our proposed gene
re-ranking method in identifying a 10-gene signature for
mortality in pediatric sepsis. Finally, we make our Py-
thon code (including notebooks examples for refining
DEGs and analyzing biomarkers using two example
datasets) publicly available at https://bitbucket.org/i2
rlab/rdea/.

Methods
Data
Normalized and pre-processed transcriptomic gene ex-
pression profiles were downloaded from [19]. These
gene expression profiles represent peripheral blood sam-
ples collected from 199 pediatric patients (later diag-
nosed with sepsis or septic shock) during the first 24 h
of admission to the pediatric ICU. Out of these 199
pediatric patients, 28 patients are non-survivals. Affyme-
trix CEL files were downloaded from NCBI GEO acces-
sion number GSE66099 and re-normalized using the
gcRMA method in affy R package [20]. Probe-to-gene
mappings were downloaded from the most recent SOFT
files in GEO and the mean of the probes for common
genes were set as the gene expression level.

Differential expression analysis
We used limma R package (Version 3.42.0) [18] to iden-
tify the differentially expressed genes with a Benjamini-
Hochberg (BH) correction method. We calculated the
fold change with respect to the non-survival (i.e., the up-
regulated genes are the genes with expression of the
non-survival samples that are higher than the expression
of these genes in the survival samples).

Classification methods
We experimented with three commonly used machine
learning algorithms for developing and evaluated binary
classifiers for predicting mortality in pediatric sepsis: i)
Random Forest [21] with 100 trees (RF100); ii) eXtreme
Gradient Boosting [22] with 100 weak tree learners
(XGB100); iii) Logistic Regression (LR) [23] with L2
regularization. The three algorithms are implemented in
the Scikit-learn machine learning library (Version 0.21.2)
[24].

Feature selection methods
We used two feature selection methods that have been
widely used with gene expression data, Random Forest
Feature Importance (RFFI) [21] and Minimum Redun-
dancy and Maximum Relevance (MRMR) [25]. For the
RFFI method, we trained a RF with 100 trees and then
feature importance scores which quantify the contribu-
tion of each feature in the learned RF model were used
to sort and rank the input features and only top k = 1, 2,
…, 10 were selected for training our classifiers. For
MRMR feature selection method, we used the training
data to select the top k features. These features were se-
lected such that the objective function in Eq. 1 is maxi-
mized. Let, Ω, S, and ΩS denote input, selected, and
non-selected input features, respectively. The first term
in Eq. 1 uses a relevance function f(xi, y) to quantify the
relevance of the feature xj for predicting the target out-
put y while the second term quantifies the redundancy
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among the selected features in S using the function g(xj,
xl). We implemented the MRMR algorithm [25, 26] as a
Scikit-learn feature selection model using Python. In our
experiments, we used the Scipy (Version 1.2.1) imple-
mentation of the Pearson correlation coefficient to com-
pute redundancy between features. For relevance
functions, we considered three functions (implemented
in Scikit-learn): area under ROC curve (MRMR_auc); χ2

(MRMR_chi2); and F-Statistic (MRMR_fstat).
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Marker genes discovery and performance evaluation
We identified top discriminative features (i.e., marker
genes) and estimated the performance of the machine
learning classifiers using 10 runs of the 10-fold cross-
validation procedure. Briefly, we repeated the following
procedure 10 times: First, the dataset was randomly par-
titioned into 10 equal subsets (each with the same sur-
vivals to non-survivals ratio as the entire dataset). Nine
of the 10 subsets were combined to serve as the feature
selection and training set while the remaining subset
was held out for estimating the performance of the
trained classifier. This procedure was repeated 10 times,
by setting aside a different subset of the data as the test
set. Overall, we had 100 iterations of train and test ex-
periments. The reported performance is averaged over
the 100 iterations and the score of each feature repre-
sents the fraction of how many times this feature was se-
lected in the 100 iterations (i.e., a feature with a score of
0.85 means that this feature had been selected to train
the classifier in 85 out of 100 iterations).

We assessed the performance of classifiers using five
widely used predictive performance metrics [27]: Accur-
acy (ACC), Sensitivity (Sn); Specificity (Sp); and Mat-
thews correlation coefficient (MCC); Area under ROC
curve (AUC) [28]. AUC is a widely used metric and
summary statistic of the ROC curve. However, when
several models have almost the same AUC score, we can
still compare them by examining their ROC curves to
determine if a model has an ROC curve that completely
or partially (in the leftmost region) dominates all other
ROC curves.

Pathway enrichment analysis
We used the function find_enriched_pathway in the
KEGGprofile R package (Version 1.28.0) [29] to map the
differentially expressed genes in KEGG pathway database
[30]. In our experiments, pathways with adjusted p-value
≤0.05 and gene count ≥2 were considered significantly
enriched.

Results
Identification of differentially expressed genes and
enriched pathways
Based on absolute fold change ≥1.5 and adjusted p-value
≤0.05, 108 from a total of 10,596 genes were found to be
DEGs between survival and non-survival septic pediatric
patients (See Additional file 1: Table S1) and
Additional file 2: Fig. S1). Table 1 shows the top 10
DEGs when the genes are ranked using the absolute
value of their fold change. Only one gene, TGFBI, is
down-regulated while the remaining nine genes are up-
regulated. TGFBI is among the 11 genes that have been
used in the Sepsis MetaScore (SMS) gene expression
diagnostic method [11, 31]. The top three upregulated
genes are SLC39A8, RHAG, and DDIT4. SLC39A8 is
found in the plasma membrane and mitochondria and
plays a critical role at the onset of inflammation [32]. Both
RHAG (also called SLC42A1) and SLC39A8 belong to sol-
ute carrier (SLC) group of membrane transport proteins.
Finally, increased expressions of DNA Damage Inducible
Transcript 4 (DDIT4) gene had been associated with
higher risks of mortality in sepsis patients [10, 19].

In order to get biological insights into the functional
rules of the identified 108 DEGs, we used the KEGGPro-
file R package to identify enriched human KEGG path-
ways in this set of genes. In our experiments, we did not
threshold on the p-value, adjusted p-value, or minimum
number of genes in the pathway such that the returned
results include all KEGG pathways that have at least one
gene in common with the target set of genes. The
complete set of results is provided in Additional file 1:
Table S2. We considered a pathway to be significantly
enriched if its adjusted p-value is ≤0.05 and at least two
DEGs are included in that pathway. Using these criteria,
we got 8 significantly enriched pathways (Table 2). Most
of these pathways had been linked to inflammation and/
or DNA damage.

Table 1 List of top 10 DEGs ranked by the absolute value of
the fold change

ID FC p-value Adj. p-value Regulation

SLC39A8 2.93 3.80E-07 6.71E-04 Up

RHAG 2.92 2.25E-04 2.60E-02 Up

DDIT4 2.78 1.22E-07 4.32E-04 Up

MPO 2.75 4.56E-04 3.90E-02 Up

RRM2 2.69 1.63E-04 2.26E-02 Up

CCL3 2.67 1.97E-06 1.91E-03 Up

TGFBI −2.59 7.89E-04 5.00E-02 Down

MAFF 2.56 2.45E-05 7.20E-03 Up

TYMS 2.55 5.13E-04 4.12E-02 Up

ENPP2 2.42 7.26E-05 1.33E-02 Up

KIAA0101 2.42 1.57E-04 2.23E-02 Up
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Additional file 2 Fig. S2 shows the heatmap of the cor-
relation matrix of the 108 DEGs. The figure shows that
up-regulated and down-regulated DEGs are clustered
separately. We also noted that within each cluster, every
gene might be highly correlated with multiple other
genes.

Can a small subset of the DEGs discriminate between
survivals and non-survivals?
Here, we report the results of evaluating 120 models ob-
tained using a combination of three supervised classifica-
tion algorithms, four feature selection methods, and 10
possible values for the number of selected features (k = {1,
2,…, 10}). Additional file 1: Table S3 shows the average
performance metrics estimated over 10 runs of 10-fold
cross-validation experiments. Figure 1 shows the boxplots
of the average AUC scores for each combination of a clas-
sification algorithm and a feature selection method. Inter-
estingly, MRMR_auc is consistently the best feature
selection method using any of the three classification algo-
rithms considered in our experiments. Surprisingly, we
found that the models obtained using this feature selec-
tion method and LR algorithm not only have the best per-
formance (in terms of AUC scores) but also have the
lowest variance in estimated AUC (i.e., AUC scores are
between 0.84 and 0.85). Additional file 1: Table S4 shows
the results of using the Mann-Whitney U test pairwise

Table 2 List of significantly enriched KEGG pathways

Pathway p-value Adj. p-value

Cell cycle 5.71E-12 1.92E-09

DNA replication 8.02E-09 1.35E-06

Oocyte meiosis 5.02E-06 4.23E-04

Mineral absorption 4.78E-06 4.23E-04

p53 signaling pathway 2.13E-04 1.23E-02

Human T-cell leukemia virus 1 infection 2.18E-04 1.23E-02

Pyrimidine metabolism 9.22E-04 3.89E-02

Progesterone-mediated oocyte maturation 9.16E-04 3.89E-02

Fig. 1 Comparisons of LR, RF100, and XGB100 classifiers evaluated using four different feature selection methods and 10 runs of 10-fold cross-
validation experiments. Each boxplot represents the distribution of average AUC score of 10 models evaluated using a given classification
algorithm and feature selection method for selecting top k = 1, 2, …, 10 features

Abbas and EL-Manzalawy BMC Medical Genomics          (2020) 13:122 Page 4 of 10



comparisons of classifiers (in Fig. 1) for each feature selec-
tion method. We found that the median AUC score for
LR is significantly higher than the median AUC score for
RF100 using the four feature selection methods. We also
found that the median AUC score for LR is significantly
higher than the median AUC score for XGB100 using
MRMR_auc and MRMR_chi2 feature selection methods.

Figure 2 shows that (using MRMR_auc feature selec-
tion) LR models outperformed corresponding RF100
and XGB100 models for any choice of the number of
selected features in k = {1, 2, …, 10}. Based on this fig-
ure, one might conclude that we should not use more
than 2 features since adding more features did not yield
any improvements in the AUC score.. However, to ac-
curately identify the best performing LR model, we
inspected the average ROC curves of these LR models
(See Additional file 2: Fig. S3). The LR model using
only 2 features is dominated in the leftmost region of
the curve (i.e., region corresponds to specificity greater
than 0.80) by all other models. For a target specificity
greater than 0.80, the best ROC curve corresponds to
the model trained using top seven selected DEGs. We
concluded that the best model (out of the 120 models
evaluated in this study) is based on LR algorithm and
MRMR_auc method for selecting top seven DEGs.
Therefore, only seven genes are needed to achieve the
highest AUC score of 0.85.

Machine learning based re-ranking of DEGs
Due to the small dataset and the instability of feature se-
lection methods, the top seven DEGs selected in each
fold might be different. Note that we conducted 10 runs
of 10-fold cross-validation procedure. Thus, we chose
seven DEGs 100 times to train and evaluate the LR
model. To determine the importance of each gene, we
assigned each gene a score indicating how many times
(out of 100) this gene had been selected among the top
seven genes used to train the classifier. Then, we simply
normalized the scores by dividing by 100 such that gene
importance scores of 1.0, 0.87, and 0.0 correspond to
genes that have been selected 100, 87, and zero times,
respectively. Additional file 1: Table S5 reports the gene
importance scores for the 108 DEGs. Only 31 genes have
importance score greater than zero. The top 15 genes
and their importance scores are shown in Fig. 3. We
noted that three genes (DDIT4, RHAG, and AREG) had
been consistently selected in each time.

As a result of the small number of samples in our
dataset, the performance of any predictive model esti-
mated using 10-fold cross-validation procedure might
vary for different random partitioning of the data into 10
folds. Therefore, the repeated cross-validation is essen-
tial for obtaining more accurate estimates of model per-
formance. To examine if the repeated cross-validation is
also necessary for obtaining robust estimates of gene

Fig. 2 Performance comparisons of RF100, LR, and XGB100 models using top k = 1, 2,. .., 10 features selected using MRMR_auc method
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importance scores, we repeated the preceding experi-
ment using a single run of 10-fold cross-validation pro-
cedure. The resulting gene importance scores are
reported in Additional file 1: Table S6. Only 15 genes
have non-zero scores. Out of these genes, we found that
12 genes are in the top 15 genes determined using the
repeated 10-fold cross-validation experiment.

In summary, our machine learning based refining of
DEGs outcome reduced the number of DEGs from 108
to 31 and provided an alternative ranking of these genes.

Next, we show how to use this ranking to determine the
minimum set of DEGs that best discriminate between
pediatric sepsis survivals and non-survivals.

A 10-gene signature of mortality in pediatric sepsis
We used the top 15 genes in Fig. 3 to search for a min-
imal set of genes that best discriminates between
pediatric sepsis survivals and non-survivals. Specifically,
for top k = {4, 5, …, 15} genes, we obtained the average
ROC curves of LR models estimated using 10 runs of

Fig. 3 Top 15 gene markers identified using proposed machine learning based DEGs re-ranking method

Fig. 4 Boxplots for the normalized expressions of the 10 marker genes in survival and non-survival groups

Abbas and EL-Manzalawy BMC Medical Genomics          (2020) 13:122 Page 6 of 10



10-fold cross-validation procedure (See Additional file 2:
Fig. S4). We found no improvement in the ROC curve
when using more than top 10 genes. Figure 4 shows
the boxplots of the normalized gene expressions of
these 10 genes. Interestingly, all 10 genes are up-
regulated. The most expressed genes are COX7B and
DDIT4 while the least expressed genes are PRG2 and
AREG.

Using this panel of 10 marker genes, we compared the
three machine learning algorithms considered in this
study. We found that the ROC curve of the LR model al-
most dominates the two ROC curves for RF100 and
XGB100 classifiers (Fig. 5). Performance comparisons of
these three classifiers are provided in Table 3. The LR
model has an average AUC score of 0.89 while both
RF100 and XGB100 have an average AUC score of 0.86.
Moreover, the LR model has the best sensitivity, specifi-
city, and MCC.

Additional file 1 Table S7 shows the enriched KEGG
pathways of the 10 marker genes. Since these 10 genes
are minimally redundant with each other, it is hard to
find pathways that include more than one of these genes.
We found only two pathways, Necroptosis (Genes
Found: STAT4 and TNFAIP3) and PI3K-Akt signaling
pathway (Genes Found: AREG and DDIT4), with more
than one hit from the 10 marker genes.

Comparison of different gene ranking methods
We compared the LR model trained using the 108 DEGs
to the LR models trained using only top 10 DEGs ob-
tained using our proposed machine learning based gene
ranking method (top10_ml) and two other ranking
methods based on absolute fold change (top10_fc) and
p-values (top10_pv). The average ROC curves of the four
LR models are shown in Fig. 6-a and the performance
metrics of these models are reported in Table 4. The
model using the 108 DEGs has the worst ROC curve
and the lowest performance estimates. The model based
on top 10 genes obtained using the absolute fold change
ranking slightly outperformed the model based on top
10 genes ranked using the p-values. Finally, the model
obtained using our proposed machine learning based
ranking substantially outperformed all three models. Al-
though all the models based on the three ranking
methods had acceptable performance (i.e., AUC score

Fig. 5 Average ROC curves of RF100, LR, and XGB100 models estimated using 10 runs of 10-fold cross-validation and 10 machine learning
identified marker genes

Table 3 Performance estimates of different classifiers evaluated
using 10 runs of 10-fold cross-validation procedure

Model ACC Sn Sp MCC AUC

RF100 88.6% 0.31 0.98 0.37 0.86

LR 87.6% 0.55 0.93 0.50 0.89

XGB100 86.9% 0.37 0.95 0.37 0.86
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≥0.84), we found that the three sets of genes were not
substantially overlapping with each other (See Fig. 6-b).
Every set of genes had at least 5 unique genes and the
only common gene among the three sets was DDIT4.
Figure 6 also visualizes the gene expression profiles for
survival and non-survival patients in a 3D space defined
by the top three marker genes in these three lists.

Discussion
Differential expression (DE) analysis has been widely used
to analyze gene expression profiles and uncover the

underlying biological mechanisms for complex diseases
[33, 34]. In general gene expression profiles are character-
ized with high dimensionality (tens of thousands of genes)
and high pairwise correlations between genes. Therefore,
the outcome of DE analysis tools often includes hun-
dred(s) of highly correlated genes (see Additional file 2:
Fig. S2). Therefore, it is impractical to use all DEGs for de-
veloping diagnostic and prognostic prediction tools. In
general, identifying a gene signature (a small set of marker
genes) can be done using domain knowledge or data-
driven approaches [14]. In this study, we presented a data-
driven approach to prioritize the marker genes using an
instance of the MRMR feature selection algorithm for
selecting genes with the highest AUC for predicting the
pediatric sepsis mortality and the minimal redundancy
among selected genes in terms of Pearson’s correlation co-
efficients. The novelty of our work includes the integration
of feature selection methods into the statistical pipeline
for DE analysis, the introduction of a new relevance scor-
ing function based on AUC scores for the MRMR algo-
rithm, and the identification of a 10-gene signature of
mortality in pediatric sepsis.

Fig. 6 Comparisons of three gene ranking methods. a ROC curves of LR models evaluated using 108 DEGs and top 10 marker genes determined
using fold change (top10_fc), p-value (top10_pv), and proposed machine learning method (top10_ml). b Venn diagram of these three lists of 10
marker genes. Visualization of survival (green) and non-survival (red) samples in a three-dimensional space based on the top three genes in (c)
top10_fc, (d) top10_pv, and (e) top10_ml

Table 4 Performance estimates of LR classifiers evaluated using
10 runs of 10-fold cross-validation procedure and different set
of genes

Gene set ACC Sn Sp MCC AUC

DEGs 80.3% 0.41 0.87 0.26 0.75

top10_fc 85.7% 0.41 0.93 0.36 0.85

top10_pv 86.2% 0.40 0.94 0.38 0.84

top10_ml 87.6% 0.55 0.93 0.50 0.89
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