
RESEARCH Open Access

Expression correlation attenuates within
and between key signaling pathways in
chronic kidney disease
Hui Yu1, Danqian Chen2, Olufunmilola Oyebamiji1, Ying-Yong Zhao2* and Yan Guo1*

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2019
Columbus, OH, USA. 9-11 June 2019

Abstract

Background: Compared to the conventional differential expression approach, differential coexpression analysis
represents a different yet complementary perspective into diseased transcriptomes. In particular, global loss of
transcriptome correlation was previously observed in aging mice, and a most recent study found genetic and
environmental perturbations on human subjects tended to cause universal attenuation of transcriptome coherence.
While methodological progresses surrounding differential coexpression have helped with research on several human
diseases, there has not been an investigation of coexpression disruptions in chronic kidney disease (CKD) yet.

Methods: RNA-seq was performed on total RNAs of kidney tissue samples from 140 CKD patients. A combination of
differential coexpression methods were employed to analyze the transcriptome transition in CKD from the early, mild
phase to the late, severe kidney damage phase.

Results: We discovered a global expression correlation attenuation in CKD progression, with pathway Regulation of
nuclear SMAD2/3 signaling demonstrating the most remarkable intra-pathway correlation rewiring. Moreover, the
pathway Signaling events mediated by focal adhesion kinase displayed significantly weakened crosstalk with seven
pathways, including Regulation of nuclear SMAD2/3 signaling. Well-known relevant genes, such as ACTN4, were
characterized with widespread correlation disassociation with partners from a wide array of signaling pathways.

Conclusions: Altogether, our analysis reported a global expression correlation attenuation within and between key
signaling pathways in chronic kidney disease, and presented a list of vanishing hub genes and disrupted correlations
within and between key signaling pathways, illuminating on the pathophysiological mechanisms of CKD progression.
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Background
Chronic kidney disease (CKD) entails gradual loss of
kidney function leading to end-stage renal disease, pre-
cipitating the need for renal replacement therapies. The

early stages of CKD, stages 1–2, have little signs or
symptoms and the disease is often not detected until the
later stages [1]. The risk of cardiovascular morbidity and
mortality increases with the progression of CKD to
stages 3–5. Omics-based approaches have emerged and
explained the molecular differential expression during
CKD progression. However, the disruption of gene coex-
pression in CKD remains obscure.
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Whereas transcriptome data are most typically ana-
lyzed to find differentially expressed genes, an alternative
analysis strategy [1–3] is gaining increasing popularity in
helping decipher many human diseases. This emerging
approach is focused on gene-gene connections/links and
most concerned with the dynamical connections across
comparative phenotypes. In 2005, a general framework
for weighted gene co-expression network analysis was
proposed [4], which was developed into a widely applied
software WGCNA [5]. Many studies leveraged WGCNA
to identify modules of coexpressed genes, which were
constrained to have distinct expression levels between
disease subjects and controls. Meanwhile, similar tools
such as CoXpress, GSCA, and GSNCA [6] were invented
with a direct goal of identifying extremely differentially
coexpressed gene sets. Unlike the purely data-driven tool
CoXpress [7], GSCA [8] and GSNCA incorporate gene
function knowledge at the very beginning, and in conse-
quence they only assess gene sets corresponding to func-
tional units, such as Gene Ontology terms or cellular
pathways in various senses. In addition to these set-wise
analysis approaches, tools to mine individual genes and/
or gene pairs with extreme differential coexpression are
also available, including our own product DCGL [9].
Analytic overview of some of these aforementioned tools
can be found in a recent review [10] on coexpression
(and coexpression difference) methodologies.
The interactions among separate cellular pathways are re-

ferred to as pathway crosstalk [11–13], which may manifest
notable changes from normal controls to disease subjects
[14] and be informative for related drug development [15–
17]. Most existing pipelines investigate the overlapping of
(differentially expressed) genes between individual path-
ways, with or without consideration of the infrastructure of
a protein-protein interaction network. We believe that the
changed expression correlation relations (differential coex-
pression) born by individual gene pairs constitute a more
context-specific network scaffold than a protein-protein
interaction network, thus allowing for more relevant path-
way crosstalk dynamics to be detected. Surprisingly, a path-
way crosstalk analysis from the viewpoint of differential
coexpression has not been undertaken.
While methodological progresses surrounding differen-

tial coexpression have helped with research on several hu-
man diseases [18–20], there has not been an investigation
of coexpression disruptions in CKD patients yet. There-
fore, we performed transcriptome profiling for 140 CKD
patients dichotomized to early/late phases, and analyzed
this CKD dataset as well as two related public datasets
using a combination of pathway and pathway crosstalk
analysis approaches centered upon differential coexpres-
sion. Strikingly, we discovered a pervasive disassociation
of gene correlations in CKD progression, with pathway
Regulation of nuclear SMAD2/3 signaling demonstrating

the most remarkable intra-pathway correlation rewiring.
In concordance with this global trend of correlation at-
tenuation, 43 genes lost their hub statuses established in
early CKD transcriptomes, including ACTN4, ARF6,
MAP2K7, and SRCAP. Moreover, the pathway Signaling
events mediated by focal adhesion kinase displayed signifi-
cantly weakened crosstalk with seven pathways, including
Regulation of nuclear SMAD2/3 signaling. Our analysis re-
sults proposed that vanishing hub genes and attenuated
correlation within and between pathways may underpin
the pathophysiological mechanisms of CKD advancement.

Methods
Human subjects
A total of 140 patients with different stages of CKD and a
total of 25 control donors from Shaanxi Traditional Chin-
ese Medicine Hospital, Xi’an No. 4 Hospital, and Baoji
Central Hospital were included in our study. Patients with
acute kidney injury, liver disease, active vasculitis, gastro-
intestinal pathology or cancer were excluded from the
study. All study participants were ethnically Han Chinese.
Patients (Demographic summary in Additional file 2:
Table S1) were divided into CKD stage 1, 2, 3, 4 and 5
using creatinine-based estimated glomerular filtration rate
(eGFR) equation [21]. We used the modified CKD-EPI
equation to quantify eGFR [22]. No patients have received
any treatment before diagnostic renal biopsy. Kidney tis-
sue samples were collected from these patients through
biopsy and stored in liquid nitrogen.

RNA-Seq and data pre-processing
To reduce the cost of RNA-seq, samples were pooled
into 33 pools, categorized roughly evenly to six stages
(Normal, CKD 1–5). Total RNA extraction with riboso-
mal RNA removal (Ribo-Zero), RNA quality control,
strand-specific library construction (Illumina), and 150
bp pair end RNA sequencing (Illumina) were conducted
by Novogene. RNA-Seq data were quality controlled ac-
cording to multi-perspective guideline [23] using QC3
[24]. Alignments were performed using STAR [25]
against the GRCh38 reference genome, gene quantifica-
tion was done using Cufflinks [26].
According to the National Kidney Foundation, eGFR is

the best measurement for kidney function and is used to
stage kidney disease. Patients with eGFR < 60 (CKD stage
3 to 5) are considered sufferring serious chronic kidney
disease clinically. Also due to that the current differential
coexpression approaches are generally incapable of hand-
ling minute sample size per category, we dichotomized all
samples to an eGFR> 60 group (n = 16) and an eGFR < 60
group (n = 17), assigning normal, CKD1, and CKD2 to the
former and CKD3–5 categories to the latter. Hence, by
comparing between early and late CKD, we sought to elu-
cidate cellular network rewiring mechanisms concurrent
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with the development of CKD from a mild, medically
amenable stage to the severe end stage of kidney failure.
This primary RNA-Seq dataset was denoted as CKD.
Two public microarray transcriptome datasets were

also obtained for auxiliary analysis purpose. They were
identified as GSE62792 and GSE37171 in Gene Expres-
sion Omnibus. GSE62792 [27] included 6 pooled sam-
ples for healthy volunteers and 12 pooled samples for
CKD patients having uncertain etiology. The discovery
phase of GSE37171 [28] consisted of 63 uremic patients
and 20 healthy controls, manifesting a notably imbal-
anced class ratio. Because the significance of correlation
coefficients is dependent on sample size, the paired cor-
relation coefficients calculated from severely imbalanced
normal group and disease group would be incomparable
to each other. For this sake, we derived a balanced sub-
dataset for GSE37171 where 21 randomly sampled pa-
tients were paired with the 20 controls. Of note, in the
preliminary exploration of reproducibility of some differ-
ential coexpression methods, we generated three trial
sub-datasets (GSE3.1, GSE3.2, and GSE3.3) from
GSE37171, each encompassing one-third of the total pa-
tients (21 patients vs. 20 controls); we also generated five
sub-datasets from GSE37171 (GSE3.1′, GSE3.2′,
GSE3.3′, GSE3.4′, and GSE3.5′) which shared the 20
controls but each contained a different bootstrap sample
of 21 patients.
To collapse multiple transcripts or probe sets to a sin-

gle gene, we selected the entity that had the maximum
median expression value across samples. All genes in a
raw transcriptome dataset were sorted by their cross-
sample median expression value, and those with rela-
tively higher median expression values were kept in en-
suing analyses. For the two microarray datasets, we used
a threshold of 25% percentile; for the CKD dataset, we
used the median (50% percentile) as the threshold. The
three datasets contributed 28,574, 15,022, and 17,533
genes at this step, and an intersection among the three
sources resulted in 11,400 shared genes. The number of
considered genes eventually shrank to 2766 after con-
straining to well-defined pathways (see below). All cor-
relation values were calculated using the Pearson
method.

Identification of differentially coexpressed genes and
gene pairs
The method DCe from R package DCGL (v2.0) [9] was
employed to identify differentially coexpressed links and
differentially coexpressed genes from three kidney dis-
ease transcriptome datasets. For seeking of differentially
coexpressed links, the coexpression network density
(proportion of gene pairs deemed as coexpression links
over all possible gene pairs) was set to 0.1, and 10% dif-
ferentially coexpressed links was assumed a priori for

running the Limit Fold Change model. For cutting off
the differentially coexpressed gene list, we applied a
threshold of q < 0.1.

Identification of internally rewired pathways
From Pathway Commons [29], we obtained the union of
pathways defined by PID [30], PANTHER [31], and
INOH [32]. We included only these three database
sources in order to minimize redundant pathways and
deliberately bias towards signaling pathways. Identically
named pathways from distinct sources were integrated
into a singleton pathway by adopting the largest-sized
gene set and adding additional gene members from a
secondary source if that source contributed more than
70% shared gene members. After this pathway duplica-
tion ablation, we additionally examined gene overlapping
between every pathway pair and ensured each pair of
pathways have no more than 70% shared genes. This
was done by iterating over pathways ordered by de-
creased set size, comparing the current pathway with
each remaining pathway (of a smaller size) in terms of
gene overlapping, and discarding the smaller-sized path-
way if an over 70% overlapping was detected. With such
integration and selection among raw pathways, we
strived to achieve a minimum semantic redundancy
among the compiled pathways. Finally, after constraining
the pathways to the expression-measured genes and im-
posing a size limit of [5, 250], we came to a corpus of
369 pathways, which involved totally 2766 genes.
Gene Sets Net Correlations Analysis (GSNCA) [6]

was exerted to assess the statistical significance of dif-
ferential coexpression within each candidate pathways,
where 1000 times’ permutation of sample class labels
were implemented. Within one pathway, GSNCA
summarizes the expression correlation profile for a
gene with respect to all other peer genes, deriving a
“weight” index for each gene. The weight vector,
formed by weights of all member genes, is calculated
for the two experimental conditions separately, and
then the two weight vectors are incorporated into a
distance statistic to indicate the degree of overall
gene-gene rewiring within the candidate pathway. We
utilized GSNCA to calculate the p-value for all 369
pathways in each of the three transcriptome datasets.
We also let GSNCA output the hub gene and the
schematic gene wiring network for each pathway. In
GSNCA’s terminology, a hub is a gene that has the
maximum weight, and the gene wiring network is the
union of the first and second minimum spanning
trees, which were identified through minimizing the
total path length (sum of correlation distances). A
hub gene and a pathway intra-wiring network are
associated with one pathway under one experimental
condition.
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Discovery of disrupted pathway crosstalk
Huang et al. devised an algorithm [33] to identify char-
acteristic sub-pathway network (CSPN) through appreci-
ating significantly abundant inter-pathway gene-gene
links. In two schizophrenia studies [34, 35], CSPN was
leveraged to delineate pathway crosstalk maps in
principle of over-represented protein-protein interac-
tions. Here, rather than using the conventional protein-
protein interaction network, we let the differentially
coexpressed links form the scaffold network. The differ-
entially coexpressed links out of the RNA-seq dataset
served as the primary network source, whereas a union
network of differentially coexpressed links from the
three transcriptome datasets was also analyzed for verifi-
cation purpose. CSPN evaluated all pairwise connections
among the significantly rewired pathways flowed from
the upstream GSNCA analysis. Finally, inter-pathway
links with p < 0.05 were kept in the pathway crosstalk
map.

Results
Reproducibility of the differential coexpression approach
From each of five datasets (CKD, GSE62792, GSE3.1,
GSE3.2, and GSE3.3; see Methods for dataset explan-
ation), we identified differentially coexpressed links, dif-
ferentially coexpressed genes, significantly rewired
pathways, and pathway hub genes. We assessed the over-
lapping significance among five data sources using the
hypergeometric test, where the total number of candi-
date entities were 369 for pathways, 2766 for genes, and
3,823,995 ðC2

2766Þ for gene links. The extremity of p
values out of the hypergeometric tests was visualized in
barplots (Fig. 1a). In all facets except for rewired path-
ways, the three repetitive sub-datasets derived from
GSE37171 showed significantly similar results; by con-
trast, agreement among the three distinct sources (CKD,
GSE62792, and GSE37171) was generally insignificant.
We were concerned by the fact that the significant path-
way lists mined from three repetitive sub-datasets did
not display significant agreement with each other, so we
generated another five sub-datasets from GSE37171 by
matching the 20 controls with a bootstrap subset of 21
patients each time. The five bootstrap-sampled sub-
datasets had less conspicuous pathway p-values com-
pared with datasets CKD and GSE62792 (Fig. 1b). When
we delimited a fixed number of top-ranking pathways,
significant agreement among datasets, especially among
repetitive sub-datasets, arose (Fig. 1c).
Given these reproducibility results from repetitive sub-

datasets, we believed those differential coexpression
methods were capable of yielding statistically stable re-
sults when different yet same-natured samples were re-
cruited to represent a phenotype. The much lower (and

mostly insignificant) result consistency among three dis-
tinct data sources prompted us to speculate that our
three datasets bore considerable disparity in their mo-
lecular mechanisms, despite all being related to kidney
diseases. In our formal workflow, we primarily focused
on the RNA-seq dataset (denoted “CKD”), integrating
GSE62792 and GSE37171 as auxiliary data only in par-
tial analyses. In particular, with respect to the less mutu-
ally consistent pathway-level results, we resorted to all
three datasets to compile a list of focused pathways that
were significantly rewired per two data sources or more.

Pervasive disassociation of gene correlation
DCGL categorized its identified differentially coex-
pressed links according to the signs of correlation values
in the two compared conditions. From dataset CKD, we
noted an overwhelming dominance (85.4%) of
decreased-positive links (Fig. 2a), though this pattern
was not apparent in results out of GSE62792 and
GSE37171. Relatedly, we intuitively assorted the candi-
date pathways into three categories based on the pre-
dominant correlation change direction: consolidated
(incremental correlations outweighed decremental corre-
lations), dissolved (decremental correlations outweighed
incremental correlations), and maintained (balanced
constitution of incremental/decremental correlations). In
accordance with the disproportional constitution of dif-
ferentially coexpressed links, a majority (87.3%) of the
candidate pathways were found dissolved from early
CKD to late CKD (Fig. 2b).
From the three transcriptome datasets, 46, 141, and 20

pathways stood out as significantly rewired pathways
from CKD, GSE62792, and GSE37171, respectively. Each
represented a considerable portion of the total candidate
pathways, yet not showing significant overlapping with
each other. We adopted Fisher’s combined probability
test to aggregate the p values from individual datasets,
and compiled 27 focused pathways (Table 1) which were
found significantly rewired per at least two datasets (p <
0.01) and had an aggregate p below 0.01. In decreasing
aggregate p, Regulation of nuclear SMAD2/3 signaling
(originating from PID) emerges as the most noteworthy
pathway, showing p values 0.012, 0.0010, and 0.0020 in
CKD, GSE62792, and GSE37171, respectively. In con-
cordance with the pervasive disassociation trend be-
tween genes, most of these focused pathways displayed
far-flung correlation loss among their member genes
(Fig. 3 and Additional file 1: Fig. S1).

Vanishing hubs in global correlation attenuation
For a phenotype, early CKD or late CKD, GSNCA iden-
tified one hub gene for each pathway, which can be in-
tuitively conjectured as the center of the gene
correlation wiring network (a more technical explanation
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Fig. 1 (See legend on next page.)
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was given in Methods). The significantly rewired path-
ways featured 40 and 40 hub genes in early CKD and
late CKD, respectively, which shared only six genes. Of
the 27 focused pathways out of combined evidence from
three datasets, only three had a constant hub in early
CKD and late CKD (Table 1). Since a global correlation
loss was found to pervade the CKD advancement

transcriptomes, we believed the vanishing hubs be more
relevant to CKD advancement than emerging hubs. In-
deed, with respect to all 369 candidate pathways, more
early-phase hubs were identified as differentially coex-
pressed genes than late-phase hubs (44 vs. 7, precisely).
Of the 44 differentially coexpressed, early-phase hub
genes, only one gene (GCLM) maintained its hub status

(See figure on previous page.)
Fig. 1 Overlap of resultant entity across kidney transcriptome datasets of different sources. a statistical significance of set intersection between
dataset pairs. Hypergeometric probability model was employed to calculate the p-value of obtaining the actual or a greater number of shared
entities. Bar height symbolizes the inverse of p-values, thus the higher the more significant. GSE6, GSE62792; GSE3, GSE37171; GSE3.x, a derived
dataset originating from GSE37171, with balanced sample sizes (20 vs. 21). b empirical cumulative density function curves for the 369 pathway-
wise p-values determined by GSNCA in each dataset. The 21 disease samples in each GSE3.x dataset were randomly selected from the whole set
of 63 samples, and these selected disease samples may share in part among the five derived datasets. c statistical significance of intersection
between top-ranking pathways from different datasets. Top-ranking pathways were gradually enlarged from 5 to 150 (40.1% of all pathways) at
an interval of 5 (row labels). Color shade is proportional to log10(p), where p is the p-value calculated under hypergeometric probability model.
Red signifies high portion of intersection entities unexpected by random cases

Fig. 2 Global expression correlation attenuation and extremely low hub retention of pathways. a breakdown of differentially co-expressed gene
links (DCLs). Each DCL is characterized with a pair of correlation values corresponding to the two comparator conditions, respectively, and DCLs
are categorized into four types on account of the signs and changing trend of the paired correlation values. Diff signed, DCLs of two extreme
correlation values in opposite signs. Same signed negative, DCLs of two negative correlation values. Increased positive, DCLs showing correlation
increment toward extreme positive values. Decreased positive, DCLs showing correlation decrease from extreme positive values. b breakdown of
pathways by predominant correlation change direction. Dissolved, more gene pairs have decreased correlation. Consolidated, more gene pairs
have increased correlation. Maintained, even share of gene pairs with increased correlation and gene pairs with decreased correlation. c one
hundred times of random permutation of patients’ class labels were performed and GSNCA was implemented on the permutated datasets, with
respect to all 369 covered pathways. The real hub constancy rate (3/27) and hub retention rate (1/44) was compared against the empirical
distributions resulting from permutations. d hub constancy rates and hub retention rates in real data analysis (red line) and permuted analyses
(grey histogram), where one hundred times of random permutation of patients’ pathway annotations preceded GSNCA running. Technically,
permuting patients’ pathway annotations was equivalent to shuffling the gene-to-pathway mapping relations, thus achieving random
organization of genes to meaningless pseudo-pathways while maintaining the same pathway size profile. The real hub constancy rate (3/27) and
hub retention rate (1/44) was compared against the empirical distributions resulting from permutations
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in CKD advancement; all other 43 genes (Additional file
2: Table S2) became “vanishing hubs” as CKD advanced
to end stage. Fourteen vanishing hub genes were found
differentially expressed among the six disease groups
when False Discovery Rate (FDR) was controlled below
0.3 (Additional file 1: Fig. S2).
We evaluated the statistical significance of the observed

hub constancy rate (3/27) and hub retention rate (1/44)
by comparing them against two empirical distributions,
which resulted from random permutation of patients’ class
labels (Fig. 2c) or genes’ pathway annotations (Fig. 2d).

The permutation experiments indicated the observed hub
constancy rate (3/27) and hub retention rate (1/44) were
significantly rare in random cases (p ≤ 0.01).
Among those 43 vanishing hubs, 9 were associated

with significantly rewired pathways (Table 2), and three
of which, ARF6, MAP 2 K7, and SRCAP, dictated one or
multiple focused pathways. MAP 2 K7 and ARF6 happen
to be the 1st and 2nd most pleiotropic differentially
coexpressed genes by virtue of playing the hub role in
seven and six pathways (Table 2), respectively, including
Cellular roles of Anthrax toxin (Fig. 4a) and Plexin-D1

Table 1 Twenty-seven focused pathways that significantly changed the internal gene-gene expression correlation in CKD
advancement

Pathway Aggregated
p

CKD RNA-Seq GSE62792 GSE37171

p Early Late p Normal Disease p Normal Disease

Regulation of nuclear SMAD2/3 signaling 4.13E-06 0.012 FOXO1 MAX 0.001 HNF4A TCF3 0.002 SMAD2 FOXO1

CD4 T cell receptor signaling 4.74E-06 0.014 HLA-DPB1 NFKB1 0.001 HLA-
DPA1

PPP3CC 0.002 MAP 3
K7

CD247

TCR signaling in naive CD4+ T cells 5.93E-06 0.018 PTPRC CBL 0.001 CD3D IKBKB 0.002 RASSF5 CD247

IL2 signaling events mediated by STAT5 1.07E-05 0.001 BCL2 BCL2 0.010 GRB2 CDK6 0.007 SHC1 CCND2

Angiopoietin receptor Tie2-mediated signaling 1.82E-05 0.001 FOXO1 NFKB1 0.002 AKT1 RAC1 0.064 FOXO1 MAPK1

TRAIL signaling pathway 1.87E-05 0.033 TNFSF10 TNFR
SF10D

0.002 FADD DAP3 0.002 PIK3CA MAPK1

Signaling events mediated by HDAC Class II 2.46E-05 0.030 HSP90AA1 GNB1 0.001 NUP214 BCOR 0.006 GNB1 RAN

Neurotrophic factor-mediated Trk receptor
signaling

3.22E-05 0.061 STAT3 RAP1B 0.001 MAPK3 RAPGEF1 0.004 RHOA RHOA

Canonical Wnt signaling pathway Diagram 3.41E-05 0.009 GSK3B FZD5 0.001 FRAT1 DVL3 0.029 WNT11 EP300

Cellular roles of Anthrax toxin 5.90E-05 0.008 MAP 2 K7 MAP 2 K1 0.001 MAPK3 TNF 0.061 MAP 2
K4

MAPK1

Methionine and Cysteine metabolism 6.62E-05 0.556 MTR MTR 0.001 LDHA AHCY 0.001 GOT2 LDHB

mRNA splicing 6.65E-05 0.040 PRPF3 SNRPA 0.007 PRPF3 PRPF3 0.002 PRPF3 SNRPA

Integrin signaling pathway 6.94E-05 0.006 ARF6 ILK 0.001 ITGAX ITGB7 0.098 RHOA RHOA

Validated nuclear estrogen receptor alpha
network

7.38E-05 0.158 SET XBP1 0.004 LCOR HDAC1 0.001 DDX17 XBP1

Wnt signaling pathway 7.87E-05 0.010 SRCAP HDAC3 0.001 PRKCD CSNK2A2 0.068 GNB1 PPP2R5C

Arf6 signaling events 0.00010 0.116 EGFR GNA14 0.002 ACAP2 CYTH3 0.004 GNAQ NCK1

Alpha4 beta1 integrin signaling events 0.00012 0.095 ARF6 CD14 0.006 CDC42 CD14 0.002 YWHAZ ITGA4

FGF signaling pathway 0.00012 0.009 ETS2 ETS2 0.004 SPI1 PLCG1 0.032 MAPK1 MAPK1

Syndecan-4-mediated signaling events 0.00012 0.003 THBS1 CCL5 0.055 CXCR4 GIPC1 0.007 ACTN1 RHOA

AP-1 transcription factor network 0.00017 0.003 HLA-A ETS1 0.009 MMP9 TRIP6 0.063 CREB1 CDKN1B

Signaling events mediated by focal adhesion
kinase

0.00021 0.009 ACTN4 RAP1B 0.001 ROCK2 ARHG
EF7

0.233 RHOA RHOA

a6b1 and a6b4 Integrin signaling 0.00030 0.002 YWHAZ YWHAG 0.005 AKT1 PIK3R1 0.319 PIK3R1 YWHAQ

ATM pathway 0.00059 0.003 ATM ABL1 0.005 TOP3A ATM 0.472 TRIM28 SMC1A

Validated targets of C-MYC transcriptional
repression

0.00062 0.009 CDKN1B CEBPD 0.001 CREB1 HDAC1 0.833 ALDH9A1 EP300

Apoptosis signaling pathway 0.00063 0.005 TNFRSF1A ATF4 0.002 BIRC3 LTB 0.767 PIK3CA HSPA5

Angiogenesis 0.00065 0.010 MAPK
APK2

CRKL 0.005 PRKCD GRAP 0.161 GSK3B RHOA

Cadherin signaling pathway 0.00072 0.009 CSNK2A2 FZD5 0.006 ACTA2 LEF1 0.167 WNT11 EGFR
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Fig. 3 Universal correlation attenuation within individual pathways. Rows and columns represent genes of the concerned pathway, arranged in
identical order. Cells denote the expression correlation values between the row gene and the column gene, with the lower triangle and the
upper triangle indicating the early CKD and late CKD phenotypes, respectively
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Signaling (Fig. 4b). SRCAP belonged to only one path-
way, Wnt signaling pathway (Fig. 4c), serving as its van-
ishing hub in CKD advancement. Sporadic researches
began to imply potential implication of MAP 2 K7 in
hypertensive nephropathy [36, 37] and ARF6 in diabetic
kidney disease [38], respectively.

Disrupted pathway crosstalk in CKD advancement
We deployed the 31,384 correlation-decreased differentially
coexpressed links from the RNA-seq dataset into a global
gene-gene connection network, upon which we sought to
identify significantly weakened pathway-pathway connec-
tions. At a p < 0.05 criterion, eight connections among eight
focused pathways were deemed significantly weakened in
CKD advancement, which formed a disrupted pathway
crosstalk map centered on Signaling events mediated by
focal adhesion kinase (Fig. 5a). As a verification attempt, we
repeated the same procedure in the union network of de-
creased gene links from all three datasets, which comprised
15,834 more edges (50% in addition) than the RNA-seq-
derived network. Ten edges connecting ten pathways
emerged in the verification analysis (Additional file 1: Fig.
S3), which shared seven nodes and seven edges with the
primary finding herewith. In both crosstalk maps, Signaling
events mediated by focal adhesion kinase was placed at the
centric position, indicating that most disrupted crosstalk
flows had revolved around it. Focal adhesion kinase (PTK2)
is a critical regulator of cell movement and is implicated in
TGF-beta signal transduction in CKD [39]. In our pathway
compendium, Signaling events mediated by focal adhesion
kinase consists of 53 genes derived from PID, sharing only
two members with the 71 genes of Regulation of nuclear

SMAD2/3 signaling. A total of 73 cross-pathway correlation
links accounted for the disrupted crosstalk between Signal-
ing events mediated by focal adhesion kinase and Regulation
of nuclear SMAD2/3 signaling (Additional file 2: Table S3).
The significant disruption of the individual pathway-

pathway crosstalks was attributed to correlation-
attenuated gene pairs traversing pathway boundaries
(Additional file 1: Fig. S4), where ~ 42% edges pertained
to Signaling events mediated by focal adhesion kinase.
For enhanced legibility, we delineated a subnetwork of
these cross-pathway correlations involving differentially
coexpressed genes or hub genes only (Fig. 5b). In this
gene-gene correlation disruption network, 44 of 83 total
edges were connected to five differentially coexpressed
genes from Signaling events mediated by focal adhesion
kinase, namely ACTN4, ARHGAP26, MYLK, RAPGEF1,
and WASL. As the hub of Signaling events mediated by
focal adhesion kinase in early CKD, ACTN4 lost its hub
status in late CKD (Table 1), and decreased its correl-
ation with genes from all seven linked pathways but Val-
idated targets of C-MYC transcriptional repression.
ACTN4 is genetically associated with focal segmental
glomerulosclerosis in OMIM, and it is included in a very
recent kidney-disease gene panel towards a comprehen-
sive genetic diagnosis of cystic and glomerular inherited
kidney diseases [40]. Eleven direct neighbors, CTNNAL1,
FBXW11, GAB1, GRB7, PIK3CB, PLCG1, SFRP1, SIN3B,
TEK, UBE2N, and VEGFA, disassociated themselves with
ACTN4 in CKD advancement. Compared with ACTN4,
SOS1, MYLK, and PLCG1 have even greater numbers of
connections in the cross-pathway gene-gene correlation
disruption network. These three genes haven’t been

Table 2 Nine differentially co-expressed genes which lost their hub statuses in one or multiple pathways

Gene DCL
ratea

p q Hub
incidence

Pathways endorsing hub status

AKR1C3 40% 3.52E-40 1.05E-38 1 Prostaglandin and Leukotriene metabolism

ARF6 18% 2.58E-17 4.25E-16 6 Alpha4 beta1 integrin signaling events; Arf6 downstream pathway; Arf6 trafficking events;
Integrin signaling pathway; Plexin-D1 Signaling; Posttranslational regulation of adherens junction
stability and disassembly

COL6A1 48% 6.79E-152 1.11E-149 3 Beta1 integrin cell surface interactions; Integrin signaling pathway; Syndecan-1-mediated signal-
ing events

HCK 16% 5.70E-08 6.19E-07 1 Glypican 1 network

ITPR1 14% 0.00019113 0.0015595 4 Alpha adrenergic receptor signaling pathway; Angiotensin_II-stimulated_signaling_through_G_
proteins_and_beta-arrestin; GPCR GroupI metabotropic glutamate receptor signaling pathway;
Muscarinic acetylcholine receptor 1 and 3 signaling pathway

MAP 2
K7

36% 3.18E-70 1.40E-68 7 Cellular roles of Anthrax toxin; FAS (CD95) signaling pathway; IL-1 signaling pathway (through
JNK cascade); IL-1 signaling pathway (through p38 cascade); Toll-like receptor signaling pathway
(p38 cascade); Toll-like receptor signaling pathway (through ECSIT, MEKK1, MKKs, JNK cascade);
Toll-like receptor signaling pathway (through ECSIT, MEKK1, MKKs, p38 cascade)

SRCAP 36% 5.61E-97 3.88E-95 1 Wnt signaling pathway

TYK2 27% 9.00E-37 2.47E-35 1 IL-12 signaling (JAK2 TYK2 STAT4)

VAV2 16% 3.41E-08 3.83E-07 6 CDC42 signaling events; E-cadherin signaling in the nascent adherens junction; EPHA2 forward
signaling; Nectin adhesion pathway; Regulation of CDC42 activity; Regulation of RAC1 activity

a proportion of Differentially Coexpressed Links (DCLs) in total incident links

Yu et al. BMC Medical Genomics 2020, 13(Suppl 9):134 Page 9 of 15



directly associated with CKD but were implicated in IgA
nephropathy (SOS1) [41], diabetic kidney disease
(MYLK) [38], and paroxysmal nocturnal hemoglobinuria,
respectively (PLCG1) [42].

Discussion
Compared to the conventional differential expression
approach, differential coexpression analysis represents a
different yet complementary perspective into diseased

transcriptomes. Methods purposed for identification of
differentially coexpressed genes, gene connections, and
gene sets have been invented and improved in nearly
two decades. While a negative voice questioned the po-
tential confounding between differential expression and
differential coexpression [43], more studies [18, 44–47]
proved that differential coexpression dissection of tran-
scriptomes led to unique, innovative discoveries other-
wise invisible to the conventional differential expression

Fig. 4 Three genes lost hub status in transcriptome rewiring of their respective pathways in CKD advancement. In each panel, left denotes early
CKD and right denotes late CKD. a MAP 2 K7. b ARF6. c SRCAP. Red, hub genes in early CKD. Blue, hub genes in late CKD. Node size, vertex
degree. Edge width, absolute correlation
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approach. In our analysis, differentially coexpressed
genes effectively enriched clinically actionable genes (as
included in a kidney-disease panel of 140 genes [40])
two times more likely than random embedding. Gener-
ally speaking, differential coexpression approaches are
enjoying steadily increasing appreciation and are

frequently playing a critical role in studies of dysfunc-
tional mechanisms of human disease [1, 10].
In this work, we applied a variety of differential coex-

pression oriented methods to analyze the transcriptome
transition from early stage CKD patients to late stage
CKD patients, making innovative discoveries at multiple

Fig. 5 Disruption of pathway crosstalk in CKD progression. a pathway crosstalks present in early CKD were disrupted in late CKD. Node size and
edge width are proportional to the statistical significance of correlation loss (extremity of p value). b attenuated cross-pathway gene correlation
links incident to the affected pathways. For clarity, only links pertaining to Differentially Coexpressed Genes or hub genes were shown. Node size,
vertex degree. Node color, pathway membership. Red text, pathway hub genes. Asterisk (*), differentially expressed genes (FDR < 0.3)
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levels covering vanishing hub genes, disassociated gene
links, and disrupted pathway crosstalks. Our results re-
capitulated well-known CKD pathways such as Regula-
tion of nuclear SMAD2/3 signaling and Signaling events
mediated by focal adhesion kinase and highlighted crit-
ical genes such as ACTN4 in the context of transcrip-
tome correlation network. Plenty of researches have
proved the role of Smad2/3 in kidney disease. Smad2
and Smad3, two major downstream mediators of trans-
forming growth factor-β1 (TGF-β1), play a dominant
role in kidney dysfunction and renal fibrosis [48]. Smad2
and Smad3 are activated in kidneys of patients with
CKD and experimental animals of unilateral ureteral ob-
struction (UUO), 5/6 nephrectomy, hypertensive ne-
phropathy and diabetic nephropathy [49–54]. Smad2
and Smad3 mediate the transcription of many extracel-
lular matrix (ECM) proteins including connective tissue
growth factor, fibronectin and various collagens [55, 56].
The activation of Smad2 and Smad3 results in aggressive
ECM deposition in interstitial and glomerulus that cause
interstitial fibrosis and glomerulosclerosis in kidney re-
spectively [56], while the inhibition of Smad3 phosphor-
ylation retarded renal fibrosis in UUO rats [57]. Knock-
down of Smad3 in mice significantly attenuated renal fi-
brosis in diabetic nephropathy [58] and aristolochic
acid-induced nephropathy [59].
In the present study, we identified Signaling events me-

diated by focal adhesion kinase as the pathway centered
on the disassembled pathway crosstalk network during
CKD progression. PTK2, a non-receptor tyrosine kinase,
is one of the first molecules recruited to focal adhesions
in response to external mechanical stimuli that controls
cell migration, cell proliferation and cell survival in kid-
ney [60, 61]. PTK2 has the ability to regulate AKT, PI3K,
MAPK, Yes-associated protein, integrin α, TGF-β1 and
α-smooth muscle actin (α-SMA) [60–63]. ECM accumu-
lation triggers the phosphorylation and recruitment of
PTK2 to focal adhesions [64]. In addition, PTK2 pro-
moted the expression of monocyte chemoattractant
protein-1 and cell migration to accelerate the progres-
sion of various glomerular diseases [65]. Interestingly,
PTK2 was required for phosphorylation of ACTN4, a
vanishing hub gene with substantial contribution to
pathway crosstalk disruption in CKD progression.
ACTN4 is closely associated with CKD, especially focal
segmental glomerulosclerosis (FSGS) [66, 67]. Mutations
in ACTN4 has been identified as a cause of familial focal
segmental glomerulosclerosis [68], and the differences
between patients and families who harbor ACTN4 muta-
tions can be distinguished from other podocyte diseases
[69]. Podocytes isolated from mutant ACTN4 knock-in
mice developed extensive and irrecoverable reductions
compared with those isolated from wild type mice, and
mutant cells were more likely to detach upon stretch

[70]. In addition, ACTN4 can enhance NF-κB activity in
podocytes which aggravates podocyte injury [71].
Additional pathways and genes in our results may provide

worthwhile research targets in future CKD studies. The disas-
sociated gene links and disrupted pathway crosstalks identi-
fied by analyses, such as those gene links revolving around
ACTN4 and those pathway connections incident to Signaling
events mediated by focal adhesion kinase, may propel specific
biological hypotheses on CKD molecular mechanisms.
Notably, we discovered a global expression correlation

attenuation within and between key signaling pathways
in CKD progression. A similar trend of global loss of
transcriptome correlation was previously observed in
aging mice [72]. Moreover, a most recent study [73]
found genetic and environmental perturbations on hu-
man subjects tended to cause universal attenuation of
transcriptome coherence. The authors investigated both
metabolism and transcriptome data of a variety of per-
turbation factors, including internal genetic variants and
external environmental stresses, and they repeatedly dis-
covered a widespread decrease in the magnitude of pair-
wise correlation coefficients between mRNA transcripts
or metabolites. They referred to this loss of correlation
in an infected or diseased state, relative to a baseline or
healthy state, as ‘decoherence’. Global correlation loss,
or regulatory decoherence, seems to be compatible with
the evolutionary perspective of decanalization [74],
which hypothesizes that new mutations or novel envi-
ronments may almost inevitably disrupt the fine-tuned
gene regulatory network resulting from many genera-
tions of stabilizing selection. Taking into account both
the present work and previous related studies, the pat-
tern of global correlation losses have been noted in
aging, immune challenge, metabolic disease, and CKD. It
is intriguing to investigate if such a global correlation
loss trend exists in extended pathological scenarios.

Conclusions
In this study, we performed RNA-Seq transcriptome pro-
filing of five stages of chronic kidney disease patients and
analyzed the transcriptome correlation disruptions accom-
panying CKD progression in the context of signaling path-
ways using a combination of differential coexpression
methods. Overall, a global expression correlation attenu-
ation was observed in CKD progression, with pathway
Regulation of nuclear SMAD2/3 signaling demonstrating
the most remarkable intra-pathway correlation rewiring.
We identified 27 focused pathways that significantly chan-
ged the internal gene-gene expression correlation in CKD
advancement, and enumerated 44 presumably CKD-
relevant genes on account of their vanishing hub roles in
the collapsed pathways. Moreover, we went further to de-
lineate a disrupted pathway crosstalk map centered upon
Signaling events mediated by focal adhesion kinase; well-
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known relevant genes (such as ACTN4) and relevant path-
ways (such as Regulation of nuclear SMAD2/3 signaling)
were found involved in these inter-pathway
disassociations.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12920-020-00772-3.

Additional file 1: Figure S1. Universal correlation attenuation within
focused pathways. All focused pathways listed in Table 1, except eight
depicted in Fig. 2, are illustrated here. Rows and columns represent
genes of the concerned pathway, arranged in identical order. Cells
denote the expression correlation values between the row gene and the
column gene, with the lower triangle and the upper triangle indicating
the early CKD and late CKD phenotypes, respectively. Figure S2.
Fourteen vanishing hub genes had statistically significant differential
expression between CKD stages (FDR< 0.3). Differential expression
analysis was performed via Comulative Link Models for ordinal regression.
Figure S3. Disrupted pathway crosstalk map inferred from the union
network of decreased gene links from all three datasets. The background
gene-gene network comprised 47,218 correlation-loss edges. Node size
and edge width are proportional to the statistical significance of correl-
ation loss (extremity of p value). Each edge was labelled with the p value
out of CSPN analysis. Figure S4. Correlation-attenuated gene pairs
traverse pathway boundaries shedding light on disrupted pathway cross-
talks. Figure 4b forms a sub-graph of the present network.

Table S1. Clinical and demographic baseline characteristics of controls
and patients with CKD. Results are expressed as the means ± SD, *P<
0.05, **P< 0.01. Table S2. Except GCLM, all 44 hub genes in early CKD
pathway-wise co-expression networks lost their hub status in late CKD.
These genes were identified as differentially coexpressed genes by DCGL
as well. Table S3. Correlation-attenuated gene pairs that traverse path-
way boundaries.
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