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Background
In United States, ovarian cancer is the fifth leading cause
of cancer-related death in female [1], which accounts for
2.5% of all cancers in female, whereas, 5% of all cancer
death in female [2]. In 2018, there are about 22,000 new
cases of ovarian cancer, and 14,000 deaths [2]. The high
death rate (< 50% of 5 year survival rate) is mainly be-
cause of the late diagnosis and aggressive high grade ser-
ous carcinoma [2, 3]. Platinum-based chemotherapy
after surgical debulking is the standard treatment for
ovarian cancer [4]. However, the cancer recurrence rate
is high, and recurred tumors are often platinum resistant
[4–6], with complicated mechanism of platinum resist-
ance [7]. Though a few targeted therapies are being eval-
uated in clinical trials, e.g., VEGF, PARP, EGFR
inhibitors [4], some of them are not very successful [4].
Therefore, novel targeted therapies and synergistic drug
combinations are needed for ovarian cancer.
On the other hand, comprehensive multi-omics data

of ovarian cancer patients have been profiled and ana-
lyzed [1, 8]. A set of genetic biomarkers, e.g., TP53,
NOTCH, FOXM1, have been identified via association
analyses [1]. Also, a few dysfunctional signaling path-
ways, e.g., MYC, TP53, PI3K/RAS, were be identified in
ovarian cancer by mapping multi-omics data, e.g., differ-
entially expressed genes, mutations, copy number vari-
ation, and methylation data, to the curated signaling
pathways [8]. However, the functional consequence of
these biomarkers and cross-talk of complicated signaling
pathways in ovarian cancer remain unclear. It is still a
challenge to discover effective drugs and synergistic drug
combinations [9–12] for ovarian cancer based these
valuable knowledge and multi-omics data.
In this study, we aim to systematically investigate po-

tential activated core signaling pathways in ovarian can-
cer sub-groups by uncovering the up-stream signaling
pathways of activated transcription factors (TFs), and
identify all available FDA approved drugs targeting on
these up-stream signaling and TFs. The combinations of
these drugs have the potential to be synergy with stand-
ard platinum chemotherapy by disrupting multiple up-
stream signaling and their cross-talk. This study will
provide a useful reference resource for repositioning ef-
fective drugs and drug combinations for ovarian cancer.
The rest of the paper is organized as follows. The details
of datasets and methods are provided in Section 2. The
analysis results are presented in Section 3, followed by a
summary in Section 4.

Methods
Gene expression data of ovarian cancer and ovarian
normal tissue
We download the gene expression (RNAseq - RSEM ex-
pected_count (DESeq2 standardized)) data of 427

ovarian cancer samples (from The Cancer Genome Atlas
(TCGA) [1]), and 88 ovarian normal samples (from
Genotype-Tissue Expression (GTEx) [13]) from the
Xena server [14].

KEGG signaling pathways and regulatory network
To obtain KEGG signaling pathways, the “Pathview” R
package [15] was employed to download KGMLs of sig-
naling pathways. Then the “KEGGgraph” R package was
used to extract nodes and edges of KEGG signaling
pathways from KGMLs [16]. In total, 282 signaling path-
ways were collected from seven categories: metabolism,
genetic information processing, environmental informa-
tion processing, cellular processes, organismal systems,
human diseases, and drug development. The TF-Target
regulatory network was downloaded from the supple-
mental material of reference [17], which was derived
from the TF binding site predictions for all target genes
from TRANSFAC (v7.4) [18]. In summary, the TF-target
regulatory network consists of 230 TFs, 12,733 target
genes, and 79,100 TF-Target interactions.

Drug combination screening data in NCI ALMANAC
This dataset includes screening results of pairwise com-
binations of 104 FDA-approved anticancer drugs on
NCI-60 cancer cell lines (59 cancer cell lines with de-
tailed genomics profiles) [19]. Specifically, ~ 5232 pair-
wise drug combinations were evaluated in each cancer
cell line. Each drug combination was tested at either 9
or 15 dose points for a total of 2,809,671 dose-specific
combinations. The detailed definition of synergistic drug
combination score was introduced in reference [19].

Selection of up-regulated genes for each sample
In this study, the GTEx normal ovarian tissue samples
were used as normal control versus ovarian cancer
tumor samples from TCGA. The simple fold change and
p-value <= 0.05 (using t test) will result in too many up-
regulated genes. The Maximum Likelihood Estimate
(MLE) method (see Fig. 1, red probability distribution
function (PDF) curve) also generated too many up-
regulated genes. Thus, we employ the Markov chain
Monte Carlo (MCMC) model to simulate the distribu-
tion of gene expression distribution of given genes based
on the normal tissues. Let x, D present the gene expres-
sion of a given gene and normal tissues respectively.

p xjDð Þ ¼ p xDð Þ
p Dð Þ ¼

R
θ∈Θp xDjθð Þdθ

p Dð Þ
¼

R
θ∈Θp xjθð Þp Djθð Þ

p Dð Þ ð1Þ

Zhang et al. BMC Medical Genomics 2020, 13(Suppl 9):132 Page 2 of 11



θ ¼ μ; σ2
� �

; Θ ¼ −∞;þ∞b c � 0;þ∞b c; x : N
¼ μ; σ2

� �
:

We use the conjugate priors for μ andσ2 , which are
the Normal distribution and Inverse Gamma distribu-
tion: μ :N(w0, v0), σ

2 : IG(a0, b0).. To get uninformative
priors, we set w0 = 0, v0 = +∞, a0 = 0, b0 = 0. Since it is
hard to calculate eq. (1), we use MCMC method to
simulate the distribution. The python package “Pymc3”
[20] was employed to conduct the analysis. We set w0 =
0, v0 = 104, a0 = 10− 3, b0 = 10− 3. The MCMC model is
better than MLE (see the green PDF curve in Fig. 1), but
still too many up-regulated genes will be selected. To
further reduce the number of up-regulated genes, we
empirically simulate the PDF of random variable y = 2x,
and use the PDF of y to calculate the p-value of given
gene expression in ovarian cancer samples. Specifically,
we selected up-regulated genes for each tumor sample
with fold change> = 2 and p-value<=0.05 (calculated
based on the PDF of random variable y). We take the
gene “CENPH” as an example to illustrate this analysis.
The PDF generated by the MCMC model is more robust
than generated by Maximum Likelihood Estimate (MLE)
(see Fig. 1). The yellow point is the threshold and area
under blue curve on the right of yellow point is about
0.05 (the calculation of p-value).

Identification of activated TFs for individual ovarian
cancer patients
The Fisher’s exact test (using hyper-geometric distribu-
tion) was used to identify the activated TFs by

comparing the number of up-regulated targets vs. the
number of all target genes, with the number of all the
up-regulated genes vs. the number of all the genes
tested. The p-value threshold, 0.05, was used to select
the activated TFs.

Sub-grouping analysis using activated TFs
We cluster 427 ovarian cancer samples using the
identified activated TFs. We transform p-value to 0–1
using 0.05 as a threshold. For categorical data, we use the
k-modes method [21] for the sub-grouping analysis.

Uncovering up-stream signaling of activated TFs
All 282 signaling pathways from KEGG are investigated,
and all the signaling cascades from the starting nodes to
the activated TFs are extracted using the python pack-
age, NetworkX, to extract the up-stream signaling cas-
cades starting from the beginning genes of individual
signaling pathways to the given TFs. Then we score each
signaling cascades using the average probability of genes
(obtained from the MCMC analysis). To control the size
of up-stream signaling network, the top 3 signaling cas-
cades are kept.

Target importance scoring
The impact analysis (IA) evaluates both the topology
and dynamics of a signaling pathway by considering the
gene expression changes, the direction and type of sig-
naling interaction, and the position and role of every
gene in a pathway. A perturbation factor for each gene,

Fig. 1 Gene expression distribution of gene “CENPH”
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PF(gi), is calculated using the impact analysis method
[22], as follows:

PF gi
� � ¼ ΔE gi

� �þ
Xn
j¼1

βij
PF g j

� �

Nds g j

� � ;

The term ΔE(gi) represents the signed normalized
measured gene expression change of gene gi. The second
term is the sum of perturbation factors of direct up-
stream genes of target gene gi, normalized by the num-
ber of downstream genes of each such gene Nds(gj). The
value of βij quantifies the strength of the interaction be-
tween genes gj and gi. We use the probability density of
gene expression instead of gene expression, which s will
be more accurate considering that the standard deviation
of different genes is different.

Results
Ovarian cancer samples were clustered into 3 groups
based on activated TFs
Using the K-modes method, the 427 ovarian cancer
samples were classified into 3 sub-groups (with 100, 172,
155 samples respectively) based on the activated TFs.
For each sub-group, there is a center sample, and we use
the center sample to characterize each sub-group. In an-
other word, the activated TFs in the center sample were
used as the activated TFs for this sub-group.
For visualization purpose, the principal component

analysis (PCA) was employed to reduce the 230 TFs to 2
dimensions (see Fig. 2). In one sub-group (Group 1), 14

TFs were activated: ELK1, FOXF2, NRF1, ETS2,
NF.muE1, ADD1, TBP, SP1, GABP, E4F1, TELO2,
MYC, YY1, NFE2L2A. Interestingly, these 14 TFs are
also activated in the other two groups. Group 2 and
Group 3 have 26 and 25 TFs respectively. The additional
TFs for Group2 are: AR, ETS1, GABPB1, GFI1, HMG,
LHX3, NKX6.2, PAX3, PDX1, PITX2, REST(NRSF), S8.
The additional TFs for Group 3 are: ARNT_MAX,
ETS1, FOXN1, FOXO4, GABPB1, LHX3, NFATC2,
NFIL3_ATF2, NKX6.2, PAX3, SREBF1.

Up-stream signaling of activated TFs and related FDA
approved drugs
The up-stream signaling of activated TFs are shown in
Figs. 3, 4 and 5. As can be seen, multiple important sig-
naling pathways are uncovered, e.g., MYC, WNT, PDGF
RA (RTK), PI3K, AKT TP53, and MTOR. This result is
consistent with the discoveries in aforementioned refer-
ences. There are 43 common genes among these 3 sub-
groups. We calculated and ranked the perturbation fac-
tor of 43 common genes. The top 5 related genes are
TBP, MMP9, MYC, MAPK1, MTOR, which might play
important roles in ovarian cancer. An interesting finding
is MMP9, MYC, MAPK1, MTOR are all in Proteogly-
cans in cancer. Thus RTK-PI3K-AKT-MTOR can be an
important signaling cascade for ovarian cancer. In
addition, MTOR actives TP53 by cellular senescence
pathway while T53 inhibits MTOR through IGF1/
MTOR. Since TP53 is the most frequently altered genes
in ovarian cancer, the signaling loop between TP53 and
MTOR might be a potential target of novel synergistic

Fig. 2 Ovarian cancer samples are clustered into 3 groups based on the activated TFs
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drug combinations. Moreover, drug combinations tar-
geting on multiple up-stream signaling and TFs are also
potentially synergy to disrupt the activated signaling of
ovarian cancer sub-groups.
To investigate potential drugs that can potentially per-

turb these up-stream signaling networks, we mapped the
FDA approved drugs on the signaling networks (see Figs.
3, 4 and 5). The target information was obtained from
DrugBank (version 5.0.11) [23]. In total, 66 drugs (red
nodes in Figs. 3, 4 and 5) were selected targeting on dif-
ferent targets. Through the literature search, 44 drugs
had been reported to treat ovarian cancer (see Table 1).

In addition to these single drugs, we investigated effect-
ive combinations that appeared in our drug list, and vali-
dated in the drug combination screening on NCI 60
ovarian cancer cell lines (the synergy is defined with a
threshold score higher than 8) (see Table 2). Moreover,
we found that the top 10 drug targets of synergistic drug
combinations are EGFR, TUBB1, TUBA4A, TUBB,
TOP2B, MTOR, TUBB3, CYP19A1, ERS1 and BCL2.
TUBB1, TUBA4A, TUBB, TUBB3 and TOP2B are re-
lated to cell proliferation. CYP19A1 and ERS1 are re-
lated to estrogen. BCL2 is the member of the Bcl-2
family of regulator proteins that regulate cell death.

Fig. 3 FDA approved drugs targeting on up-stream signaling of activated TFs in Group 1. The color of green, blue, yellow, and red represents
signaling starting genes, signaling transduction genes, TFs, and drugs respectively

Fig. 4 FDA approved drugs targeting on up-stream signaling of activated TFs in group 2. The color of green, blue, yellow, and red represents
signaling starting genes, signaling transduction genes, TFs, and drugs respectively
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EGFR and MTOR are in PI3K-AKT pathway, and EGFR
is one of the upstream of MTOR signaling. The combin-
ation of MTOR inhibitors, and EGFR, RTK, PI3K signal-
ing inhibitors might be synergy to inhibit ovarian cancer
development.

Moreover, we investigated the difference of activated
core signaling pathways among these 3 sub-groups. The
unique TFs appeared in the core signaling pathways in
Group 2 and Group 3 are: PDX1, REST and AR; and
ROXO4, SREB F1, NFATC2 respectively. In upstream
signaling genes, PML, LEF1, MAPK12, FGF22, JUP,
AKT3, MAPK10, MAP2K1, TCF7 are the unique genes
for Group1. The CLTA, AR, RPS6KB2, AP2S1, AKT1S1,
FOXA2, PDPK1, HTT, MAP2K6, TNFRSF1A, TNF,
GNB1, MAFA, TRAF2, REST, HHEX, EFNA4, MAP3K5,
PDX1 and AP2M1 are unique genes for Group2. The
FOXO4, PLCB4, NFATC2, IRS4, KRAS, PRKCI, PTPRF,
ICOS, EGLN3, NOTUM, PPP3R1, SREBF1, EPHA2,
EGFR, EGF and PRKCZ are the unique genes for
Group3. For Group 1, MAPK10, AKT3, FGF22 are in
MAPK signaling pathway and RAS signaling pathway,
and PML, JUP, LEF1, TCF7 are signaling cascades link-
ing to MYC. For Group2, the signaling cascade from
TNF to p38 is an upstream of p53. For Group3, many
genes appeared in RAP1 signaling pathway. For the
drugs listed in Table 1, for example, Celecoxib,

Chloroquine, Etanercept, Infliximab and Thalidomide tar-
gets on unique Group2 genes; and Cetuximab, Dasatinib,
Erlotinib, Gefitinib, Lidocaine, Necitumumab, Osimerti-
nib, Panitumumab, Sucralfate, Tamoxifen, Vandetanib,
Vitamin C targets on Group 3 unique genes. The signaling
diversity and heterogeneity can be potential therapeutic
targets for drug combination discovery.

Discussion
Ovarian cancer is the fifth leading cause of cancer-
related death among women, and the 5-year survival rate
is fewer than one half. Though a set of biomarkers and
signaling pathways have been identified to be associated
with ovarian cancer, the functional consequence of these
biomarkers and signaling pathways remain unclear.
Moreover, there is a lack of effective targeted therapies
for ovarian cancer, especially for the platinum resistant
ovarian cancer. In this study, we analyzed the gene ex-
pression data of ovarian cancer samples and ovarian nor-
mal tissues via network analysis. We aim to
systematically explore the activated signaling pathways
of individual ovarian cancer patients and sub-groups,
and identify potential targets and drugs that are able to
disrupt the core signaling pathways. There are still sev-
eral limitations of the study. First, in addition to gene
expression, mutation, methylation, and copy number

Fig. 5 FDA approved drugs targeting on up-stream signaling of activated TFs in group 3. The color of green, blue, yellow, and red represents
signaling starting genes, signaling transduction genes, TFs, and drugs respectively
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variation data should be integrated in the network ana-
lysis to uncover the TFs, and up-stream signaling. Sec-
ond, the signaling cross-talk among these up-streams are
not investigated, which might be responsible for drug re-
sistance. In the future, we will also investigate the signal-
ing network and TFs of platinum resistant ovarian
cancer samples; and conduct the network-based drug re-
positioning approaches [66, 67] to reposition drugs [68,
69] and drug combinations [70] for ovarian cancer
treatment.

Conclusions
The purpose of this study is to systematically uncover
potential activated core signaling pathways in ovarian
cancer using integrative network analysis. We identified
about 37 activated TFs from three sub-groups of ovarian
cancer, as well as a set of up-stream signaling pathways
linking to these TFs, e.g., WNT, TP53, MYC, AKT, RAS,

mTOR, PDGFRA signaling pathways. In addition, 66
FDA approved drugs were identified targeting on the
uncovered core signaling pathways. Forty-four drugs had
been reported in ovarian cancer related reports. Combi-
nations of these drugs could be potentially synergy to
disrupt the cross-talk of multiple activated signaling
pathways and TFs for better ovarian therapy. These un-
covered signaling networks, TFs and drugs can be used
as reference resources to support biomedical studies in
ovarian cancer.
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Table 2 Validated synergistic drug combinations in NCI-60
Drug 1 Drug 2 Target 1 Target 2 Score Cell line

Erlotinib Dasatinib EGFR EPHA2 34.44 IGROV1

Gefitinib Dasatinib EGFR EPHA2 23.22 IGROV1

Vandetanib Dasatinib EGFR EPHA2 18.44 IGROV1

Dasatinib Tamoxifen EPHA2 PRKCZ, PRKCI 16.78 IGROV1

Lapatinib Sirolimus ERBB2, EGFR MTOR 14.00 IGROV1

Vandetanib Everolimus EGFR MTOR 13.56 IGROV1

Celecoxib Dasatinib PDPK1 EPHA2 13.11 IGROV1

Lapatinib Everolimus ERBB2, EGFR MTOR 12.44 IGROV1

Sirolimus Tamoxifen MTOR PRKCZ, PRKCI 11.67 IGROV1

Lapatinib Dasatinib ERBB2, EGFR EPHA2 11.00 IGROV1

Gefitinib Everolimus EGFR MTOR 10.78 IGROV1

Dasatinib Imatinib EPHA2 PDGFRA 10.56 IGROV1

Celecoxib Vandetanib PDPK1 EGFR 9.11 IGROV1

Sirolimus Vandetanib MTOR EGFR 8.78 IGROV1

Erlotinib Tamoxifen EGFR PRKCZ, PRKCI 8.33 IGROV1

Dasatinib Tamoxifen EPHA2 PRKCZ, PRKCI 11.33 OVCAR-3

Sirolimus Everolimus MTOR MTOR 9.56 OVCAR-3

Celecoxib Dasatinib PDPK1 EPHA2 9.44 OVCAR-3

Thalidomide Dasatinib TNF EPHA2 8.89 OVCAR-3

Sirolimus Gefitinib MTOR EGFR 10.56 OVCAR-4

Gefitinib Everolimus EGFR MTOR 9.44 OVCAR-4

Lapatinib Sirolimus ERBB2, EGFR MTOR 9.44 OVCAR-4

Vandetanib Tamoxifen EGFR PRKCZ, PRKCI 9.33 OVCAR-5

Dasatinib Tamoxifen EPHA2 PRKCZ, PRKCI 14.78 SK-OV-3

Everolimus Tamoxifen MTOR PRKCZ, PRKCI 11.78 SK-OV-3

Lapatinib Dasatinib ERBB2, EGFR EPHA2 10.11 SK-OV-3

Celecoxib Dasatinib PDPK1 EPHA2 9.56 SK-OV-3

Gefitinib Dasatinib EGFR EPHA2 9.11 SK-OV-3
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