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Abstract

Background: Studies have found that miRNAs play an important role in many biological activities involved in human
diseases. Revealing the associations between miRNA and disease by biological experiments is time-consuming and
expensive. The computational approaches provide a new alternative. However, because of the limited knowledge of
the associations between miRNAs and diseases, it is difficult to support the prediction model effectively.

Methods: In this work, we propose a model to predict miRNA-disease associations, MDAPCOM, in which protein
information associated with miRNAs and diseases is introduced to build a global miRNA-protein-disease network.
Subsequently, diffusion features and HeteSim features, extracted from the global network, are combined to train the
prediction model by eXtreme Gradient Boosting (XGBoost).

Results: The MDAPCOM model achieves AUC of 0.991 based on 10-fold cross-validation, which is significantly better
than that of other two state-of-the-art methods RWRMDA and PRINCE. Furthermore, the model performs well on
three unbalanced data sets.

Conclusions: The results suggest that the information behind proteins associated with miRNAs and diseases is
crucial to the prediction of the associations between miRNAs and diseases, and the hybrid feature representation in
the heterogeneous network is very effective for improving predictive performance.
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Background
MicroRNAs(miRNAs) are a kind of small single-stranded
endogenous non-coding RNAs with a length about 22
nucleotides, which play an important role in regulating
the gene expression during the post-transcriptional level
[1, 2]. Many studies have shown that the dysregulation
of miRNAs is involved in multiple human diseases like
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cancers [3], cardiovascular diseases [4] and Alzheimer’s
diseases [5] etc., and the prediction of miRNAs-diseases
associations is crucial to understand the diseases patho-
genesis [6]. Furthermore, George Adrian, et al. found
that the miR15 and miR16 are deleted in a lot B cell
chronic lymphocytic leukemias (B-CLL) [7], T. Sredni et
al. demonstrated that miR-129 and miR-25 express abnor-
mally in all pediatric brain tumor types [8]. Besides, Jun Lu
et al. successfully classified poorly differentiated tumours
using miRNA expression profiles [9], which demonstrated
the potential of miRNAs as biomarkers. Therefore, Pre-
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dicting miRNA-disease associations is very meaningful.
However, a lot of miRNA-disease associations remain
unknown and experimental approaches for predicting the
associations are time-consuming and expensive. There-
fore, a lot computational methods have been developed to
predict the miRNA-disease associations.

Computational methods can be grouped into two cat-
egories: network-based methods and machine learning-
based methods. Network-based methods usually use sim-
ilarity measurement to predict the associations. For exam-
ple, Jiang et al. [10] presented a computational method
to predict the associations between miRNAs and diseases
by prioritizing entire human microRNAome according to
the disease of interest. The higher the rank is, the more
possibly the miRNA can associate with the disease. In
2010, the model was improved by introducing genomic
data [11]. However, the performance of the model was
still not satisfactory because the known target genes
of miRNAs are too rare to support the methods effec-
tively. Chen et al. develpoed a method called RWRMDA
[12], the author ran random walk with restart algorithm
on a miRNA functional similarity network to obtain a
score for every miRNA, and the miRNA with a higher
score is more likely to associate with a certain disease.
Shi et al. [13] extended random walk with restart algo-
rithm (RWR), they used proteins associated with diseases
and miRNAs as seed nodes to calculate the ES score by
RWR respectively, and then used the P-value to predict
whether the disease and miRNA are related. PRINCE [14]
is another algorithm optimized based on RWR, it pro-
posed a novel method to initial probability of miRNAs.
However, these methods, based on RWR, are dependent
on known associations between miRNAs and a given
disease, so it couldn’t be applied to predict the rela-
tionships between miRNAs and a new disease, without
any associations with miNRAs. Furthermore, defining a
proper similarity calculation model is challengeable in this
category.

The prediction models in another category are based on
machine learning. For example, Xu et al. [15] extracted
features from a miRNA-disease network, and then used
the features to train a prediction model by support vector
machine (SVM), the method can discover positive sam-
ples from massive negative samples. Chen et al. [16] pre-
sented a semi-supervised and global method RLSMDA,
the method calculated possibilities of being associated
with a given disease for each miRNA by a continuous clas-
sification function, and it could predict the associations
of diseases and miRNAs without any known association
between them. However, the method didn’t integrate the
information related to miRNAs and diseases completely
since the continuous classification function is estab-
lished for the miRNA network and the disease network
separately.

Recently, more computational methods are proposed.
Zheng et al. [17] developed a machine leaning-based
method MLMDA, which used a variety of information
including miRNA sequence information, miRNA func-
tional similarity, disease semantic similarity and Gaussian
interaction profile kernel similarity information to train
their model by applying random forest classifier. The clas-
sifier achieved promising performance, but it might take
a lot of effort to prepare the required data. What’s more,
the knowledge of deep learning was also applied in this
field. Peng et al. [18] utilized a convolutional neural net-
work to predict miRNA-disease association, input data
was reduced miRNA-disease interaction features which
were captured from a three-layer network. The similar-
ity metric is essential in order to predict associations
between miRNAs and diseases, where Yang et al. [19] used
a novel method miRGOFS to measure functional similari-
ties of miRNAs, and the method considered both common
ancestors and descendants of GO terms when it was used
to calculate similarities among GO sets in an asymmetric
manner, so it can help predict the miRNA-disease associ-
ations. Chen et al. [20] presented the first decision tree,
learning-based model, whose informative feature vectors
were extracted from miRNA functional similarities, the
disease semantic similarities, and known miRNA-disease
associations. Yin et al. [21] put forward LWPCMF, they
used weighted profile (WP) , collaborative matrix fac-
torization (CMF) and logistic function to optimize their
model.

In this work, we present a computational method named
MDAPCOM to predict the associations between miR-
NAs and diseases by combined features. First, we con-
struct a miRNA-protein-disease global network by merg-
ing six subnetworks, which are miRNA-miRNA Similarity
Network, Protein-Protein Interaction Network, Disease-
Disease Similarity Network, miRNA-Target Interaction
Network, miRNA-Disease Relationship Network and
Protein-Disease Association Network respectively. Subse-
quently, we extract diffusion features for each node and a
39-dimensional HeteSim feature for each miRNA-disease
pair in the global network. The diffusion features are
extracted by random walk with restart algorithm and then
reduced in dimension using the singular value decompo-
sition algorithm (SVD). Finally, we integrate these two fea-
tures to train the miRNA-disease association prediction
model using eXtreme Gradient Boosting (XGBoost) algo-
rithm. We apply the MDAPCOM method under 10-fold
cross-validation and achieve an AUC of 0.991. MDAP-
COM also performs better when compared with other
two previous methods RWRMDA [12] and PRINCE [14],
which also used network features for prediction. Further-
more, our method performs well on three unbalanced data
sets with positive and negative samples ratios 1:2, 1:5 and
1:10, respectively.
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Results
Data sources
We collect six different types of data from the Internet,
which are the miRNA-miRNA similarity data, miRNA-
Protein interactions, miRNA-Disease relationships, PPI
data (Protein-Protein interactions), Protein-Disease asso-
ciation data, Disease-Disease similarity data, respectively,
containing 2588 miRNAs, 18143 proteins and 5080 differ-
ent kinds of diseases totally.

miRNA-miRNA similarity network
We obtain miRNA expression data from miRmine
database [22]. In this database, the researchers analyzed
overall expression profile of human, obtained from dif-
ferent miRNA-seq databases. It contains 2822 different
precursor miRNAs where more than two of them consist
one mature miRNA, so we can derive the expression val-
ues of every mature miRNA from the average values of its
precursors’. In this way, we obtain 2588 miRNA expression
profiles. Moreover, the Pearson Correlation Coefficient
(PCC) scores are calculated to preform similarities of the
expression profiles between two miRNAs [23]. The higher
the PPC score is, the more likely these two miRNAs are
similar. The miRNA-miRNA Similarity network is also
built. In the network, every miRNA is a node and the PPC
scores present the edges, and the negative edges are cut
down.

Protein-protein interaction network
We derive data from the STRING database V10.0 [24].
The database offers data which is obtained from the
results of biochemical experiments, biophysical or genetic
techniques. We get 7,866,428 PPI entries from 18,143 pro-
teins in the database and use them to build our Protein-
Protein Interaction Network. In PPI network, each of
the entry comprises a protein node A, a protein node
B, and the predicted relationship’s score between them.
The highest score means the two proteins can interact
with each other with the biggest possibility and vice versa.
Last, we utilize the predicted score to present the value
of each edge between two protein nodes to construct our
Protein-Protein Interaction Network.

Disease-disease similarity network
To build the Disease-Disease Similarity Network, we
obtain data from the MimMine database. [25] It is mapped
from OMIM database, containing more than 5000 human
genetic disease phenotypes. It is worthy to point out that
we normalize disease-disease similarities’ values into [0,1]
in MimMiner database. Subsequently, we receive 5080
kinds of diseases and get the similarities between them.
Finally, we construct the Disease-Disease Similarity Net-
work where each node presents a kind of disease, and the
weight is similarity between them.

miRNA-target interactions network
We download miRNA-target interactions from the miR-

TarBase database of release 7.0 [26], miRNA-Target Inter-
action Network can be built. It should be point out all data
is validated in this database. Moreover, we map the genes
onto protein entries, and remove invalid entries (miRNA
or protein), which are repeated and out-of-range. Finally,
we extract miRNAtarget interactions between 2,588 miR-
NAs and 18,143 proteins. Then, miRNA-Target Interac-
tion network is constructed based on these data.

miRNA-disease relationship network
We get miRNA-disease data from HMDD v3.0 database
[27], which is a reliable online database containing 1102
gene on miRNA, 850 different types of diseases and 32281
associations between miRNA and disease, and they are
all based on literature. Furthermore, we receive the rela-
tionships between 2588 miRNAs and 5080 diseases which
are mentioned above. Lastly, we build the miRNA-Disease
Relationship network using these validated data.

Protein-disease association network
We obtain data from DisGeNET database [25] which col-
lects data on genotype-phenotype relationships. In this
work, we map genes into proteins and unify the name of
diseases, so 18,143 proteins ,5080 diseases and the associ-
ations between them are extracted. Then, we construct a
Protein-Disease Association Network from these data.

Global heterogeneous network
We integrate the aforementioned networks to build the
global heterogeneous network:

T =
⎡
⎣

M B C
BT P W
CT W T D

⎤
⎦

where T represents our global heterogeneous network, M,
P, D present similarity of miRNA-miRNA, protein-protein
and disease-disease respectively, B presents the miRNA-
Target Interaction Network, C indicates miRNA-Disease
Relationship Network, and W shows the Protein-Disease
Association Network. Obviously, the BT , CT and W T are
transposed matrices of B, C and W, and the edges with
value less than 0.5 are removed from the network.

There are 2588 miRNAs and 5080 diseases in our
miRNA-protein-disease global network, so we can get
a total of 13147040 (2588×5080) miRNA-disease pairs.
We extract a 639-dimensional combined feature vector
for each miNRA-disease pair in the global network, in
which 11824 feature vectors are positive samples while
the other 13135216 feature vectors are negative samples.
We randomly select 11824 feature vectors from 13135216
negative samples to construct a standard dataset together
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with 11824 positive samples, subsequently, we execute 10-
fold cross-validation on the standard dataset. The positive
and negative samples are randomly divided into 10 sub-
samples equalled in size(the size of the tenth subsample
is 1186 because 11824 is’t divisible by 10), one of which
is retained as the validation set and the other 9 subsam-
ples are regarded as the training set. Then the procedure
iterates 10 times with each one in the 10 subsamples
as the validation set, before each iteration, the associa-
tions occurred in the validation set are removed from the
original global network, and then all feature vectors are
re-extracted from the new global network. Furthermore,
another three unbalanced data sets are obtained in the
same way except the size of the selected negative samples,
and the size of negative samples in three unbalanced data
sets is 23648, 59120 and 118240, respectively.

Performance measures
We apply 10-fold cross-validation, and obtain the average
performance of our model through the performance eval-
uation. In terms of performance evaluation, we select pre-
cision(PRE), recall(REC), F-score(FSC), accuracy(ACC)
and the area under the receiver operating characteristic
curve(AUC):

PRE = TP
TP + FP

,

REC = TP
TP + FN

,

ACC = TP + TN
TP + TN + FP + FN

,

FSC = 2 × PRE × REC
PRE + REC

,

TP and FP are the amount of correctly predicted
positive and negative samples, FP and FN are the

numbers of positive and negative samples predicted
by mistakes. Simultaneously, we calculate the area
under ROC curve (AUC) to measure the overall
performance.

Excellent combined feature
In our method, we extract two different features from a
global heterogeneous network, a global matrix of nine dif-
ferent data, and combine them to construct our training
dataset. Firstly, with the help of random walk with restart
algorithm, we extract diffusion feature of each node from
our global network, so we can get a 20588*20588 fea-
ture matrix, where a row represents a feature vector of
one node. For example, the first row shows the miRNA1’s
feature vector, the 2589 th row is the protein1’s feature
vector, and the 20732 th row is the disease1’s feature vec-
tor. In the next step, we apply SVD algorithm on this
feature matrix to reduce the dimension of it from 20588 to
300, here our feature matrix is 20588*300. After obtaining
reduced feature vectors of each node, we combine each
miRNA’s feature vector with each disease’s, so we get a
(2588*5080) * 600 miRNA-disease feature matrix, where a
row shows the feature vector of a pair of miRNA-disease.
Secondly, we calculate HeteSim scores of each miRNA-
disease pair, and get a (2588*5080) * 39 HeteSim matrix.
Finally, in order to construct our training data, we joint the
SVD feature and HeteSim score, so we get a (2588*5080)
* 639 feature vector, where a row is the combined feature
vector of a miRNA-disease pair. To show excellent per-
formance of our method, we use diffusion features, the
HeteSim feature and the combined feature to train the
prediction model using 10-fold cross-validation under the
standard data set, respectively, and the result shows in
Fig. 1. The AUC value of training model with the diffusion
feature and the HeteSim feature reach 0.970 and 0.986,

Fig. 1 Performance comparison of different feature groups (Diffusion, HeteSim and combined feature)
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respectively, and we get an AUC of 0.991 using combined
feature.

Superiority of XGBoost algorithm
In this work, we apply eXtreme Gradient Boost-
ing(XGBoost) [28] algorithm to train our model. We
compare XGBoost algorithm with other machine learning
algorithm to present that the eXtreme Gradient Boost-
ing(XGBoost) algorithm is the most suitable method
for us. To achieve the goal, we obtain other classifiers
from python toolkits scikit-learn and apply 10-fold cross-
validation. We compare XGBoost algorithm with random
forest (RF) [29], support vector machine (SVM) [30]and
gradient tree boosting (GTB) [31] algorithm. In random
forest algorithm, we set the minimize samples split to 42,
maximize depth of tree to 11 and the resting parameter
values to default. In the support vector machine algo-
rithm, we use RBF kernel setting the C value to 100,
gamma value to 0.0001. In gradient tree boosting algo-
rithm, we set the minimize samples split to 110, the
maximize depth of tree to 9. The results perform in Fig. 2.

Performance comparison with existing methods
We implement RWRMDA [12] and PRINCE [14] under
a standard dataset and three unbalanced datasets, apply-
ing 10-fold cross-validation to calculate their AUC values
and compare theirs with MDAPCOM’s. For PRINCE,
we set α=0.95, d=log (9999), c=-15 and then apply the
random walk with restart 10 times. The probability of
restarting in RWRMDA is set to 0.5. To visually describe
and compare the performance of the three methods, we
plot the Receiver Operating Characteristic (ROC) curve
with its horizontal axis representing false positive rate
(FPR) and the vertical axis representing true positive rate

(TPR). Subsequently, we use the area under the ROC
curve (AUC) to accurately compare the performance of
the three methods. Figures 3, 4, 5 and 6 show the
performance of the three methods under four datasets
with different positive and negative ratios, respectively.
Among three methods, MDAPCOM significantly outper-
forms the other two methods, achieving an amazing AUC
score 0.99. Furthermore, the AUC scores of our method
are all above 0.99 under four data sets, which proves its
stability.

Conclusions
In this work, we present a prediction method based on
machine learning to predict the associations between
miRNAs and diseases, MDAPCOM. We build a miRNA-
protein-disease global network, then extract dimensional
reduced RWR diffusion feature and HeteSim feature
from the network, the diffusion feature reflects the
node topological information in the heterogeneous net-
work and the HeteSim feature extracts the correlation
of node pairs. Subsequently, the two features are com-
bined to train the miRNA-disease association predic-
tion model using 10-fold cross-validation by eXtreme
Gradient Boosting (XGBoost). The MDAPCOM shows
better performance than other two previous methods,
based on network feature. The excellent performance
suggests that the information behind proteins which are
associated with miNRAs and diseases is crucial to pre-
dict associations between miRNAs and diseases. Fur-
thermore, the two features extract network informa-
tion from different perspectives and the combination of
them integrates network information effectively, which
also contributes to the excellent performance of the
method.

Fig. 2 Comparison result between XGBoost and other machine learning algorithms including PF, SVM and GTB
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Fig. 3 The ROC curves of MDAPCOM and previous approaches containing PRINCE and RWRMDA on the data sets. The ratio of positive and negative
sample 1:1

Methods
Overview of MDAPCOM
Our method is displayed in Fig. 7, which is built through
following steps: (A) Collect six types of data sources
and remove invalid and repeated data. (B) Merge the six
networks to build a global miRNA-protein-disease het-
erogeneous network. (C) Run random walks with restart
(RWR) algorithm in the global network to calculate a
diffusion feature for every node, which reflects the rele-
vance of one node with all other nodes (miRNAs, pro-
teins and diseases) in the network (D) Run the singular
value decomposition (SVD) algorithm to reduce dimen-
sion of the diffusion feature, obtaining a 300-dimensional

feature vector for every node. (E) Use HeteSim mea-
sure to estimate the correlation between two nodes and
get a 39-dimensional HeteSim feature for each miRNA-
disease pair. (F) Integrate the 600-dimension diffusion
feature(300-dimensional for miRNA and 300-dimensional
for disease) and 39-dimensional HeteSim feature to train a
miRNA-disease association prediction model by eXtreme
Gradient Boosting (XGBoost).

Diffusion feature of reduced dimension
To predict the miRNA-disease associations, we trans-
form the problem to obtain possibility that a miRNA
can associate with a disease. The Random Walk with

Fig. 4 The ROC curves of MDAPCOM and previous approaches containing PRINCE and RWRMDA on the data sets. The ratio of positive and negative
sample 1:2
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Fig. 5 The ROC curves of MDAPCOM and previous approaches containing PRINCE and RWRMDA on the data sets. The ratio of positive and negative
sample 1:5

Restart algorithm can capture the relationships between
two nodes and the global topological information of nodes
in the network [32–34]. In this study, we run RWR algo-
rithm on the global heterogeneous network and get a
high-dimensional(25,811) vector for each node. The vec-
tor reveals the topological properties of the node in the
network, which includes a set of possibilities that a node
can access to other nodes. We use D to represent the adja-
cency matrix of our global heterogeneous network, and T,
a normalized matrix, represents the transition probability
from the node i to the node j, T is defined as

Tij = Dij∑
k Dik

(1)

If a node i is connected with a node j, the value of Dij is 1,
otherwise the value is 0. The RWR can be regarded as an
iterative process, which is expressed as

Pt+1 = (1 − α)TPt + αP0 (2)

Where α is the restart rate of random walker which is in
the range of [0,1], P0 is the initial probability of the het-
erogeneous network, Pt is the state of the heterogeneous
network when the process is in the t-th.

Here, we get a 25,811-dimensional feature for every
node which reveals the topological relevance of a node
to other nodes(2,588 miRNAs, 18,143 proteins and 5,080

Fig. 6 The ROC curves of MDAPCOM and previous approaches containing PRINCE and RWRMDA on the data sets. The ratio of positive and negative
sample 1:10
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Fig. 7 The flowchart of MDAPCOM: a Obtain six kinds of data from online databases. b Merge these data to build a global heterogeneous network c
Utilize RWR algorithm to get the diffusion feature. d Apply SVD to reduce dimension of the diffusion feature. e Use HeteSim measure to obtain
HeteSim feature. f Integrate reduced diffusion feature and HeteSim feature and then apply XGBoost algorithm to train the model using the
combined feature
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diseases) in the network. Using such tremendous fea-
tures directly to train the model is pretty time-consuming
and unnecessary, since they contain some noise. There-
fore, we reduce the 25,811-dimensional diffusion feature
to 300-dimension by singular value decomposition (SVD)
algorithm [35, 36].

HeteSim measure
The HeteSim measure performs well in measuring the
correlation of nodes in the heterogeneous biological net-
work [37]. It’s a self-maximum and symmetric measure,
using an uniform framework to measure the correlation
of nodes based on specified path [38]. In this paper, we
use HeteSim scores of miNRA-disease pairs to extract
network information.

Definition 1 (Transition probability matrix [38]) A
and B are two types of nodes in the heterogeneous network.
(MAB)m∗n is an adjacency matrix indicating the relation
between A and B, if there is an association between a node
i belonging to A and a node j belonging to B, MAB(i, j) = 1,
otherwise MAB(i, j) = 0. The transition probability matrix
TAB is defined as follows

TAB(x, y) = MAB(x, y)∑n
i=1 MAB(x, i)

(3)

Definition 2 (Reachable probability matrix [38]) Rρ

represents the reachable probability matrix based on the
path ρ = P1P2P3 . . . Pn+1, where Pi represents any types of
nodes of the heterogeneous network. Rρ can be calculated
as

Rρ = TP1P2 TP2P3 . . . TPnPn+1 (4)

Based on the above 2 definitions, we can calculate the
HeteSim score in 3 steps [38].

1 Separate the path ρ from the middle into ρL and ρR.
When the path length is even, ρL and ρR are equal in
length, and RρL and RρR can be directly calculated.
When the path length is odd, there are two
intermediate nodes, take each one of them as
intermediate node respectively to obtain ρL1 , ρL2 ,
ρR1 and ρR2 , then RρL , RρR can be calculated as

RρL = RρL1
+ RρL2

2

RρR = RρR1
+ RρR2

2

2 Calculate the RρL
and R

ρ−1
R

, where ρ−1
R represents

the reverse of ρR, for example, if ρR = ABC, then
ρ−1

R = CBA.

Table 1 All paths less than 5 in length starting at miRNA and
ending at disease. M is miRNA, P is protein and D is disease, for
example, path1 MMD is the path miRNA-miRNA-disease

id path id path id path

1 MMD 14 MMMPD 27 MPPDD

2 MPD 15 MMMDD 28 MPDMD

3 MDD 16 MMPMD 29 MPDPD

4 MMMD 17 MMPPD 30 MPDDD

5 MMPD 18 MMPDD 31 MDMMD

6 MMDD 19 MMDMD 32 MDMPD

7 MPMD 20 MMDPD 33 MDMDD

8 MPPD 21 MMDDD 34 MDPMD

9 MPDD 22 MPMMD 35 MDPPD

10 MDMD 23 MPMPD 36 MDPDD

11 MDPD 24 MPMDD 37 MDDMD

12 MDDD 25 MPPMD 38 MDDPD

13 MMMMD 26 MPPPD 39 MDDDD

3 Achieve the HeteSim measure as

HeteSim (a, b|ρ) =
RρL(a, :)

(
R

ρ−1
R

(b, :)
)T

‖RρL(a, :)‖2 × ‖R
ρ−1

R
(b, :)‖

2
(5)

Using the above method, we can derive 39 HeteSim scores
for each miRNA-disease pair(i.e. a 39-dimensional Het-
eSim feature vector for each miRNA-disease pair) based
on all paths less than 5 in length starting at miRNA and
ending at disease. The detailed paths are listed in Table 1.

The eXtreme gradient boosting (XGBoost) algorithm
The eXtreme Gradient Boosting is an end-to-end system
extended by tree boosting, and it’s used widely in machine
learning [28]. The algorithm can be obtained from python
toolkits scikit-learn. In this study, a 600-dimensional
diffusion feature(300-dimensional for miRNA and 300-
dimensional for disease) and a 39-dimensional HeteSim
feature are extracted for each miNRA-disease pair in the
global network. Subsequently, the two features are com-
bined, forming a 639-dimensional feature, to train the
prediction model by XGBoost, where the optimal learning
rate is 0.15, the number of iterations is 650, the max depth
of tree is 4 and default values set for the other parameters.
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