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Abstract

elusive.

pathogenic somatic variants differed among the tumors.

molecular mechanisms underlying their pathogenesis.

Background: Carotid and vagal paragangliomas (CPGLs and VPGLs) are rare neoplasms that arise from the
paraganglia located at the bifurcation of carotid arteries and vagal trunk, respectively. Both tumors can occur jointly
as multiple paragangliomas accounting for approximately 10 to 20% of all head and neck paragangliomas.
However, molecular and genetic mechanisms underlying the pathogenesis of multiple paragangliomas remain

Case presentation: We report a case of multiple paragangliomas in a patient, manifesting as bilateral CPGL and
unilateral VPGL. Tumors were revealed via computed tomography and ultrasound study and were resected in two
subsequent surgeries. Both CPGLs and VPGL were subjected to immunostaining for succinate dehydrogenase (SDH)
subunits and exome analysis. A likely pathogenic germline variant in the SDHD gene was indicated, while likely

Conclusions: The identified germline variant in the SDHD gene seems to be a driver in the development of
multiple paragangliomas. However, different spectra of somatic variants identified in each tumor indicate individual
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Background

Paragangliomas of the head and neck (HNPGLs) are rare
neuroendocrine tumors [1]. There are several common
paraganglioma localizations corresponding to the loca-
tions of paraganglia from which they are formed. Carotid
paragangliomas (CPGLs) are most common, followed by
middle ear paragangliomas, vagal (VPGL), and laryngeal
paragangliomas [2]. These tumors are highly hereditary

* Correspondence: leftger@rambler.ru

"Vladislav S. Paviov and Dmitry V. Kalinin contributed equally to this work.
'Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32
Vavilova str, Moscow 119991, Russia

Full list of author information is available at the end of the article

K BMC

and associated with the germline mutations in known
susceptibility — genes, including SDHx, SDHAF2,
TMEMI127, MAX, and others [3]. Mutations in these
genes predispose to different forms of paragangliomas
(early, syndromic, multiple, and malignant).

HNPGLs commonly develop as single unilateral tu-
mors, with only 1% of sporadic cases being multiple [4].
However, the number of multiple HNPGLs greatly in-
creases in familial tumors. As multiple paragangliomas
are rare, every case is important to study for a better un-
derstanding of genetics and molecular mechanisms caus-
ing their initiation and progression.
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Case presentation

The case below describes multiple paragangliomas di-
agnosed in a Russian woman, presenting as two
CPGLs at both sides of the neck and one VPGL. The
aim of the study was to investigate the molecular
mechanisms underlying the development of multiple
paragangliomas by examining clinical and pathological
characteristics along with the genetic variations of the
three tumors.

A 50-year-old female was diagnosed with extravas-
cular compression of the carotid arteries and CPGLs
on both sides of the neck. Clinical symptoms include
arterial hypertension and painless rounded masses.
Computed tomography (CT) and ultrasound (US)
study revealed the presence of tumors in the areas of
the carotid bifurcation, solid neoplasia 32 x 25 mm on
the left side of the neck and two-nodal tumor 46 x
24 mm on the right side of the neck, respectively.
These neck masses were heterogeneous in structure
and predominantly hypoechoic and hypervascular.
The CT study with contrast also revealed the pres-
ence of hypointense, highly vascularized masses at the
right and left carotid bifurcations (Fig. 1).

The patient was subjected to surgery for the left
tumor resection. At the time of surgery, the lower
pole of the hypervascularized tumor was located
below the outer carotid artery (OCA) bifurcation,
spreading along the carotid arteries in the proximal
direction and wrapping around the posterior, anterior,
and lateral surfaces. Bifurcation of carotid arteries was
involved in the tumor mass. The upper pole of the
tumor was associated with the vagus nerve. The
tumor (25 x 2 x 17 mm) was completely removed and
subjected to pathological evaluation. The patient was
discharged with a planned re-hospitalization to
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remove the tumor on the right. Histological examin-
ation of the resected tumor confirmed carotid para-
ganglioma (Fig. 2). Hematoxylin-eosin (H&E) staining
showed a Zellballen structure that is typical for para-
gangliomas. Chief tumor cells exhibited positive stain-
ing for chromogranin A, synaptophysin, and CD56
antibodies indicating a neuroendocrine tumor. S100
protein was expressed in sustentacular cells. Tumor
cells were negative for cytokeratin AE1/AE3.

A surgery on the right side of the neck was performed
after a year. As per the US study reports, VPGL and en-
larged lymph node were primarily detected. During the
surgery, lymph node (15 x 5 mm) above the carotid ar-
tery bifurcation was removed and further subjected to
histological examination for metastases. In addition,
tumor-like mass (35 x 20 mm), laterally suppressing the
internal carotid artery (ICA) was observed directly at ca-
rotid artery bifurcation and resected. After the tumor re-
section, one more tumor-like formation (60 x 20 mm)
originating from the vagus nerve was visualized under it
and removed. The vagus nerve was resected and ligated.
Both the tumors were histologically examined and dis-
played paragangliomas with no lymph node metastases
(Fig. 2).

For all the tumor samples from the patient (left and
right CPGLs, VPGL), immunohistochemistry (IHC) ana-
lysis of succinate dehydrogenase (SDH) subunit expres-
sion was performed (Additional file 1). SDH complex
consists of four subunits (SDHA, SDHB, SDHC, and
SDHD) encoded by the corresponding genes [5, 6].
Germline and somatic mutations in the SDHx genes are
commonly associated with paragangliomas/pheochromo-
cytomas [7, 8]. Immunohistochemistry for SDH subunits
is a valuable additional tool in the histopathological
study of paragangliomas that is used in the clinic for

Fig. 1 Computed tomography of the patient's head and neck before surgery. CT scan (left); 3D reconstruction (right)
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be seen

Fig. 2 Hematoxylin-eosin (H&E) staining of carotid and vagal paragangliomas. a left CPGL, b right CPGL, and ¢ right VPGL. Specific “Zellballen”
growth pattern of paragangliomas (small nests of chief cells with pale eosinophilic staining, surrounded by supporting sustentacular cells) can

assessment of SDH loss, which can be associated with
the pathogenic mutations in any SDHx genes.

Immunoreactions for SDH subunits were carried out
using primary antibodies from Abcam (USA) for each SDH
subunit: SDHA, monoclonal, clone 2E3GC12FB2AE2;
SDHB, monoclonal, clone 21A11AE7; SDHC, monoclonal,
clone EPR11035(B); SDHD, polyclonal. We found weak dif-
fuse weak SDHB staining in VPGL and both the left and
right side CPGLs. According to the literature, weak diffuse
staining of the SDHB subunit can reflect pathogenic muta-
tions in any SDHx genes. We detected weak diffuse SDHB
staining in all studied tumors indicating the presence of
germline pathogenic mutation in one of the SDHx genes in
the patient.

Additionally, we carried out the exome-sequencing of
three tumors, lymph node, and blood from the patient.
The DNA from tumors and lymph node was extracted
with a High Pure FFPET DNA Isolation Kit (Roche,
Switzerland). The DNA was isolated from blood cells
using a MagNA Pure Compact Nucleic Acid Isolation Kit
I (Roche) on a MagNA Pure Compact Instrument
(Roche). Exome libraries were prepared with the Rapid
Capture Exome Kit (left CPGL) and TruSeq Exome Li-
brary Prep Kit (right CPGL and VPGL) from Illumina
(USA). High-throughput exome sequencing was per-
formed on a NextSeq 500 System (Illumina) under a
paired-end mode of 76 x 2 bp for tumors and lymph node,
and 156 x 2 bp for blood with 300x minimum coverage.
The exome sequencing data of paragangliomas are avail-
able in the NCBI SRA under the accession numbers
PRJNA411769 (left CPGL, Pat01), PRJNA476932 (right
CPGL, Patl04), and PRJNA561073 (VPGL, Pat6). Bio-
informatic analysis is described in our previous study [9].
Missense variants were considered as likely pathogenic if
they were predicted by at least three prediction tools and
characterized by conservation score > 0.5.

Exome analysis revealed a likely pathogenic germline
missense variant in the SDHD gene, NM_003002.3:

¢.305A > G, p.H102R (chrll: 111959726, rs104894302).
Pathogenic/likely pathogenic germline variants in other
genes, for which the association with paragangliomas/
pheochromocytomas has been shown, were not found.

Identified likely pathogenic somatic variants were dif-
ferent for each tumor (Additional file 2). In left CPGL,
we found missense likely pathogenic somatic variants in
two genes, TENM3 [NM_001080477: c.C5082A,
p-N1694K (chrd: 183696084)] and EPHAS5 [NM_004439:
c.G682A, p.V228I (chrd: 66467587)].

In right CPGL, a variety of likely pathogenic variants
(stop-gain, frameshift, and missense) were detected.
Stop-gain variants were found in NRXN3 [NM_004796:
¢.C1387T, p.Q463X (chrl4: 79432478)] and RELN [NM_
005045: ¢.C9052T, p.R3018X (chr7: 103137114)], mis-
sense variants were revealed in TRIP12, JAGI1, ASXLI,
LMBRD1, DHX9, AASS, and TP53. For the TP53 gene,
we found two mutations: a pathogenic/likely pathogenic
variant, NM_001126115: c.A446T, p.D149V (chrl7:
7577096, rs587781525), that has been reported in Clin-
Var, and a previously undescribed likely pathogenic vari-
ant, NM_000546: c.A170G, p.D57G (chrl7: 7579517).

In the case of VPGL, we found a pathogenic variant in
mtDNA (MT: 3243, rs199474657) and likely pathogenic
missense, frameshift and stop-gain variants in a number
of genes (LRPI1, SPEN, PPP4R1, XPO6, FBN1, C1QB, and
others) (Additional file 2).

Discussion

We found a germline pathogenic variant in the SDHD
gene in the patient. According to the literature, SDHD
mutations are frequently associated with multiple para-
gangliomas. A study of 176 patients with HNPGLs di-
vulged multiple paragangliomas in 33 individuals (18.9%)
[10]. SDHx mutations were found in 34 patients, of
which 22 were diagnosed with multiple paragangliomas.
Moreover, 18 out of 22 patients with multiple paragan-
gliomas had mutations in SDHD, 1 patient exhibited
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SDHB mutation, and 3 patients carried variations in the
SDHC gene.

In a recent report, multiple synchronous or metachro-
nous HNPGLs were found in 79 out of 147 patients
studied (54%) [11]. A group of patients (98/147) were
tested for the status of SDHx mutations; 74 patients car-
ried mutations in either SDHB (10/74) or SDHD (64/74)
genes. SDHB mutations were found in two cases of mul-
tiple paragangliomas, whereas 56 had mutated SDHD.
Notably, p.Asp92Tyr mutation in the SDHD gene (one
of the Dutch founder mutations) was the most prevalent
variant identified in 50% of SDHD mutation carriers (32/
64).

Another study on SDHB, SDHC, and SDHD gene muta-
tion analysis in a large cohort of patients with a personal or
family history of paragangliomas/pheochromocytomas was
performed [12]. From the 1832 individuals tested, 876 pa-
tients carried mutations in either SDHB (673), SDHC (43),
or SDHD (160). In summary, results from all the studies in-
dicate a high frequency of SDHx mutations in paraganglio-
mas. Moreover, most multiple paragangliomas are
associated with SDHx variants, predominantly SDHD muta-
tions, which are in accordance with our results.

The variant in the SDHD gene identified in the study
has been described only once in a malignant paragan-
glioma [13]. Thus, the mutation seems to be quite rare;
although, at the same position, histidine replaced with
leucine, proline, or tyrosine was found in several cases
of hereditary paragangliomas [14—16].

We observed different spectra of somatic mutations in
three tumors studied. In left CPGL, only two genes,
TENM3 and EPHAS with likely pathogenic somatic vari-
ants were identified. Mutations in these genes have first
been found in paragangliomas/pheochromocytomas.
TENM3 and EPHAS encode for proteins with important
functions in neuronal cells and have been shown to be
involved in tumorigenesis [17-20].

In right CPGL, a greater number of likely pathogenic
somatic variants were revealed; however, no variants
were found in the genes mutated in left CPGL. Stop-
gain variants were determined in NRXN3 and RELN en-
coding for proteins that are involved in cell adhesion
and cell-cell interactions in neural cells, respectively.
Both genes were shown to be associated with glioblast-
oma pathogenesis [21-23] and variants in these genes
were also detected in a number of tumors [24-26]. We
also found two variants in the TP53 gene in the right
CPGL. One variant was previously reported in ClinVar
as a pathogenic mutation, the other variant was first de-
tected in ourstudy. The presence of these two variants in
TP53 can enhance the deleterious effect on protein func-
tion. More missense likely pathogenic mutations and
frameshift variants were identified in the genes encoding
for proteins that participate in important cellular
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processes, such as ubiquitin fusion degradation and
regulation of DNA repair (TRIPI12, a tumor suppressor
gene), mediation of Notch signaling (JAGI), and tran-
scriptional regulation (DHX9, KLF12, and KAT6B). Sev-
eral genes with frameshift mutations are highly
expressed in neural cells and involved in the neurite
growth (PLPPRS) and the brain development (KAT6B
and ADGRVI).

In VPGL, we identified variants that have not been
found in the left and right CPGLs in the patient. Stop-
gain mutations were revealed in the genes involved in
the regulation of cell cycle (LIN54) and transcription
(ZNF717), and in the CCDC82 gene, encoding for pro-
tein with unknown function. Variants in ZNF717 were
previously observed in gastric, colorectal, and hepatocel-
lular cancer [27-29]. Missense mutations in the genes
shown to be involved in tumorigenesis that were pre-
dicted as likely pathogenic by a majority of prediction
tools (C1QB, XPO6, PPP4R1, PPIPSK2, and LRPI1), were
also found in VPGL [30-34]. Frameshift mutations
which usually result in nonfunctional protein were ob-
served in many genes. In addition, we detected mutation
in mtDNA that was reported in ClinVar as a germline or
somatic pathogenic variant associated with mitochon-
drial diseases.

Conclusion

We identified a likely pathogenic germline variant in the
SDHD gene and likely pathogenic somatic variants in a
number of genes in the patient with multiple paragan-
gliomas (left and right CPGLs, and VPGL). Somatic vari-
ants differed amongst the tumors. Thus, we assume that
the variant found in the SDHD gene is a driver mutation
and its co-occurrence with other mutations in each of
the three tumors can lead to the development of para-
ganglioma via different molecular pathways.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512920-020-00789-8.

Additional file 1. Immunohistochemical staining of SDH subunits in
carotid and vagal paragangliomas.

Additional file 2. Pathogenic/likely pathogenic somatic variants in
carotid and vagal paragangliomas.
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