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Whole-exome sequencing reveals potential
mechanisms of drug resistance to FGFR3-
TACC3 targeted therapy and subsequent
drug selection: towards a personalized
medicine
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Yimin Wang4, Weijia Fang1,5, Feifei Zhang6 and Weiqin Jiang1*

Abstract

Background: Drug resistance is a major obstacle to effective cancer therapy. In order to detect the change in
tumor genomic states under drug selection pressure, we use next-generation sequencing technology to investigate
the underlying potential mechanisms of drug resistance.

Methods: In our study, we presented a bladder cancer patient who had been a bona fide responder to first-line
gemcitabine plus cisplatin regimen and second-line pazopanib (tyrosine kinase inhibitor (TKI) for FGFR3-TACC3
fusion) but finally had disease progression as an ideal case for showing genomic alteration during drug resistance.
We applied whole-exome sequencing and ultra-deep target sequencing to the patient pre- and post- pazopanib
resistance. Protein-protein interaction (PPI) network and Gene Ontology (GO) analyses were used to analysis protein
interactions and genomic alterations. Patient-derived xenograft (PDX) model was built to test drug sensitivity.

Results: Twelve mutations scattered in 12 genes were identified by WES pre- pazopanib resistance, while 63
mutations in 50 genes arose post- pazopanib resistance. PPI network showed proteins from multiple epigenetic
regulator families were involved post- pazopanib resistance, including subunits of chromatin remodeler SWI/SNF
complex ARID1A/1B and SMARCA4, histone acetylation writers CREBBP, histone methylation writer NSD1 and
erasers KDM6A/5A. GO enrichment analysis showed pazopanib resistance genes were prominently tagged for
chromatin modification, transcription, as well as gland development, leaving genes with the best adaptive FGFR
TKI-coping mechanisms. In addition, significantly elevated tumor mutational burden suggested possible utility of
immunotherapy. Intriguingly, PDX model suggested that, sensitivity to original chemotherapy regimen (cisplatin)
was restored in patient tumor post-pazopanib.
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Conclusions: Epigenetic regulation may play a role in acquired TKI resistance. Our study traced the complete
tumor genomic variation course from chemo-resistant but TKI-sensitive to TKI-resistant but chemo-(re) sensitive,
revealing the potential complex dynamic drug-driven mechanisms of resistance.

Keywords: FGFR3-TACC3, Drug resistance, Whole-exome sequencing, Epigenetic regulation

Background
Traditionally, chemotherapy has been an effective first-
line treatment for many cancer types. However, apart
from its cytotoxicity, chemotherapy is limited in utility
for late-stage patients and resistance sooner or later
arises [1]. With the onset of next-generation sequencing
(NGS) and precision medicine, targeted and immune
therapies have come of age and shown remarkable effi-
cacy, even for chemo-resistant late-stage patients [2, 3].
Both targeted and immune therapies, however, suffer
from one fatal block. Patients invariably develop drug
resistance, be it to small-molecule inhibitors or to anti-
bodies (the former sometimes very soon), bringing an
early end to such therapies. Once drug resistance arises,
further treatment options are limited and patient’s
prognosis is poor. Thus, understanding the underlying
molecular mechanisms of drug-driven resistance is not
only critical to the advancement of cancer biology, but
also invaluable for the practical management of patient
care.
Recently, with the advent of NGS, tumor heterogeneity

has been better understood; also, resolutions for drug
resistance have been attempted using NGS technology
[4, 5]. NGS technology, with its ability of high through-
put to assess a patient’s comprehensive genomic alter-
ations in a single assay, has been applied to the analysis
of tumor samples pre- and post-drug resistance to reveal
drug resistance mechanisms. When cohort size is large,
simple statistical methods could be enough to identify
recurrent mutations and pinpoint genomic or clinical
features of interest. However, when data are scarce, it is
important to put the few individual signals we have into
context to gain insights that might have evaded single-
gene analysis.
Protein-protein interaction (PPI) network analysis

offers a powerful and flexible tool to integrate various
genomic features as a whole. In a PPI network, nodes
denote proteins (or their encoding genes) and edges sig-
nal direct physical interactions among proteins [6, 7].
Mathematical network structures correspond to bio-
logical entities and network analysis could reveal import-
ant mechanistic insights. A network hub, a protein with
many interaction partners, usually plays a key role in
cellular organization [6]. A node’s clustering coefficient
(CC), measuring the likelihood of interaction among its
direct neighbors, could indicate its function on the

spectrum from highly independent enzymes to tightly
knitted complex subunits. Gene ontology (GO) offers a
systematic approach to classifying a gene’s biological
process, molecular function, and cellular component.
GO enrichment analysis provides a powerful diagnostic
tool for any set of genes, pre- and post-resistance
mutated genes in our case.
In the current study, we used PPI network analysis to

unite the very few pieces of isolated information (only
one patient and a handful of mutations) pre- and post-
drug resistance and successfully mined for distinguishing
features, some of which were later confirmed by GO
enrichment analysis. By using these tools from systems
biology, we have gained new insight into the drug resist-
ance mechanism under drug selection pressure.
In our study, an advanced bladder cancer patient

achieved almost complete remission (CR) under gemci-
tabine and cisplatin combination therapy, but exhibited
chemo-resistance to the same regimen upon recurrence.
We applied both NGS panel assay and whole-exome
sequencing (WES) to the patient and discovered a clinic-
ally relevant FGFR3-TACC3 fusion. Multi-target tyro-
sine kinase inhibitor (TKI) pazopanib was administrated
and the patient responded exceptionally well, achieving
progression-free survival (PFS) of over 10 months before
finally succumbing to pazopanib resistance. WES was
also performed on post-resistant tissue, and drug-
resistant tissue derived patient-derived xenograft (PDX)
model suggested sensitivity to cisplatin was restored.
Multiple mutations highlighted the potential role of
epigenetic regulation in acquired drug resistance, and
significantly increased tumor mutational burden (TMB)
hinted at likely effectiveness of immunotherapy. Thus,
the patient offered an ideal case for detecting the signals
differentiating patient genomic states before and after
TKI resistance, and our NGS-based analyses closely
matched the treatment process.

Methods
Patient tumor samples
Fresh tumor specimens were collected at the time of
cystoscopy biopsy pre- and post-pazopanib resistance.
Our research was permitted by the Ethic Committee of
the First Affiliated Hospital of Zhejiang University and
the patient was informed of and gave consent to the re-
search use of tumor tissues. All procedures were

Tong et al. BMC Medical Genomics          (2020) 13:138 Page 2 of 15



complied with the principles laid down in the Declar-
ation of Helsinki. After biopsy, tumor tissue was imme-
diately taken to the laboratory and cut into small pieces
for genetic analysis.

Xenograft model
Fresh bladder tumor specimens resected from the pa-
tient after pazopanib resistance were implanted subcuta-
neously into the flanks of 6-week-old mice. The animal
experiment was complied with the National Institutes of
Health guide for the care and use of Laboratory animals
(NIH Publications No. 8023, revised 1978). Mice were
anesthetized by intraperitoneal injection of pentobarbital
(40 mg/kg). And grafted tumors were subsequently
transplanted from mouse to mouse then maintained the
model. Xenograft tumor collected at the exponential
growth phase were resected aseptically and used as the
source of tumor for subcutaneous implantation. The
expansion of tumor specimens for drug screening were
performed as previously described [8]. Mice are eutha-
nized via intraperitoneal injection of pentobarbital (40
mg/kg) and followed by cervical dislocation. Cohorts of
mice with tumor size of ~ 200 mm3 were randomized
into 8 treatment groups (6 mice per group): (a) vehicle
(control); (b) 5-Fu (Xudong Haipu Pharmaceutical. Co.,
Ltd., Shanghai, China; dissolved in saline; 25 mg/kg,
intraperitoneal, five times a week); (c) docetaxel (Bide
Pharmatech Ltd., Shanghai, China; dissolved in 90%sa-
line+ 5%tween80+ 5%ethyl alcohol; 20 mg/kg, intraperi-
toneal, once a week); (d) mytomycin (Meilun Biological
Technology Co.,Ltd., Dalian, China; dissolved in saline;
3.5 mg/kg, intraperitoneal, once a week); (e) irinotecan
(Bide Pharmatech Ltd., Shanghai, China; dissolved in
saline; 100 mg/kg, intraperitoneal, once a week); (f) cis-
platin (Hansoh Pharmaceutical Group Co., Ltd., Jiangsu,
China; dissolved in saline; 5 mg/kg, intraperitoneal, once
a week); (g) pazopanib (Bide Pharmatech Ltd., Shanghai,
China; 0.5%HPMC+ 0.2%tween 80, 100 mg/kg, p.o. once
a day); (h) pemetrexed (Hansoh Pharmaceutical Group
Co., Ltd., Jiangsu, China; dissolved in saline; 200 mg/kg,
intraperitoneal, once a week). Tumor size was evaluated
twice a week by caliper measurements, and tumor vol-
ume was calculated using the following formula: tumor
volume = [length x width^2] / 2. Mice were euthanized if
tumor size reached 1500 ~ 2000mm3 or weight loss was
greater than 15% as per Institutional Animal Care and
Use Committee (IACUC) protocol. Tumor growth in
drug-treated animals was compared to that of control
group and represented as percentage tumor growth in-
hibition (TGI). TGI (%) = [1-(Tt-T0)/Ct-C0]*100, where
Tt =median tumor volume of treatment group at time t,
T0 =median tumor volume of treatment group at time
0, Ct =median tumor volume of control at time t and
C0 =median tumor volume of control at time 0.

Library preparation and whole-exome sequencing
Paired-end DNA library was prepared according to the
manufacturer’s instructions (Agilent). The adapter-
modified gDNA fragments were enriched by 6 cycles of
PCR. Whole exome capture was carried out using
Agilent’s SureSelect Human All Exon V5 Kit. Finally, 50
Mb of DNA sequences of 33,4378 exons from 20,965
genes were captured. After DNA quality evaluation,
pooled samples were sequenced on Illunima Hiseq 4000
according to the manufactures instructions for paired-
end 150 bp reads. The average sequencing depth of
target region was 200X and coverage of target region
was 99.8%.

Exome sequencing data analysis for SNVs and INDELs
calling
Raw data (stored as FastQ format) obtained from
Hiseq4000 contains adapter contamination, low-quality
nucleotide, and undetected nucleotide (N), which can pose
significant influence on downstream processing analysis.
Hence, reads with adapter contamination, reads contain-
ing uncertain nucleotides more than 10 percentages, and
paired reads when single reads have more than 50 per-
centages low-quality (< 5) nucleotides are discarded. After
these steps, high-quality clean data are obtained. Finally,
QC statistics including total reads number, sequencing
error rate, percentage of reads with average quality >Q20,
percentage of reads with average quality >Q30, and GC
content distribution can be calculated. Paired-end clean
reads are aligned to the reference genome (UCSC hg19)
using Burrows–Wheeler Aligner (BWA) software. If a
read or reads pair is mapped to multiple positions, BWA
will choose the most likely placement. While if two or
more most-likely placements are present, BWA will
choose any one randomly. Aligned reads were realigned to
the genome. Genome Analysis Toolkit (GATK) was used
to ignore those duplicates resulted from PCR amplifica-
tion with Picard-tool. We utilized the Indelrealigner and
Realigner Target Creator in GATK do realignment around
the INDELs according to GATK best practice. Further-
more, we performed base quality score recalibration with
GATK to avoid system bias. After realignment to genome,
we identified and filtered variants (SNP, INDELs) using
GATK Haplotype Caller and variant Filtration to guaran-
tee meaningful analysis. Variants obtained from previous
steps were compared based on the dbSNP and 1000
Genomes database and annotates with ANNOVAR. SNVs
and somatic INDELs were identified using MuTect and
Strelka with matched normal samples, respectively.

Ultra-deep target sequencing
Fresh tissue sections from the patient were collected and
DNA extracted. Paired-end sequencing (2 × 75 bp) was
carried out on Illumina NextSeq500 instrument following
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the manufacturer’s protocols. NGS panel assay was
performed against 365 common cancer-related genes
(Suppl Tab. 1) and selected frequently rearranged introns.
Genomic alterations, including single nucleotide variants
(SNVs), short and long insertions/deletions (indels), copy
number variations (CNVs), and gene rearrangements,
were subjected to advanced analysis. First, reads were
aligned to human genome reference sequence (hg19) by
Burrows-Wheeler Aligner (BWA), and PCR duplicates
were removed using Picard. Secondly, SNVs and short
indels were identified by MUTECT after quality recalibra-
tion and realignment using GATK and in-house pipeline.
Short indels were then calibrated using the results from
Pindel. Read depths were normalized within target regions
by EXCATOR. The log-ratio per region of each gene was
calculated, and customized algorithms were used to detect
copy number changes. Tumor cellularity was estimated by
allele frequencies of sequenced SNPs. A customized algo-
rithm was developed to detect gene rearrangements and
long indels.
Reliable somatic alterations were detected in the raw

data by comparison with matched blood control sam-
ples. At minimum, 5 reads and minimum variant allele
frequency of 1% were required to support alternative
calling. For CNVs, focal amplifications were character-
ized as genes with thresholds ≥4 copies for amplification
and 0 copies for homozygous deletions. For the calling
of gene rearrangements, aligned reads with abnormal in-
sert size of over 2000 or zero bp were collected and used
as discordant reads. Next, the discordant reads with the
distance less than 500 bp formed clusters that were
further assembled to identify potential rearrangement
breakpoints. The breakpoints were reconfirmed by
BLAT and the resulted chimeric gene candidates were
annotated. Clinically relevant genomic alterations were
further marked as druggable genomic alterations in
current treatments or clinical trials. The average sequen-
cing depth were 600X for tissue based deep sequencing.

Tumor mutational burden computation
TMB was estimated by counting somatic mutations
including coding single base substitutions and inser-
tions/deletions per megabase of the examined genomic
sequence. Driver gene mutations and known germline
variants in dbSNP were excluded.

PPI network analysis
A representative human PPI network was assembled
from several large-scale, experimentally derived PPI
assays [6, 7, 9]. The single largest connected component
of this network consists of 9316 nodes and 42,102 edges.
All network analysis was based on this giant component.
Binary PPIs were assembled from several large-scale
yeast two-hybrid (Y2H) screens: redundant interactions

were filtered out, self-interactions were excluded, and in-
teractions were considered un-directional (A-B and B-A
counted only once). The single largest connected com-
ponent of the resulting PPI network was extracted and
used for all further analysis. Network parameters such as
node degree and clustering coefficient were computed
using custom Python and R scripts. Network visualization
was done in Cytoscape 3.6.1 (http://www.cytoscape.org).
Network simulations were carried out using custom Py-
thon and R scripts. Statistical tests were performed using
R (version 3.3.2, http://www.r-project.org).

GO-terms enrichment analysis
GO enrichment analysis was performed using Cytoscape-
plugin BiNGO. Mutated genes were compared to the
background of all network genes using hypergeometric
test with FDR correction. Enriched GO terms were filtered
through a stringent threshold of corrected p-value < 0.001
and then visualized through hierarchic clustering in
Cytoscape.

Results
Patient history
In October 2014, a 50-year-old woman who presented
intermittent gross hematuria received the segmental
cystectomy in a local hospital. Postoperative pathology
showed high-grade urothelial carcinoma (Suppl Fig. 1c).
No chemotherapy was performed after the operation.
Five months later, the patient presented gross hematuria
again and came to our hospital for further examination.
Computed tomography (CT) imaging of the abdomen
revealed 4.9*4.7 cm metastatic tumor near left pelvic wall
(Suppl Fig. 1a) and Carcinoembryonic antigen (CEA)
elevated to 14.2 ng/ml. Physical examination showed no
positive sign, and Eastern Cooperative Oncology Group
(ECOG) performance status was 0. 6 cycles of gemcita-
bine and cisplatin was initiated with gemcitabine 1000
mg/m2 during 30 to 60 min on days 1, 8, plus cisplatin
25 mg/m2 on day 1–3, Cycles were repeated every 21
days. Follow-up CT and serum tumor marker examina-
tions were performed every 3 months. After 6 cycles of
treatment, CT scan showed partial response (PR), almost
complete response (CR) of the mass according to the
Response Evaluation Criteria in Solid Tumors (RECIST)
version 1.1 guideline (Suppl Fig. 1b). The patient re-
peated CT scan and tumor marker every 3 months and
there was no sign of recurrence. However, in January
2016, the patient demonstrated progressive disease (PD)
in the bladder with a 4.1*3.7 cm (cm) tumor mass. And
CEA elevated to 30.6 ng/ml. After the patient exhibited
progressive disease (PD) in the bladder, 2 cycles of gem-
citabine and cisplatin regimen were again initiated but
was ineffective. In light of resistance to chemotherapy,
cystoscopic tissue biopsy was performed and we applied
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both WES and 365-gene NGS panel assay to this patient
and identified a clinically actionable FGFR3-TACC3
fusion mutation. FGFR3 is one of the targets to the
multi-target tyrosine kinase inhibitor pazopanib, thus
pazopanib was administrated and the patient responded
exceptionally well, achieving progression-free survival
(PFS) of over 10 months before finally succumbing to
drug resistance. Re-biopsy was done through cystoscope
after progress of pazopanib, WES was performed on
post-resistant tissue (Suppl Fig. 1d), pazopanib resistant
tissue derived PDX model was built to test drug sensitiv-
ity. The treatment timeline is shown in Fig. 1. A host of
new mutations, many implicating epigenetic regulation,
arose post drug resistance, and drug screening assay
based on PDX model suggested possible re-sensitization
to the initial cisplatin regimen.

Comparison of NGS results
A total of four rounds of NGS sequencing were per-
formed: 365-gene panel assay and WES at the baseline
of pazopanib treatment, both using tumor tissue DNA
(Panel1 and WES1); WES after pazopanib resistance,
using tumor tissue DNA (WES2). Many of the mutations
found in the patient were validated. Among all the
alterations, only 1 alteration (FGFR3-TACC3) has clinical
significance [10, 11], 7 mutated genes (DICER1 M1L,
EP300 Q224*, FAM135B L633*, FANCD2 S240*, GATA6
S184N, KDM6A H900Qfs*11, TP53 E258K) have potential
clinical significance, 8 mutated genes (ARHGAP26
R719W, ARID1A P153A, ATM A799T, LRP1 V3244I,
MLLT3 E231D, NCOR1 T1870N, NRG3 E355D, PLAG1
V18A) are known somatic alterations in COSMIC but

have no functional analysis study, others are unknown
mutations. Panel1 identified 12 mutations scattered in 12
genes, so did WES1; however, those two sets only partially
overlap, reflecting the potential depth-coverage trade-off
of the underlying sequencing technologies. On the other
hand, WES2 revealed many more mutations, 63 spread
across 50 genes. The mutations that stayed the same from
Panel1/WES1 to WES2 such as EP 300 Q224*, FAM135B
L633*, IGF2 Q7P and TP53 E258K, which were most
likely involved in the process of tumorigenesis or chemo-
resistance, could be ruled out as contributors to FGFR
TKI resistance. On the other hand, new mutations arising
post pazopanib resistance warranted further investigation
and the difference between pre- and post TKI-resistance
was the focus of our study. Finally, the overwhelming
majority of mutations arising post drug resistance
nearly all had very low VAF (Table 1). We did the
copy number alteration and also rearrangement/fusion
analysis on data from whole exome sequencing and
ultra-deep sequencing. Unfortunately, there were no
specific tumor suppress genes or oncogenes involved
in the potential mechanism.

TMB value before and after TKI-resistance
The TMB value of tumor tissue increased from 38.4
mut/Mb to 97.2 mut/Mb between the baseline and re-
sistance of pazopanib, suggesting that the patient could
potentially further benefit from immunotherapy after
acquiring pazopanib resistance. It remains to be seen
whether this is a universal feature of developing resist-
ance in bladder and other cancers.

Fig. 1 Treatment timeline for the presented patient. The patient’s initial chemotherapy regimen was gemcitabine and cisplatin (GP). After
resistance to GP regimen, informed by the results of genetic tests, pazopanib was used as second-line treatment. Abdominal computer
tomography showed significantly shrunk tumor size (middle image), and the patient acquired 10 months PFS. Pazopanib naïve tumor tissue were
performed for both ultra-deep sequencing and WES, while tumor tissue after pazopanib resistance were performed for WES. Post-pazopanib
resistant tissue also were used for PDX model
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PPI network and functional analysis of mutations pre- and
post pazopanib resistance
We mapped the mutations onto an experimentally de-
rived human PPI network and extracted the subnetwork
of impacted genes (Fig. 2). Strikingly, a tightly woven
new cluster arose beside the conserved TP53-EP300 axis.
In particular, multiple proteins from multiple epigenetic
regulator families were involved, some harboring multiple
mutations. Examples include subunits of chromatin re-
modeler SWI/SNF complex ARID1A/1B and SMARCA4,
histone acetylation writers CREBBP, histone methylation
writer NSD1 and erasers KDM6A/5A.

Network structures and simulations
The initial set of mutated genes (pre- pazopanib resist-
ance) are predominantly network hubs (Fig. 3a), suggest-
ing that such highly connected nodes, already proven
critical to many aspects of cell biology, could also play
an important role in tumorigenesis. In comparison,
newly mutated genes (post pazopanib resistance) tend to

be smaller hubs with significantly higher clustering coef-
ficient (CC), hinting at a different mechanism leading to
drug resistance (Fig. 3a & b). To make sure that our
observations were not an artifact of network degree dis-
tribution, which has a profound effect on other network
parameters, we carried out simulations by picking 10,
000 random samples with the same degree distribution
as the set of tumorigenesis (or drug resistance, respect-
ively) genes and comparing the background to the
observed. The set of tumorigenesis genes identified in
pazopanib naïve sample are not only hubs, but also net-
work centers even compared to other hubs (Suppl Fig. 2),
highlighting their central cellular roles. In comparison,
the set of drug resistance genes identified in pazopanib-
resistant sample not only have higher CC, but also
possess greater K1 centrality measure (average neighbor
degree), suggesting their function coordinating other
hubs and processes (Suppl Figs. 3 & 4). It suggested that
tumorigenesis genes pre-pazopanib resistance were
major network hubs playing central cellular roles, while

Fig. 2 Network of mutated genes pre- and post-pazopanib resistance. Green nodes denote genes that were mutated both before and after
resistance; yellow nodes denote genes that were mutated before resistance but not afterwards; blue nodes denote genes that were newly
mutated after resistance. Node shape codes for the number of distinct mutations a gene had: circle = 1, square = 2, diamond = 4. Node size
corresponds to the number of interaction partners a gene had in the PPI network. Two genes were connected by an edge if their corresponding
(canonical) protein products physically interacted in the PPI network
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those genes associated with pazopanib resistance were
much more dispersive and could derive their evasiveness
through coordinative-interactive effect. Taken together,
network analysis revealed distinct features and reflected
different drug resistance mechanisms under the different
drug selection pressure.

GO enrichment analysis
We performed GO enrichment analysis on the sets of
genes mutated before and after pazopanib resistance.
Tumorigenesis genes were primarily enriched in senes-
cence and regulation of organelle organization (Fig. 4a).
The former function likely reflects tumor’s ability to

Fig. 3 Different hubs in tumorigenesis and drug resistance. Node degree means the number of interaction partners a gene had in the PPI
network. “Old” represents the initial set of genes mutated pre-pazopanib resistance; “New” represents the newly mutated genes post-pazopanib
resistance; “All” represents all genes in the PPI network as the background for comparison. a Newly mutated genes (post-pazopanib resistance)
tended to be smaller hubs than the “old” genes(p < 0.05). b New mutations were more clustered. Clustering coefficient (CC) counted the fraction
of realized interactions out of all possible pair-wise interactions among the direct neighbors of a given node. Newly mutated genes post-
pazopanib resistance (“New”) had significantly higher CC than those pre-pazopanib resistance (“Old”) (p < 0.05)

Fig. 4 GO enrichment analysis of mutated genes pre- and post-pazopanib resistance. a GO enrichment analysis showed enriched biological
processes were senescence and regulation of organelle organization pre-resistance. b Chromatin modification, regulation of transcription, and
gland development were enriched post-resistance. Color gradient corresponded to significance of corrected p-values
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reverse a normal cell’s aging process and reactivate
division and growth, thereby achieving “immortality”. In
comparison, drug resistance genes were prominently
tagged for chromatin modification and many aspects of
transcription, as well as gland development (Fig. 4b,
Suppl Fig. 5). Again, the data suggested that in face of
targeted drug pressure, tumor cells scrambled to react
and epigenetic regulation occupied central stage.

PDX model based drug screening assay
The objective of the study was to evaluate the safety and
anti-cancer utility of the selected drugs on xenograft
models in Nu/Nu mice. No major differences were ob-
served between our PDX model and patient tumor in
terms of cell and tissue architecture (Fig. 5a, b). Figure 5c
shows gross view of PDX tumor at the end of the experi-
ment. Compared to control group, the tumor weight
decreased significantly in the cisplatin in the PDX model
(Fig. 5d). All groups except pazopanib group showed
significant tumor growth inhibition compared with
vehicle group (Fig. 5e), which was consistent with our
clinical situation that the patient acquired pazopanib re-
sistance. Our data suggested that sensitivity to original

chemotherapy regimen (cisplatin) was restored in patient
tumor post-pazopanib.

Discussion
Drug-driven resistance is common, which reflects the
complicated course of tumor genomic alteration under
the drug pressure. It has been observed and explored in
multiple types of cancer, including lung cancer [12],
pancreatic cancer [13], colorectal cancer [14] and so on.
And researchers tried to find out the deep drug-driven
resistance mechanisms. In our study, our patient had
failed first-line chemotherapy and second-line FGFR
TKI treatment, and finally PDX model showed possible
re-sensitization to the initial cisplatin regimen. We de-
scribed a classic case of dynamic drug-driven resistance in
a complicated course of chemo-resistant but TKI-sensitive
to TKI-resistant but possible chemo-(re)sensitive.
Many of the mutations found in the patient were

validated. The p53 tumor suppressor protein encoded by
the TP53 gene is generally functionally deficient in
advanced malignant tumors [15]. Mutations in TP53
were observed in about 50% of muscle-invasive bladder
cancers but were less common in non-muscle-invasive

Fig. 5 Patient-derived xenograft (PDX) model suggested sensitivity to cisplatin was restored. Hematoxylin and eosin (H&E) staining of patient
tumor. b Hematoxylin and eosin (H&E) staining of PDX model. c Gross view of PDX tumor at the end of the experiment. d Tumor weight
calculated at the end of the experiment. Average weight of vehicle, cisplatin, docetaxel, irinotecan, 5-Fu, mitomycin, pemetrexed and pazopanib
groups were 1.13 ± 0.47 g, 0.23 ± 0.07 g, 0.43 ± 0.23 g, 0.43 ± 0.29 g, 0.69 ± 0.16 g, 0.68 ± 0.29 g, 0.48 ± 0.19 g and 0.68 ± 0.35 g.*P < 0.05. e Tumor
growth curves of all groups. Treatment groups (TGI > 50%) excluding pazopanib group show statistically significant tumor growth inhibition
compared to vehicle group. TGI > 50% is considered meaningful
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bladder cancers (20% of tumors) [16–18]. The protein
UTX encoded by gene KDM6A has the function of
catalyzing the demethylation of histone H3, and is in-
volved in cell differentiation and tumor suppression [19].
However, there are no FDA-approved drugs targeting
KDM6A, TP53 and other alteration genes except FGFR3.
FGFR3-TACC3 is the only alteration which has clinical
significance. It has been reported that the prevalence of
FGFR3-TACC3 fusion in bladder cancer is 2–3% [20–22]
and erdafitinib was the first orally effective FGFR antagon-
ist approved by the FDA (2019) for the treatment of the
urothelial carcinoma [23]. As our case occurred in the
year of 2014, we choose pazopanib, of which FGFR3 was
one of the target for the treatment. We found FGFR3-
TACC3 fusion was not identified in the WES. As the
detection of WES uses Agilent’s commercial WES capture
probe kit, which mainly covers the coding region and
extension sequence but not the intron regions. The break-
point of FGFR fusion occurred in the intron of FGFR,
which was not covered by the Agilent’s WES capture
region, so the fusion of FGFR cannot be detected.
Like most complex genomic phenomena, acquired resist-

ance to targeted therapies has diverse underlying drivers
including both pathway-dependent mechanisms such as
bypass activation, secondary mutation or downstream acti-
vation, and pathway-independent mechanisms such as
tumor microenvironment, epithelial-mesenchymal transi-
tion (EMT) or epigenetic modulation [24]. Despite its role
in tumorigenesis, the epigenetic modifications have been
noticed to associate with acquired drug resistance in recent
years [25]. And our analyses of genomic alterations pre-
and post-pazopanib resistance suggested that epigenetic
regulation might play a role in acquired TKI-resistance.
The following 5 mutations were identified by all three
screens (Panel1 and WES1 before TKI treatment, WES2
after drug resistance): EP300 Q224*, FAM135B L633*,
KDM6A H900Qfs*11, IGF2 Q7P, TP53 E258K. Thus,
those mutations represented bona fide early events in
tumorigenesis, and they all have very high VAF. By con-
trast, the overwhelming majority of mutations arose post
drug resistance and nearly all had very low VAF. The me-
dian VAF was 0.21 in the existed mutations pre-TKI resist-
ance and 77.8%(7/9) mutations with a VAF higher than
10%, while the median VAF was 0.06 in newly detected
mutations post TKI resistance and only 17.0%(9/53) muta-
tions with a VAF higher than 10% (p = 2.682*10− 7). From
the perspective of mutation abundance, drug-resistant mu-
tations tend to be subclones, and these subclones mainly
focus on epigenetic regulatory signaling pathways. Out of
the new mutations arising post drug resistance, multiple
genes from multiple epigenetic regulator families were hit,
some multiple times. Strikingly, ARID1A and ARID1B saw
no mutations before resistance but each had four separate
mutations afterwards; similarly, KDM6A had only one

mutation before resistance but saw three additional ones
afterwards (Table 1). By carrying out functional prediction
through bioinformatics prediction tool SNAP2 (Suppl Tab.
2), we found ARID1A/B both carry mutations predicted to
alter protein function. ARID1A had 4 mutations, 2 of
which were structural mutations at functionally important
sites, while the other 2 were predicted to be functionally
important. Out of the 4 mutations in ARID1B, 2 were pre-
dicted to be strongly functional (M479I, S397A). As
ARID1A/B are mutually exclusive subunits of the same
pathway, it implicates the SWI/SNF chromatin remodeling
complex and epigenetic regulation as potential drivers of
acquired TKI resistance. ARID1A and ARID1B belong to
the AT-rich interactive-containing domain (ARID) gene
superfamily [26]. ARID1A may play a tumor suppresser
role, as studies have showed that increased proliferation
and decreased apoptosis ensued after ARID1A knockdown
[27–30]. It has been reported that ARID1A mutations tend
to co-occur with CTNNB1 or PI3K-Akt pathway alter-
ations, and are mutually exclusive with TP53 mutations
[31]. Our observed ARID1A alterations despite the pres-
ence of TP53 mutations could reflect unique tumor fea-
tures under drug pressure, and such unusual co-mutations
could play a key role in acquired drug resistance. Another
epigenetic function strongly implicated in TKI-resistance is
histone methylation, with writer NSD1 mutated twice and
eraser KDM6A mutated four times. As KDM6A works as
a tumor suppressor gene [26], its malfunction could pos-
sibly contribute to drug resistance.
In addition, other interesting genetic mutations identi-

fied in tumor tissue at the time of pazopanib resistance
included DICER1. At the first amino acid position of
DICER1, methionine turned into leucine, which could
lead to the deletion or abnormality of DICER1 protein.
DICER1 serves several essential physiological functions
including proliferation and survival cascades, and its
abnormality might serve as another contributor to drug
resistance [32, 33].
At the point of FGFR TKI-resistance, doubly mutated

gene FANCD2 might be the driver of tumor re-sensitivity
to the original cisplatin regimen. FANCD2, a member of
the Fanconi Anemia (FA) protein family, plays a vital role
in DNA damage repair [34]. Many studies have shown that
mutations in DNA repair genes are important predictors of
response to platinum drugs [35–37]; in particular, invasive
bladder cancer with alterations in DNA damage repair
related genes (ATM, RB1, FANCC) was found to be more
sensitive to cisplatin-based chemotherapy [38]. WES
finding of FANCD2 mutations might help explain the intri-
guing result of our PDX model, namely the possible re-
sensitization of tumor cells to the original cisplatin regimen.
Unfortunately, due to poor physical condition, the patient
had no further opportunity to try cisplatin again. Recently,
immune checkpoint inhibitors have triggered oncologists’
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enthusiasm. PD-1/PD-L1 expression, tumor mutational
burden, and DNA mismatch repair deficiency (dMMR)
have been demonstrated as three potential biomarkers for
immune checkpoint inhibitors [39–42]. Along tumor
genetic alterations induced by drug pressure, significantly
higher TMB was observed in this patient, suggesting pos-
sible utility of immunotherapy. In addition, ARID1A inacti-
vation is associated with compromised MMR and increased
mutagenesis, which might further cooperate with immune
checkpoint blockade therapy [43].
In addition to the methods validated and insights

obtained, the current study also had practical clinical
implications. After the patient developed resistance to
FGFR TKI, extensive epigenetic alterations raised the
intriguing possibility of epigenetic inhibitor treatment,
substantially elevated TMB suggested that the patient
might be a good responder to immunotherapy, while
possible (re)-sensitivity to cisplatin hinted at chemother-
apy as a third-line option.

Conclusions
Working alongside traditional wet-lab and clinical ap-
proaches, NGS technologies coupled with analytic tools
from systems biology promise to reveal new insight into
potential drug resistance mechanisms and epigenetic
regulation. Our proof-of-concept study traced the tumor
genetic variation course from chemo-resistant but TKI-
sensitive to TKI-resistant but possible chemo-(re) sensi-
tive, blending bench work and bioinformatics to obtain a
better understanding of the complicated drug-driven
mechanisms of resistance.
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Additional file 1: Figure S1. Computed tomography (CT) imaging and
Hematoxylin and eosin (H&E) staining of the patient. (a) Computed
tomography (CT) imaging of the abdomen before the patient took
gemcitabine and cisplatin regimen. (b) CT imaging of the abdomen after
the patient took 6 cycles of gemcitabine and cisplatin regimen. (c)
Hematoxylin and eosin (H&E) staining of patient tumor in segmental
cystectomy. (d) Hematoxylin and eosin (H&E) staining of patient tumor
after the patient got resistance to pazopanib.

Additional file 2: Figure S2. Tumorigenesis hubs are network centers.
Red line marks the Closeness centrality of tumorigenesis genes (those
mutated pre-resistance), while the histogram depicts the distribution of
the same measure of 10,000 equivalent random samples, each of which
has the same number of genes and the same degree distribution as the
set of tumorigenesis genes. The fraction of random samples with Close-
ness centrality less than or equal to the red line was taken as the empir-
ical p-value.

Additional file 3: Figure S3. Drug resistance hubs are more clustered.
Red line marks the Clustering Coefficient (CC) of drug resistance genes
(those mutated post-resistance), while the histogram depicts the distribu-
tion of the same measure of 10,000 equivalent random samples, each of
which has the same number of genes and the same degree distribution
as the set of drug resistance genes. The fraction of random samples with
CC less than or equal to the red line was taken as the empirical p-value.

Additional file 4: Figure S4. Drug resistance hubs themselves connect
hubs. Red line marks the K1 centrality of drug resistance genes (those
mutated post-resistance), while the histogram depicts the distribution of
the same measure of 10,000 equivalent random samples, each of which
has the same number of genes and the same degree distribution as the
set of drug resistance genes. The fraction of random samples with K1
centrality less than or equal to the red line was taken as the empirical p-
value.

Additional file 5: Figure S5. GO enrichment analysis of drug resistance
genes. GO-Slim terms were used to offer a simplified high-level overview,
and all three GO categories were included: cellular component, biological
process, molecular function. Color gradient corresponds to significance of
corrected

Additional file 6: Table S1. Panel 1 gene list.

Additional file 7: Table S2. SNAP2 analysis to predict the protein
function alteration of the mutations in post-TKI resistance.
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