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Abstract

Background: Treating cancer depends in part on identifying the mutations driving each patient’s disease. Many
clinical laboratories are adopting high-throughput sequencing for assaying patients’ tumours, applying targeted
panels to formalin-fixed paraffin-embedded tumour tissues to detect clinically-relevant mutations. While there have
been some benchmarking and best practices studies of this scenario, much variant calling work focuses on
whole-genome or whole-exome studies, with fresh or fresh-frozen tissue. Thus, definitive guidance on best choices for
sequencing platforms, sequencing strategies, and variant calling for clinical variant detection is still being developed.

Methods: Because ground truth for clinical specimens is rarely known, we used the well-characterized Coriell cell
lines GM12878 and GM12877 to generate data. We prepared samples to mimic as closely as possible clinical biopsies,
including formalin fixation and paraffin embedding. We evaluated two well-known targeted sequencing panels,
lllumina’s TruSight 170 hybrid-capture panel and the amplification-based Oncomine Focus panel. Sequencing was
performed on an lllumina NextSeq500 and an lon Torrent PGM respectively. We performed multiple replicates of each
assay, to test reproducibility. Finally, we applied four different freely-available somatic single-nucleotide variant (SNV)
callers to the data, along with the vendor-recommended callers for each sequencing platform.

Results: We did not observe major differences in variant calling success within the regions that each panel covers,
but there were substantial differences between callers. All had high sensitivity for true SNVs, but numerous and
non-overlapping false positives. Overriding certain default parameters to make them consistent between callers
substantially reduced discrepancies, but still resulted in high false positive rates. Intersecting results from multiple
replicates or from different variant callers eliminated most false positives, while maintaining sensitivity.

Conclusions: Reproducibility and accuracy of targeted clinical sequencing results depend less on sequencing
platform and panel than on variability between replicates and downstream bioinformatics. Differences in variant
callers’ default parameters are a greater influence on algorithm disagreement than other differences between the
algorithms. Contrary to typical clinical practice, we recommend employing multiple variant calling pipelines and/or
analyzing replicate samples, as this greatly decreases false positive calls.
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Background

Next generation sequencing (NGS) technologies have
been used to catalogue genetic mutations in cancer [1].
Studies employing NGS have identified specific genetic
mutations that reliably predict therapeutic success with
targeted treatment regimens in many forms of cancer
[2], including non-small cell lung cancer, which is our
long-term focus. Importantly, patients with oncogenic
driver mutations have better tumour control with tar-
geted agents than with chemotherapy, while those lacking
such a mutation derive more benefit from chemotherapy
[3]. Thus, accurate identification of the mutated or non-
mutated status of key genomic sites is critical for patient
therapy.

Developments in NGS technologies are empowering the
analyses of whole cancer genomes, providing insights into
the task of somatic mutation calling [4] and have made
it possible to characterize the genomic alterations in a
tumour in an unbiased manner [5]. With the advancement
of NGS technologies, the number of large-scale projects
(especially cancer projects) dealing with somatic point
mutation in various tumour types has been increasing
rapidly. However, in clinical practice, there is only a lim-
ited number of actionable mutations that are of interest—
those for which a specific therapy is recommended, or
perhaps for which a clinical trial may be ongoing. In such
cases, targeted sequencing is the preferred option, offer-
ing lower cost and higher coverage of areas of interest
[6].

The majority of mutation callers available in the liter-
ature have been designed to analyze matched tumour-
normal samples [7], as comparing the two helps discrim-
inate cancer-related and non-cancer-related mutations.
However, many clinical labs do not routinely acquire
matched healthy tissue, so that variant calling must be
performed on the tumour tissue only. As such, tumour-
only mutation callers have also been developed. A few
mutation callers such as MuTect2 and VarDict are versa-
tile enough to analyze both matched tumour-normal and
tumour-only samples. For a recent up-to-date list of muta-
tion callers, readers may refer to [7], where 46 programs
are reviewed. In this study, we focus on tumour-only
mutation calling.

A typical workflow of mutation calling can be divided
into three steps. First, reads are processed and low-quality
bases and any exogenous sequences such as sequencing
adapters are excluded from the reads. This can be per-
formed by using tools such as Cutadapt [8] and NGS QC
Toolkit [9]. Second, the cleaned reads are mapped to a ref-
erence genome. This base-to-base alignment can be done
by using common tools such as BWA aligner [10] for DNA
sequencing or TopHat [11] for RNA sequencing. The last
step of the process is to separate real mutations from arti-
facts that might be present due to a process of library
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preparation, read errors, mapping errors, and so on. Some
mutation callers perform the above three-step process as
a built-in procedure (see [7]), while others start from the
point of cleaned, mapped reads.

Several analysis packages with different algorithms have
been introduced in recent years to increase mutation
detection accuracy. Significant discrepancies between the
results of different algorithms have been observed, which
leads to a difficulty in selecting candidate mutations for
validation [12]. Such disagreement seems to partially root
from different error models and assumptions made in
each algorithm. In addition, various sources of errors such
as sequencing errors and read alignment errors make
the process more challenging. Thus, detection accuracy
remains questionable and in fact, has become a major
challenge.

Previous benchmarking studies offer some guidance in
this regard, each having its strengths and weaknesses.
For example, Spencer et al. [13] evaluated four mutation
callers on a compendium of data from several cell lines
and mixtures of DNA from those cell lines—artificially
“creating” mutations at different allele frequencies. How-
ever, they focused on only one targeting panel, the Wash-
ington University comprehensive cancer set WUCaMP27
version 1.0, and one sequencing platform, the Illumina
HiSeq 2000. Also problematically, they defined gold stan-
dard mutations by intersecting variant calls from GATK
and SAMtools, two of the four programs they bench-
marked. Derryberry et al. [14] focused on the technical
reproducibility of variant calls, studying 55 replicate pairs
of data from gliobastoma tumours. However, this was
whole genome sequencing data, where coverage was sub-
stantially lower than for targeted panels. Xu et al. [15]
performed a thorough comparison of mutation callers on
exome sequencing data of pure and admixed cell lines,
where gold-standard mutations were established by prior
independent work. Moreover, they explored, to some
extent, the effects of varying variant-calling thresholds.
However, their work was limited to tumour-normal vari-
ant calling. Numerous other benchmarking studies have
been performed; we mention these only as examples.
Of note, new “best practices” for benchmarking variant
calling have recently been proposed [16].

Of course, no single study can exhaustively address all
possible relevant issues in variant calling. We seek here
to add to the conversation by comparing multiple vari-
ant callers, on data from two cell lines, sequenced on two
different platforms using two different targeted panels,
in multiple biological and technical replicates. We min-
imize circularity in defining gold-standard mutations by
relying on previous high-quality work using independent
data and variant calling methods. We study agreements
and disagreements in variant calls, depending on algo-
rithms, algorithm settings, and between replicates. Our
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key findings are: that sequencing platforms are not a
major influence on variant calling; that variant callers can
disagree wildly when used with default/recommended set-
tings, but that they agree much more when settings are
made consistent; and that intersecting the results from
different algorithms (which is not unusual in research
practice, though possibly unusual in clinical practice) or
from replicate samples (which is definitely unusual in clin-
ical practice), can greatly reduce false positive calls while
maintaining sensitivity for detecting genuine mutations.

Methods

Cell lines and DNA sequencing data generation:
Two commercially-available cell lines, with catalog IDs
GM12878 and GM 12877, were obtained from Coriell Cell
Repositories in April 2017. Cells were prepared as stan-
dard for targeted clinical sequencing. Briefly, cells were
expanded as per the ATCC recommended protocol, har-
vested, and processed into FFPE cytoblocks. DNA and
RNA were isolated for each cell line using minimum of 6 x
10 um sections and AllPrep DNA/RNA FFPE Kit (Qiagen)
according to vendor’s recommended protocol. Nucleic
acid quality assessment and quantitation were respec-
tively performed using the Fragment Analyzer (AATI)
and Qubit (Thermo Fisher Scientific). Three such bio-
logical replicates were prepared for each cell line. Two
of those biological replicates were sequenced in techni-
cal triplicate using the TruSight 170 (Illumina) approach,
while one biological replicate was sequenced in technical
triplicate using an Oncomine Focus (Thermo Fisher Sci-
entific) approach. In total, this produced our 18 datasets
= 2 cell lines x3 biological replicates x3 technical repli-
cates. TruSight 170 libraries were prepared using 40 ng
DNA or RNA input. Oncomine Focus libraries were pre-
pared using 10 ng DNA or RNA as input. Illumina libraries
were sequenced on the NextSeq 500, with 8 RNA and
DNA libraries pooled in each High Output 300 cycle run.
Oncomine Focus libraries were sequenced on the Ion Tor-
rent, with 6 RNA and DNA libraries pooled on each 318
chip. The [llumina TST170 assay provides full exonic cov-
erage for 170 cancer-associated genes, covering 527,121
total bases, with 3,064 genomic intervals. The Oncomine
Focus panel covers 29,008 total bases in 47 genes, using
269 genomic intervals. In this study, we use only the DNA
sequencing data from either panel.

DNA sequencing data processing: TruSight sequenc-
ing data in FASTQ format was quality checked and
mapped to the hgl9 genome (version GRCh37 obtained
from UCSC Genome Browser) using the recommended
BaseSpace pipeline, which relies on Isaac DNA aligner
v3.16.02.19. For the Oncomine data, BAM files were
obtained from the Ion Torrent online workflow. But
because of indexing issues, reads were extracted from the
BAM files back into FASTQ format using Picard v2.10.7.
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Then the reads were mapped to hgl9 using BWA aligner
version v0.7.17-r1188, producing the BAM files to be used
for variant calling. All FASTQ files are available from SRA
under accession PRJNA614006.

Single nucleotide variant calling: We evaluated six
software packages capable of single nucleotide variant
(SNV) calling: SAMtools v1.9 [17], VarScan2 v2.3.9 [18],
MuTect2 v4.beta.3-SNAPSHOT [19], VarDict [20], Pisces
v5.2.0.1 [21], and the Ion Torrent Variant Caller (ITVC)
[22]. All versions were the most recent available at the
time of our study. With the exception of ITVC, we
downloaded all software packages and installed them on
our local compute cluster. Each takes as input BAM
files of mapped reads or pileups computed from BAM
files, e.g. by the mpileup function of SAMtools. Each
was used to call variants in tumor-only mode, mean-
ing mutations were called relative to the hgl9 genome.
Each program outputs some form of variant call file
(VCE), from which we extracted SNV calls along with
associated information provided by the variant caller,
such as depth of coverage, alternative allele frequency,
p-value, etc. For ITVC, the results on the Oncomine
Focus data were obtained through their web-based
analysis tool.

Each variant caller has some pre-defined but adjustable
parameters, such as: minimum variant frequency, min-
imum coverage, minimum base quality score and min-
imum mapping quality score. In our initial tests, we
ran each software with its default, recommended param-
eters. Table 1 summarizes key parameters and their
default values for different programs. In later testing,
we made the parameters of different algorithms to be
as similar as possible. Specifically, we set the mini-
mum variant allele frequence to 0.01, the minimum
read depth for variant calling to 10 reads, the minimum
base call quality to 20, and the minimum read mapping
quality to 20.

Performance assessment: For the GMI12878 and
GM12877 cell lines, we obtained gold-standard variant
calls from [23]. We assumed that these and only these
SNVs should be present in our cell lines. We intersected
the SN'Vs provided by that study with the genomic inter-
vals covered by the TruSight170 or Oncomine Focus pan-
els, to determine which should be detected. If a caller
identifies one of these mutations in a particular dataset, it
is designated a true positive (TP). If a mutation within the
genomic intervals for a panel is not identified by a caller
from that dataset, it is designated a false negative (FN).
Any called mutation that falls within the genomic regions
but that is not on the gold-standard list is considered a
false positive (FP). Variant callers are compared based on
their TP, FN, FP numbers and scores derived from these,
particularly precision = TP / (TP+FP) and sensitivity = TP
/ (TP+EN).
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Table 1 Various parameters along with their default values defined in each mutation caller

Option MuTect2 VarScan2 SAMtools VarDict Pisces
Threshold for allele frequency - 0.01 - 0.05 0.01
Base quality score threshold 18 - - - -

Max base quality score - - - - 100
Min map quality 20 null 0 null 1
Mean map quality - null - null -

Max map quality null - - - -

Min coverage - 8 - - 10
Max coverage - - 250 - -

Min supporting variant reads - 2 - - -

Min variant quality score - - - - 20
Strand bias filter - - - - 05
Min reads to strand bias 2 - - - -

A dash means that the corresponding parameter was not defined in the caller's settings

Results

For the purpose of benchmarking different variant callers,
we used clinical sample handling protocols to perform
targeted DNA or DNA/RNA sequencing on multiple bio-
logical replicates of multiple cell lines. Because accuracy
assessment requires us to know which mutations should
be present in the samples, we selected two very well
characterized Coriel Cell lines, GM12878 and GM12877.
As our long-term goal is understanding best methods
for variant calling in formalin-fixed, paraffin-embedded
(FFPE) lung cancer fine-needle aspirates (FNAs), we
performed independent preparations of the GM12878
and GM128977 cells for analysis in FFPE cytoblocks.
We selected two targeted assays for testing. One was
the TruSight170 Tumor Assay (TST170) from Illumina.
TST170 is a comprehensive RNA/DNA hybrid-capture
assay that provides full coverage for 170 solid tumor-
associated genes. It is amenable to testing on FFPE sam-
ples of relatively limited sample availability. This assay
tests for the presence of multiple classes of structural
variants that are relevant to clinical diagnostics including
SNVs, fusions, copy number variation, and INDELs. Here,
however, we will focus only on the SNVs. The TST170
sequencing was performed on an Illumina NextSeq500
sequencer. We also tested the Oncomine Focus panel,
which again is amenable to FFPE samples with limited
material. Oncomine Focus is an amplification-based panel
covering 47 genes, and sequencing was performed on
an lon Torrent PGM. The sequencing data is available
through SRA under accession PRJNA614006. Table 2
summarizes several key features of the sequencing data
we generated. For the TST170 panel, read depths varied
from approximately 2.4 million to over 13 million per sam-
ple. Within the genomic regions covered by the panel, this
resulted in average coverage levels ranging from 203 to

over 1000 reads per basepair. For the Oncomine data, read
depths ranged from 1.3 million to over 15 million, result-
ing in coverages ranging from 415 to over 4000 reads per
basepair.

Sequencing data shows expected SNVs in GM12878 and
GM12877 cell lines

Recent work has established a comprehensive and
genome-wide catalog of high-confidence variants for
a collection of Coriell cell lines, including GM12878
and GM12877 [23]. That work relied on whole-genome
sequencing data of 17 individuals in a three-generation
pedigree, and variant calling using four programs: Free-
Bayes [24], Platypus [25], GATK3 [26] and Strelka [27].
By intersecting the locations of these known mutations
with the TST170 genomic regions, we determined that
our GM12878 and GM12877 data should contain 343 and
336 of these mutations, respectively. Intersecting with the
Oncomine Focus genomic regions, we predicted that 26
and 24 known mutations should appear in GM12878 and
GM12877 data respectively.

The first thing we checked was whether there was
indeed evidence for these high-confidence, gold-standard
mutations in our data. While the ability to call a vari-
ant depends on many factors, two key factors are: (1)
the coverage (or read depth) at the site, and (2) the
alternative allele frequency (AF), which is the fraction of
reads showing a non-reference nucleotide at a site. We
mapped all read data to the hgl9 genome (see Meth-
ods for details), and computed the coverage and alterna-
tive allele frequencies at all sites covered by the panels
using Bam-readcount (https://github.com/genome/bam-
readcount). This includes both positions where we expect
the GM12878 and GM12877 cell lines to different from
hg19, and positions that we expect to be the same. Figure 1
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Table 2 Summary of read depth and coverage (average reads covering each basepair covered by the panel) for TruSight Tumor 170

(TST170) and Oncomine Focus (OF) panels

TST170- 12878 TST170- 12877 OF - 12878 OF - 12877

Rep Reads Cover Reads Cover Reads Cover Reads Cover
1 13275831 1056 3526629 300 835719 2437 602628 1829
2 7598224 659 3285901 280 213469 625 769173 2252
3 8279644 725 2440647 203 138350 415 1566916 4338
4 7435784 640 3640546 323 - - - -

5 7519631 648 4731704 412 - - - -

6 7775631 672 4101646 366 - - - -

shows the results for the first replicate in each of our four
conditions, with red spots indicating sites believed to have
SNV compared to hgl9, and blue spots indicating sites
believed to have the reference nucleotide.

Figure 1a, for example, shows AF and coverage of our
TST170 data from the GM12878 cell line. We observe
three main clusters of points in the plot. One clus-
ter is at or very near AF = 1, and appears to consist
of homozygous sites on our gold-standard list of muta-
tions relative to hgl9, as indicated by the red color. A
second cluster centers near AF = 0.5, but with sub-
stantially greater spread, and predominantly consists of

heterozygous mutation sites (also in red). As would be
expected on simple random-sampling grounds, there is
more spread in AF around AF = 0.5 when read depth is
lower, with some heterozygous variants having AF below
0.2 and others over 0.8. The third cluster of points centers
near AF = 0, and primarily consists of homozygous sites
that match the hgl9 reference. The non-zero allele fre-
quencies here could, in principle, represent genuine SN'Vs
present in cells. Their low AF argues against them being
heterozygous or homozygous mutations, unless they are
present in only a subset of our cells. In a later section
we look at the reproducibility of apparent mutations in
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Fig. 1 Allele frequency (AF) and coverage of gold-standard mutations (red) and reference sites (blue) in replicate one of our data for each of four
conditions: (@) GM12878 cells sequenced using TruSight170 panel; (b) GM12877 cells sequenced using TruSight170 panel; (c) GM12878 cells
sequenced using Oncomine Focus panel; (d) GM12877 cells sequenced using Oncomine Focus panel
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different replicates, and conclude this is not likely the
case. Rather, these non-reference reads are likely artifacts,
perhaps resulting from sequencing or mapping errors.

Figure 1b-d shows qualitatively similar results for our
other three conditions—three point clusters, with the
upper two largely consisting of known mutations, either
homozygous or heterozygous. The TST170-GM12877
data in panel B shows greater spread in the AF ~ 0.5 clus-
ter. We suspect this is due in part to the lower overall read
depths of these experiments, which came out at roughly
half compared to GM12878. Few mutations exceed a cov-
erage of 1000 reads in our GM12877 data, whereas that
is the approximate median for our GM12878 data. It is
not clear if this is the only factor leading to the greater
AF spread. We also observe slightly greater frequency of
mutations just below the level of AF=1. This may suggest
a slightly higher per-base read error rate or possibly align-
ment errors. The OF data in panels C and D is distinct
from the TST170 data primarily in that many fewer bases
are covered. Therefore, there are many fewer points on the
plots, and coverage levels are higher on average.

Figure 1 shows that, at least in replicate one of our
four conditions, every gold-standard mutation has at least
some support—in the sense of a non-zero AF. Indeed,
across all 18 of our datasets, we found only a single gold-
standard mutation site in replicate three of our TST170—
GM12877 that had no supporting evidence whatsoever.
Therefore, we can conclude that our data contains evi-
dence of virtually all expected gold-standard mutations.
This is not to imply that it is easy to distinguish those
mutations from reference sites. As we can also see in
the figure, some reference sites have coverage and AF
comparable to some gold-standard mutations, and some
gold-standard sites have quite low coverage and/or AF.

Variant callers disagree greatly under default
configurations

We investigated the performance of several high-profile
variant callers in separating the gold-standard mutations
from the non-mutated sites. For all the data sets, we tested
the following four variant callers: MuTect2 [19], SAM-
tools [17], VarDict [20], and VarScan2 [28]. In addition,
we tested the vendor-recommended variant caller on each
dataset. For the TST170 data, generated on an Illumina
sequencer, that means Pisces [21]. For the OF data, gen-
erated on an Ion Torrent sequencer, that means the Ion
Torrent Variant Caller (ITVC) [22]. We could not apply
ITVC to the Illumina-generated data, nor do we report
on the Illumina-recommended caller, Pisces, on the Ion
Torrent-generated data. In total then, five different vari-
ant callers were applied to each dataset. See Methods for
exact version numbers and other details. These variant
callers were chosen for different reasons. The motivation
for testing the vendor recommended callers, Pisces and
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ITVC, is that these are the approaches that clinical labs
would tend to use by default. The SAMtools package is
one of the most highly cited programs in all of bioinfor-
matics, and its variant-calling facilities in particular have
been used widely. VarScan2 is another highly cited and
well-established package for mutation calling. MuTect2
is the latest version of the MuTect program, which won
a DREAM somatic genotyping contest [29]. VarDict is a
more recent program and has facilities designed specifi-
cally for clinical-type sequencing protocols. Importantly,
SAMtools, MuTect2, VarScan2, and VarDict also have sev-
eral key properties that recommended them for our study:
they are freely available to use; their code is open source,
so we could install it on our local machines and compute
cluster; they are capable of variant calling in tumor-only
mode; and all output VCEF files containing SNV calls that
can readily be compared to our gold-standard mutation
list and to each other.

Some clinical sequencing centers have the expertise
to carefully tune the bioinformatics tools they employ,
but many simply use some established or recommended
pipeline with default settings for all parameters and fil-
ters. We first compared the variant callers under default
settings, as downloaded and/or recommended in their
associated publications (see Methods for details). Figure 2
summarizes the results, while Supplementary Tables 1-4
give the exact numbers of calls, true positives, false pos-
itives, false negatives, sensitivity, and precision for every
caller on every dataset.

Figure 2a shows the average number of mutations
called by each variant caller in each of our four con-
ditions: GM12878 or GM12877 cells, sequenced by
TST170/Illumina or OF/Ion Torrent. Horizontal colored
lines also indicate the correct number of mutations cov-
ered by the panels that would, ideally, be discovered. The
various programs call wildly different numbers of SNVs
from the same datasets. The most extreme is SAMtools,
which calls over 100,000 SN'Vs on average in the TST170
data, and over 10,000 SNVs in the OF data. Consider-
ing that these panels cover 527,121 and 29,008 total bases
respectively, this is an astonishingly high call rate. This
happens because SAMtools’s default behavior is more or
less to report anything that has any chance of being a
mutation. Even a single read with a non-reference base-
pair is enough to cause SAMtools to flag a site. (We do
not intend to criticize SAMtools here, but merely to high-
light its default behaviour as being distinct from that of
other programs.) With the depth of coverage in our data
and even a relatively low per-base error rate, many posi-
tions end up with some non-reference reads. Pisces is the
next most profligate caller, reporting on average approxi-
mately three times as many sites as in our gold-standard
list. At the opposite end of the spectrum, VarDict appears
quite strict, calling only a few more sites than expected
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Fig. 2 Summary of variant calling across all 18 datasets, when using default/recommended calling parameters. a Numbers of SNVs called by different
variant callers, averaged across replicates within our four conditions: GM12878 or GM12877 cells, sequenced using TST170/Illumina or
OF/lonTorrent. Colored horizontal lines indicate the number of gold standard mutations that ideally would be detected. b Venn diagram of calling
results for five callers on replicate one of the TST170-GM12878 data. Within each region, the two numbers give the number of true positive (TP) and
false positive (FP) calls agreed upon by the relevant algorithms. The numbers in parentheses next to each algorithm’s name are the number of false
negatives (FN) by that algorithm. ¢, d Sensitivity (TP/TP+FN) and precision (TP/TP+FP) for each algorithm across all the datasets to which it was
applied. The box-and-whisker plots show the percentiles: 0% (i.e. minimum), 25%, 50% (i.e. median), 75%, and 100% (i.e. maximum)

from the gold standard. Indeed, it is the only variant caller
whose default performance does not substantially over-
estimate the numbers of mutations in these cell lines, as
represented in our data.

Beyond the mere numbers of SNVs called by each algo-
rithm, it is important to understand which calls are cor-
rect and which are not. Again, Supplementary Tables 1-4
give such performance details. Figure 2b, however, gives
a representative Venn diagram of SNV calls on replicate
one of our TST170-GM12878 data. Within each region of
the Venn diagram, which corresponds to a subset of the
callers, the numbers of true positive (TP) and false posi-
tive (FP) calls are indicated. The numbers of false negative
(FN) calls by each algorithm are indicated in parenthe-
ses next to their name around the outside of the Venn
diagram. The good news is that all five variant callers cor-
rectly call almost all of the gold-standard mutations. All
five variant callers agree on 340 of the 343 gold-standard
mutations, and two more gold-standard mutations are
called by all programs except MuTect2. All five programs
miss one of the gold-standard mutations. The Venn dia-
gram shows, as we can also deduce from panel A, that

SAMtools calls a very large number of false positives.
However, and perhaps surprisingly, there remains a small
number of false positives called uniquely by other pro-
grams. Pisces calls SN'Vs at 14 sites not called by any other
program, and MuTect2 calls three unique SN'Vs. VarScan2
does not call any unique false positives, although it shares
104 calls with SAMtools that are not called by any other
program. VarDict reports only five false positives, and
these five are also reported by every other program.

Figure 2c reports the sensitivity values (TP/TP+FN) for
each algorithm across the datasets to which it is applied.
As in panel B, we see that most algorithms are successful
at identifying all or nearly all of the gold-standard muta-
tions. The ITVC program is a bit of an exception, having
sensitivity values around 96%, despite the fact that the
average number of SN'Vs it calls is about 10 times higher
than the number of true SNVs (Fig. 2a). For the other algo-
rithms, sensitivity is higher than 98% on all except a few
datasets, where MuTect2 and VarDict have some difficul-
ties. As seen in Supplementary Tables 1-4, those problem-
atic datasets are all OF/Ion Torrent datasets, where ITVC
too has trouble.
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Figure 2d reports the precision values (TP/TP+FP) for
each algorithm. Precision is one minus the empirical
false discovery rate (EFDR), defined as FP/TP+FP. As one
would expect, the algorithms that call high numbers of
SNVs necessarily have very poor precision—an abysmal
<1% for SAMtools, and approximately 8% for ITVC. Var-
Dict stands out as having quite high precision, at over 90%
on all datasets, and averaging over 95%. The other algo-
rithms have precision hovering around 40% to 50% on
average, and thus EFDRs between 50% and 60%, which
is higher than would likely be acceptable by most clinical
sequencing centers.

Choosing consistent filtering parameters makes variant
calls more similar

Although each variant caller relies on a distinct statis-
tical model, they also filter both inputs and results in
various ways. Differences in the default parameters of
these filters are an obvious possible explanation for diver-
gent variant calls observed in the previous section. Thus,
we re-analyzed all data with the same algorithms, but
setting their filtering parameters to be as similar as pos-
sible (see Methods). We set the minimum alternative
allele frequency for a called variant to 0.01, the minimum
coverage to 10 reads, the minimum base call quality to
20, and the minimum mapping quality to 20. These are
not restrictive parameter choices, aimed at eliminating
false positives calls. Later, we will return to the question
of whether more restrictive filtering can improve per-
formance and/or agreement between callers. Here, the
focus is on making the filtering criteria of the algorithms
as similar as possible. We call these filtering param-
eter settings our “consistent” or “common” parameter
values.

Figure 3 summarizes the results of SNV calling with
these common parameters, while Supplementary Tables 5
to 8 give detailed statistics. In Fig. 3a, we see that mak-
ing parameters consistent greatly reduces the number of
variants called by SAMtools—by approximately two orders
of magnitude. On the TST170 data, it still calls more
SNVs than other algorithms, but on the OF data it is
comparable to both MuTect2 and VarScan2. We also see
a substantial increase in the number of mutations being
called by VarDict. Much of this is due to our lowering of
VarDict’s alternative allele frequency threshold from the
default value of 0.05 to 0.01. ITVC calls many fewer SNVs
than with default parameters, approximately equal to the
number of gold standard mutations.

Figure 3b shows a Venn diagram of caller agreement for
the same replicate one of TST170—-GM12878 data that we
showed in Fig. 2b. We continue to see good detection of
the gold-standard mutations, but now false positive rates
are dramatically reduced—mostly notably for SAMtools.
All five algorithms now have unique false positives that are
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not called by any other algorithm, with Pisces having the
most at 418.

Figure 3c,d shows the sensitivity and precision values
for the algorithms. With consistent filtering parameters,
sensitivity remains fairly high, although MuTect2 has lost
some ground, and ITVC even more so. On the other
hand, ITVC is now the top peformer in terms of preci-
sion, because it makes so many fewer false positive calls.
VarDict’s excellent precision with default parameters is
lost by adopting the common parameters, although it
remains second, on average, after ITVC. Overall, these
results highlight several important points. First, a sub-
stantial portion of the disagreement between callers that
we observed in the previous section can be attributed to
differences in default values for things such as minimum
allele frequency, coverage, or read quality. Still, significant
differences remain between the callers, which may be due
to filtering parameters that we could not align, or may be
due to differences in their statistical models. And finally,
because almost all callers are correctly finding almost all
gold-standard mutations, the main differentiator between
the algorithms is the false positive calls they make.

Thresholding depth and allele frequency is inadequate for
removing false positives

Variant calls are most ambiguous when allele frequency
or coverage are low. Indeed, practitioners in a clinical
sequencing laboratory will sometimes visualize coverage
and allele frequency in a genome browser to verify vari-
ant calls. Although the statistical models employed by
the different variant callers are intended to account for
allele frequency and coverage, there is always a trade-
off between Type I and Type II errors, or in other
words, false positive and false negative rates. Because
the results in the previous section suggested high sen-
sitivity for detecting mutations, but also high levels
of false positives, it seemed plausible that increasing
the stringency of variant calls could lead to improved
performance.

To formalize the trade-offs involved in coverage and
allele frequency, we post-filtered all variant calls at 10
different levels of stringency: a minimum of 20 reads
and allele frequency 0.01, 40 reads and allele frequency
0.02, 60 reads and allele frequency 0.03, and so on up to
requiring a minimum of 200 reads and allele frequency
0.10. The least stringent threshold is almost equivalent
to the results reported in the previous subsection, as
our variant calling parameters already included a mini-
mum allele frequency of 0.01, and very few mutations can
be called with fewer than 20 reads. The most stringent
threshold would be considered unreasonably stringent by
many practitioners—firstly, because mutations with allele
frequency less than 0.10 can be clinically relevant, and
secondly because there is a general consensus that even
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baseline clinical sequencing approaches ought to be able
to detect mutations down to at least 0.05 allele frequency.

Figure 4 shows the sensitivity and precision of each
algorithm’s variant calls when post-filtered at different lev-
els of coverage and alternative allele frequency. Panel A
shows results averaged across all the TST170 datasets,
while panel B shows results averaged across all the OF
datasets. Each algorithm has its own curve in the plots,
and each curve has 10 circles, corresponding to increasing
levels of stringency as one goes rightward and downward.
As expected, for all algorithms, increasingly stringent fil-
tering improves precision (or, equivalently, lowers the
false discovery rate). VarDict’s results benefit the most,
going from 50% and 85% precision on TST170 and OF
data respectively, to over 95% precision on both. Other
algorithms, while improving precision substantially, still
do not reach satisfactory precision levels. For example,
even with the most stringent filtering, Pisces and SAM-
tools achieve only 70% and 80% precision respectively on
the TST170 data. False discovery rates of 30% or 20%,
respectively, would likely be unacceptable in many clinical
sequencing applications.

Stringent filtering also brings with it a notable loss in
sensitivity. On the TST170 data, we find that all callers
lose approximately 10% of their true positives, when fil-
tered with maximum stringency. On the OF data, 5% of
true positives are lost. For most algorithms, moderately
stringent filtering—requiring around 0.03 to 0.05 allele
frequency and 60 to 100 reads—improves precision with
relatively little loss in sensitivity. Overall, however, filter-
ing on allele frequency and coverage does not appear to
offer a satisfactory improvement in precision for most
algorithms, and even when it does improve precision, it
comes with a dissatisfying loss in sensitivity.

Replicate analysis increases the accuracy of an individual
mutation caller

We also studied the possibility of improving performance
by analyzing multiple replicates. Few variant callers
explicitly handle replicate experiments. However, results
from individual replicates can be intersected, or more
generally we can use “voting" schemes to combine the
answers from multiple replicates [30, 31]. Here, we investi-
gate one straightforward voting scheme. Our OF datasets
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were each performed in technical triplicate for each of the
two cell lines. Our TST170 datasets, six for each cell line,
were performed as biological duplicates, and for each bio-
logical duplicate as technical triplicates. See Methods for
more information. Thus, our data can be naturally divided
into six biological experiments, each sequenced in techni-
cal triplicate. For each of those six biological experiments,
and for each variant caller, we determined whether 1, 2, or
all 3 technical replicates detected each possible variant.
Figure 5 shows the sensitivity and precision of the
different algorithms when we require that 1, 2, or all
3 replicates find the same variant. Generally, when we
require more replicates to show the same variant, we
expect that sensitivity may decrease, but precision may
increase. Our results confirm this expectation. The par-
ticularly good news is that SAMtools, VarDict, VarScan2,
and Pisces show only very minor losses in sensitivity,
even when all three replicates are required to confirm
a variant—remaining at over 99% success in detecting
the gold-standard mutations. At the same time, they gain
substantially in precision. VarDict in particular achieves

approximately 95% precision (5% false discovery rate)
while maintaining high sensitivity. MuTect2 also gains
much precision, but its sensitivity suffers more. ITVC,
which had the lowest sensitivity but highest precision on
single-replicate analyses, does not benefit from combining
replicates. Overall, then, we find that intersecting or “vot-
ing" the results of multiple replicates can greatly reduce
false positives with little cost in true positives—unlike
the case with allele frequency and coverage thresholding,
where false positive reductions were tied to true positive
reductions. Still, VarDict is the only algorithm with truly
good sensitivity and precision. Even when intersecting
calls from three replicate datasets, the other algorithms
do not reach 90% precision, and the sensitive algorithms
(SAMtools, VarScan2, and Pisces) only reach 30% preci-
sion.

Intersecting mutation callers’ results reduces false
positives, while maintaining sensitivity

From Figs. 3 through 5, it is clear that each mutation caller
reports many false positives, and that post-filtering results
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can help eliminate these, but not entirely. When different
algorithms produce different results on the same data, a
common strategy is to combine or intersect their results
[32, 33]. Indeed, our list of known gold-standard muta-
tions was created by Eberle et al. [23] by combining calls
made by FreeBayes, Platypus, GATK3, and Strelka. For our
data, we were interested in the question of which combi-
nation(s) of mutation callers offered the best performance.
To test this thoroughly, we computed the SNV calls in
the intersection of the calls of every possible combination
of algorithms. Because we applied five algorithms to our
TST170 data (MuTect2, SAMtools, VarDict, VarScan2,
and Pisces), there were 2° — 1 = 31 possible combinations
of algorithms—comprising five single algorithms (a triv-
ial “combination”), 10 pairs of algorithms (e.g., MuTect2
& SAMtools, or VarDict & VarScan2), 10 trios of allgo-
rithms (e.g., MuTect2, VarDict, & Pisces), five four-way
combinations of algorithms, and the single five-way com-
bination of all algorithms. For every combination and for
every dataset, we intersected the calls of the algorithms in
the combination, and we evaluated sensitivity and preci-
sion. We then averaged those results across all the TST170
datasets. We also performed the identical procedure for
our OF data, except with MuTect2, SAMtools, VarDict,
VarScan2, and ITVC being the five algorithms that we
combined in all possible ways.

Supplementary Tables 9 and 10 give the full results,
while Fig. 6 shows the sensitivity and precision of select
combinations. For example, on the TST170 data, inter-
secting the results of SAMtools and Pisces maintains the
excellent sensitivity of both algorithms, while boosting
precision to over 75%. Intersecting the results of Var-
Dict and Pisces also maintains sensitivity, while boosting
precision to over 95%. Generally speaking, when multi-
ple algorithms’ results are intersected, sensitivity either
stays the same or goes down—because no additional TPs
can be produced, while some may be lost. At the same
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time, precision has the potential to increase greatly—
particularly if different algorithms are committing differ-
ent false positives. Remarkly, even when we intersect all
five algorithms’ results on the TST170 data (Fig. 6a or
Supplementary Table 9), we maintain a sensitivity of over
99% while achieving precision of over 98% (i.e. false dis-
covery rate less than 2%). For the OF data, the results are
somewhat different. Again, there is a combination of two
algorithms that performs very well. However, it is a dif-
ferent pair of algorithms, MuTect2 and VarDict. Adding
additional algorithms to the combination does little to
further increase precision, and can hurt sensitivity sig-
nificantly. VarDict alone also performs quite well on the
OF data, with perfect 100% sensitivity and precision over
80%. So it is understandable that intersecting additional
algorithms has less benefit than we saw in the TST170
data. Still, overall we see that combining results of dif-
ferent callers can significantly benefit precision / false
discovery rate, with little to no loss of sensitivity. Intu-
itively, this means that when variant callers make errors,
many of those are different, non-overlapping errors, so
that intersecting results can eliminate them.

Discussion

In this work, we looked at factors contributing to the suc-
cess of SNV calling in clinical-style samples, including
different sequencing platforms, targeting panels, variant
callers, and replication. We generally found similar results
for the TruSight 170 data sequenced on an Illumina plat-
form and for the Oncomine Focus data sequenced on an
Ion Torrent platform. Thus, we concluded that sequenc-
ing platform and targeting panel are not major influences
on performance, although certainly the two panels offer
different coverage of cancer-related genes. We found,
as have other groups [12, 15, 34], that different variant
callers can disagree widely on the same data. However,
we went farther than previous efforts in explaining these
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differences. First, we found that much can be attributed to
various default filtering settings of the algorithms. When
making filtering as consistent as possible, disagreements
between algorithms shrink considerably. Importantly, all
the algorithms that we tested displayed excellent sensi-
tivity for detecting true mutations. The problem is with
false positives. Here we found that, using the old bioinfor-
matics strategy of intersecting results, combining results
from multiple mutation callers can eliminate many false
positives. Other groups have found similar results in vari-
ant calling, using simple intersections or more sophis-
ticated combination methods [35, 36]. Importantly, we
found that intersecting the results from multiple replicate
samples was also a powerful way of filtering out false pos-
itives while maintaining detection sensitivity. Although a
costlier option than running multiple algorithms, more
research should be done into the tradeoff between accu-
racy and cost of this strategy, and whether it is relevant to
clinical practice.

Our study is not without limitations. We have focused
on just five variant callers, chosen on the basis of offering
tumour-only mode, and being publicly available, free to
use, easy to install, and robustly running. Another limita-
tion is that the gold-standard variants we wanted the algo-
rithms to identify were either heterozygous or homozy-
gous in comparison with the hgl9 human genome. Thus,
their allele frequencies were clustered around 50% or
100%. Detecting mutations at lower allele frequencies
can be very important, because real tumor specimens
can be heterogeneous. They may mix health and can-
cer tissue, or they may mix different subclones of the
cancer with different mutations—and possibly different
drug sensitivities [37]. As such, our finding of nearly-
uniform high sensitivity for true mutation detection might
not generalize to real tumor specimens with lower muta-
tion allele frequencies, and there may be more challeng-
ing trade-offs between sensitivity and precision. Other
studies have used mixtures of DNA from different cell
lines to “create” mutations at lower allele frequencies (e.g.
[13]), and better probe the relationship between allele fre-
quency and detectability. We currently have similar efforts
under way. That being said, some of our heterozygous
mutations were coming in at apparent allele frequen-
cies as low as 0.1 or 0.2, particularly when coverage was
lower. So we were able to derive some understanding of
the relationships between coverage, allele frequency and
detectability. Another of our long-term goals is to apply
similar analyses to real lung cancer specimens in which
gold-standard mutations have been identified, so that we
can assess detection rates specifically for cancer-relevant
mutations in real patient data. Further, we intend to incor-
porate those results into broader health economic anal-
yses, going beyond mere accuracy to estimate the value
of different sequencing platforms, targeting panels, and
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bioinformatics pipelines to ultimately improving clinical
outcomes.

Conclusions

Clinical sequencing centers face many decisions, includ-
ing which sequencing technologies and protocols to
implement. Our study compared Illumina NextSeq500
and Ion Torrent PGM platforms, and did not find any
important difference in accuracy. Similarly, we compared
TruSight 170 and Oncomine Focus targeting panels, and
found no important difference in accuracy. Thus, although
different choices may have different implications regard-
ing cost, coverage, maintenance, or other factors, it is
reassuring that accuracy is equally good with any of these
choices. We found that different single nucleotide variant
calling pipelines could produce highly divergent results,
but that much of this is due to differences in default
parameters. All pipelines had good sensitivity for detect-
ing mutations, but produced numerous false positive
calls. Vendor-recommended pipelines were no better than
other pipelines in this regard. However, different pipelines
produced different false positives. As well, different false
positives were seen in different technical replicates of the
data. Thus, we recommend intersecting results from mul-
tiple pipelines and/or multiple replicates to minimize false
positives.
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