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Abstract 

Background:  Complex genomic changes that arise in tumors are a consequence of chromosomal instability. In 
tumor cells genomic aberrations disrupt core signaling pathways involving various genes, thus delineating of signal-
ing pathways can help understand the pathogenesis of cancer. The bioinformatics tools can further help in identifying 
networks of interactions between the genes to get a greater biological context of all genes affected by chromosomal 
instability.

Methods:  Karyotypic analyses was done in 150 clinically confirmed breast cancer patients and 150 age and gender 
matched healthy controls after 72 h Peripheral lymphocyte culturing and GTG-banding. Reactome database from 
Cytoscape software version 3.7.1 was used to perform in-silico analysis (functional interaction and gene enrichment).

Results:  Frequency of chromosomal aberrations (structural and numerical) was found to be significantly higher 
in patients as compared to controls. The genes harbored by chromosomal regions showing increased aberration 
frequency in patients were further analyzed in-silico. Pathway analysis on a set of genes that were not linked together 
revealed that genes HDAC3, NCOA1, NLRC4, COL1A1, RARA, WWTR1, and BRCA1 were enriched in the RNA Polymerase II 
Transcription pathway which is involved in recruitment, initiation, elongation and dissociation during transcription.

Conclusion:  The current study employs the information inferred from chromosomal instability analysis in a non-
target tissue for determining the genes and the pathways associated with breast cancer. These results can be further 
extrapolated by performing either mutation analysis in the genes/pathways deduced or expression analysis which 
can pinpoint the relevant functional impact of chromosomal instability.
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Background
Complex genomic changes that arise in tumors are a 
consequence of Chromosomal Instability (CIN), which 
leads to numerical [(N)-CIN] as well as structural chro-
mosomal instability [(S)-CIN] [1]. The increased levels 
of aneuploidy and structural complexity in these tumors 

indicate errors in DNA repair, mitotic segregation and 
cell cycle checkpoints [2, 3] and may cause (N)-CIN. 
Structural rearrangements emerge by anomalous DNA 
repair pathways that cause abnormalities in both homol-
ogous and non-homologous end-joining of double-
stranded DNA [4, 5]. (S)-CIN may also appear through 
telomere-mediated events, where decisively short telom-
eres get identified as DNA breaks capable of recombining 
(either homologously or nonhomologously) when DNA-
repair pathways get compromised and leads to activation 
of telomerase [6]. The mechanism leading to aneuploidy 
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is distinct from structural changes and aneuploidy arises 
by disruptions in cell cycle checkpoints and errors in 
mitotic segregation [2, 7].

CIN is clinically important as it is associated with 
poor outcome in patients with cancers of lung, breast 
and colon [8–10] leading to loss or gain of chromosome 
segments, deletions, translocations, and DNA amplifica-
tions [11]. Various studies have reported the correlation 
between chromosomal aberration and tumor grade and 
prognosis [8, 12]. Cytogenetic studies in cancer cells have 
recognized the complexity of genomic rearrangements in 
cancer cells [13] and have reported recurrent abnormali-
ties in a broad range of tumors [14, 15].

A link between aneuploidy and/or CIN and poor clini-
cal outcome has been identified by several studies [16]. 
Cancer cells can be targeted based on the whole chromo-
some instability (W-CIN) phenotype they carry. National 
cancer Institute (NCI), USA screened compounds hav-
ing anticancer activity by examining the data-rich drug 
discovery panel of NCI-60 cancer cell lines and enlisted 
potential agents with anticancer activity which targeted 
chromosomally unstable and aneuploid cancer cells [17–
19]. NCI also provided a confirmation of the possibility of 
discovering potential anticancer agents based on the link 
between their activity and the karyotypic state. An asso-
ciation between aneuploidy and chromosomal instability 
with distinctive clinical and histopathological features 
and poor prognosis has also been reported in various 
cancers [20–22]. Thus, the need to target CIN with new 
combinatorial strategies has been suggested [23].

Data from large scale genome wide projects have 
unveiled common core signaling pathways which lead 
to the development of various cancers [24–28]. Studies 
to delineate pathways involved in pathogenesis of can-
cers like colon and glioblastoma multiforme [29], have 
provided characterization of the genes involved in the 
pathogenesis of the disease, thus making it significant to 
focus on pathways which involve various genes [30, 31]. 
Genomic aberrations disrupt signaling cascades or path-
ways in tumor cells thereby causing the tumor to prolif-
erate or dedifferentiate uncontrollably [32]. For instance, 
deletion in any of the components of TGFβ pathway 
paves way for some of the breast cancers [33–37]. Thera-
peutic targeting of pathways that are directly involved in 
initiation of CIN has also gained clinical interest [20, 38]. 
Pathways-based analysis has gained much importance in 
the past decade as it is able to, firstly identify the actual 
genes associated with the phenotype and demarcates 
them from other false positive hits [39] and secondly 
marks the biological pathways affected by the genes [40].

The bioinformatics approach can further help in iden-
tifying networks of interactions between the genes of 
interest as well to simultaneously identify biologically 

informative “linker” genes so as to get a greater biological 
context of all genes affected by chromosomal instability. 
This can help to stratify breast cancer patients for choos-
ing optimal treatments and therapies.

Karyotyping aids in efficient single cell screening and 
identifies important genomic aberrations in normal or 
diseased samples [41]. A copy number alteration (CNA) 
is represented by any alteration in banding pattern [42]. 
This has been indicated by studies which have reported 
a relation between chromosomal anomalies in peripheral 
blood lymphocytes (PBLs) and risk prediction in cancers 
[43–46]. Blood-test screening is considered a non-inva-
sive, cost effective technique [41]. Also, genetic aberra-
tions in a non-target tissue like PBLs may display related 
events in target tissue [47].

The present study therefore aimed to identify chromo-
somal anomalies in PBLs of breast cancer patients to: a) 
identify the recurring aberrant chromosomal lesions 
and chromosomal loci that are frequently involved in 
breast cancer; b) determine the genes harboured by these 
regions, and to delineate the biological pathway which is 
enriched by them by bioinformatic tools.

Methods
In the present study 150 patients with confirmed malig-
nant breast cancer were included. The patients were 
clinically investigated at Sri Guru Ram Das Institute of 
Medical Sciences and Research, Vallah, Amritsar, Pun-
jab, India. This study was conducted after approval by the 
institutional ethical committee of Guru Nanak Dev Uni-
versity, Amritsar, Punjab, India. Patients with confirmed 
malignant breast cancer without any history of any other 
cancer were included in the study whereas patients hav-
ing received any kind of therapy (chemotherapy, hormone 
therapy, radiotherapy or surgery) or blood transfusion, 
prior to sampling were excluded from the study. After 
informed consent relevant information including age, 
gender, occupation, personal history, habitat, habits and 
disease history were recorded in pre-designed question-
naire. The blood samples of 150 patients and 150 sex and 
gender matched healthy controls (with no family history 
of cancer) were collected in a heparinized vial. Peripheral 
Lymphocyte Culturing was performed by standard 72 h 
culture method using phytohemagglutinin as mitogen. 
GTG banding was performed and karyotyping was done 
following ISCN 2016 [48]. Chromosomal anomalies were 
assessed in 50–100 metaphases for each subject.

The genes (Table  4) present on the chromosomes 
involved in anomalies were retrieved from Atlas of 
Genetics and Cytogenetics in Oncology and Hematol-
ogy [49] and Genatlas database [50]. On the homepage 
of Atlas of Genetics and Cytogenetics in Oncology and 
Hematology, the chromosome number was selected from 
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‘ENTITIES: by chromosomal band’ and then the genes 
present on the particular location/band were identified. 
On the homepage of Genatlas Database, the list of genes 
present on a particular chromosomal location/band was 
retrieved by entering the chromosome number and band 
in “SEARCH in GENATLAS GENES” search field.

Reactome database from Cytoscape software ver-
sion 3.7.1 was used to perform functional interaction 
and gene enrichment analysis on the genes (query 
genes) that were present on the chromosomal regions 

that were frequently involved in cytogenetic anomalies 
in the current study. In the Apps menu on Cytoscape 
software ‘Reactome FI’ was selected. After clicking on 
this menu, six sub-menus appeared out of which ‘Gene 
Set/Mutation Analysis’ was selected for performing 
FI (Functional interaction) analysis on a set of genes. 
Functional Interaction analysis revealed the involve-
ment of various genes (linker genes) that were linked to 
the query genes through different networks (Fig. 1).

Fig. 1  Reactome FI network. *Genes in red font represent the linker genes
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As majority of the patients (86%) had Infiltrating 
Ductal Carcinoma (IDCa) of breast, pathway enrichment 
for invasive ductal breast carcinoma was performed to 
identify the genes invloved in IDCa. The important fea-
tures of Reactome FI plug-in were invoked from a pop-up 
menu by right clicking on the empty space in the net-
work view panel. ‘Load Cancer Gene Index’ option in the 
pop-up menu opened a list of NCI diseases in the control 
panel. Here, below ‘Disease Hierarchy’, following options 
were chosen: Neoplasm—Neoplasm by site—Breast 
Neoplasm—Malignant Breast Neoplasm—Breast Carci-
noma—Breast Adenocarcinoma—Ductal Breast Carci-
noma—Invasive Ductal Carcinoma.

Pathway enrichment analysis was further done on a set 
of genes that are not linked together by checking ‘show 
genes not linked to others’ in FI Network Construction 
Parameters. Linkers were not used for pathway enrich-
ment analysis as it leads to bias in results. Right clicking 
on the empty space in the network view panel led to a 
pop-menu from which following options were subse-
quently chosen: Reactome FI – Analyze Network Func-
tions – Pathway Enrichment.

Results
Cytogenetic analysis
Cytogenetic analysis was performed on 150 breast can-
cer patients (147 females and 3 males) and 150 age and 
gender matched controls. Out of 150 patients, 20 (13.3%), 
74 (49.3%), 37 (24.7%) and 14 (9.3%) were diagnosed 
with stage I, Stage II, stage III and stage IV breast car-
cinoma, respectively. Exact stage of 5 (3.3%) patients 
could not be determined. Majority of the patients (89.3%) 
had IDC of breast. The chromosomal aberrations were 
counted as in metaphases with: only structural aberra-
tions, with only numerical aberrations and metaphases 
with both structural and numerical aberrations. A few 
karyotypes illustrating these aberrations have been pro-
vided as Additional file  1: figures (Figure S1-S7). The 
difference in the frequencies of chromosomal aberra-
tions amongst patients and controls was statistically 

significant (Table  1). The aberrations were higher in 
patients as compared to controls: mean (%) aberrant 
metaphases (22.6 ± 12.3 vs. 12.5 ± 4.6, p < 0.0001), mean 
(%) metaphases with structural aberrations (11.7 ± 10.8 
vs. 4.5 ± 3.1, p < 0.0001), mean (%) metaphases with 
numerical aberrations (9.5 ± 6.7 vs. 6.2 ± 3.5; p < 0.0001). 
However, mean (%) metaphases with both structural and 
numerical aberrations were similar in both the groups 
(2.6 ± 2.0 vs. 2.6 ± 1.1; p = 1.00).

The stage-wise comparison of cytogenetic profile of 
breast cancer patients with controls has been shown 
in Table  2. The chromatid type aberrations observed 
in patients included premature centromeric division, 
chromatid break and gap while the chromosome type 
aberrations included polyploidy, chromosomal gap, pul-
verizatrion, telomeric associations, chromosomal break, 
endoreduplication, robertsonian translocations, acentric 
fragments, ring chromosomes, deletions. Association 
between the acrocentric chromosome 13, 14, 15, 21 and 
22 were scored separately in all metaphases. Acrocentric 
associations and telomeric bridges were also scored but 
not counted in the total aberrations. Telomeric associa-
tions were commonly seen in acrocentric chromosomes. 
Apart from acrocentric chromosomes, chromosome 1, 2, 
16, 18, 20 and X were also frequently involved in telom-
eric associations. Breaks and gaps were the most frequent 
structural chromosomal aberration observed in various 
regions of different chromosomes. The chromosomes 
frequently involved in aberrations like loss, gain, deletion, 
addition and translocations have been shown in Table 3.

Chromosomal aberrations present in 2% or more 
that 2% of metaphases in an individual were consid-
ered as clonal anomalies. Both structural and numeri-
cal clonal chromosomal anomalies were observed in 28 
breast cancer patients (Additional file  1: figure S8, S9). 
Clonal structural chromosomal anomalies observed in 5 
cases were: [(46,XX,add(1)(pter → q21::?::q21 → qter)], 
[45,XX,del(2)(pter →  q11.2::21.2 →  qter)],[46,XX,i(
21)(q10;q10)], [46,XX,?add(1)(q?21)], [45,XX,t(1;5)
(5pter → 5q23::1q25 → qter)]. Noticeably, chromosome 

Table 1  Cytogenetic profile of breast cancer patients and controls

Significant p-value (< 0.05), calculated by t-test, are shown in bold

Patients Controls p-value

No. of subjects 150 150

Age (Mean ± SD) 50.2 ± 11.5 49.2 ± 14.6 0.51

Mean (%) aberrant metaphases 22.6 ± 12.3 12.5 ± 4.6  < 0.0001
Mean (%) metaphases with structural aberrations 11.7 ± 10.8 4.5 ± 3.1  < 0.0001
Mean (%) metaphases with numerical aberrations 9.5 ± 6.7 6.2 ± 3.5  < 0.0001
Mean (%) metaphases with both structural and numerical aberrations 2.6 ± 2.0 2.6 ± 1.1 1.00

Mean(%) metaphases with acrocentric associations 27.6 ± 14.7 28.9 ± 14.6 0.32
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1 was found to be involved in clonal anomalies in three 
of the cases. Clonal numerical chromosomal anomalies 
were observed in 23 cases. The most frequent was loss of 
chromosome X which was observed in 10 cases. Other 
clonal numerical anomalies included: loss of chromo-
some 7, 9, 16 and 22 in two cases each; and loss of chro-
mosome 2, 8, 11, 13, 14, 17 and 20 in one case each.

The control subjects had predominantly normal karyo-
type and the chromosomal aberrations found were lesser 
in frequency as compared to cases. Moreover, no spe-
cific or recurring anomaly was observed in controls. Fre-
quency of non-clonal chromosomal aberrations observed 
in control were: telomeric association 26.3%; robertso-
nian translocation 14.3%; premature centromeric division 

Table 2  Comparison of cytogenetic profile of Breast cancer patients stage-wise and matched controls

Significant p-value (< 0.05), calculated by t-test, are shown in bold

TAM total aberrant metaphases, MSA metaphases with structural aberrations, MNA metaphases with numerical aberrations, M(SA + NA): metaphases with structural 
and numerical aberrations, MAA metaphases with acrocentric associations
*  One of the subjects with Stage II breast cancer had more than 90% frequency of structural aberration as it was a clonal chromosomal anomaly. Therefore, it was not 
included in the calculations. Similarly, one of the subjects with Indeterminate stage had a very higher frequency of structural aberrations, thus, it was not included in 
the calculations
#   The zero values were omitted during the calculation of Average and Standard Deviation due to the presence of high number of zero values in Mean(%) M(SA + NA)

S.No Patient group and controls Mean (%) TAM Mean (%) MSA Mean (%) MNA Mean (%) 
M(SA + NA)#

Mean MAA (%)

1 Stage I cases (n = 20)
Controls (n = 20)
p-value

20.6 ± 7.6
10.3 ± 3.0
 < 0.0001

9.3 ± 5.8
4.7 ± 3.1
0.0034

9.2 ± 5.0
4.5 ± 3.2
0.0011

3.0 ± 2.3
1.2 ± 1.1
0.0031

28.6 ± 13.5
30.2 ± 11.8
0.069

2 Stage II cases (n = 74)*
Controls (n = 74)
p-value

12.0 ± 9.2
12.9 ± 5.0
0.4609

13.1 ± 9.2
4.7 ± 3.2
 < 0.0001

9.4 ± 6.2
6.3 ± 3.4
0.0002

2.2 ± 1.5
2.0 ± 1.4
0.4031

28.3 ± 15.0
29.6 ± 15.0
0.5989

3 Stage III cases(n = 37)
Control (n = 37)
p-value

21.7 ± 12.1
11.9 ± 4.1
 < 0.0001

10.6 ± 7.9
4.1 ± 2.8
0.0015

9.4 ± 7.5
6.3 ± 3.4
0.0250

3.5 ± 2.8
1.5 ± 1.2
0.0002

26.0 ± 13.2
18.9 ± 17.9
0.0561

4 Stage IV cases (n = 14)
Controls (n = 14)
p-value

22.2 ± 9.7
13.8 ± 5.1
0.0081

10.9 ± 7.2
5.1 ± 3.5
0.0117

10.2 ± 9.2
6.8 ± 3.9
0.2142

2.1 ± 1.0
1.9 ± 1.8
0.7192

31.6 ± 19.3
26.1 ± 18.5
0.4484

5 Indeterminate stage
cases (n = 5)
Controls (n = 5)
p-value

16.7 ± 2.4
13.0 ± 5.5
0.2053

4.7 ± 3.3
3.7 ± 2.2
0.5883

11.5 ± 3.3
7.7 ± 4.8
0.1828

1.0 ± 0.0
1.6 ± 1.5
0.3972

24.6 ± 8.1
26.0 ± 14.0
0.8514

Table 3  Comparison of  frequency of  chromosomes involved in  various aberrations in  the  breast cancer patients 
and controls

Significant p-value (< 0.05), calculated by t-test, are shown in bold

Type of aberration Cases Controls p-value

Chromosomes/
chromosome arms involved

Frequency Chromosomes/ chromosome
arms involved

Frequency

Loss 5, 8,16, 17, 18, 19, 20, 21, 22, X 78.8 ± 21.20 8, 9, 15, 17, 19, 20, 22, X 57.25 ± 9.23 0.0169
Gain 2, 3, 8, 9, X 8.8 ± 4.6 3, 4, 6, 16, 21 9.8 ± 2.28 0.674

Break 1p, 1q, 2p, 2q, 3q, 4p, 4q, 7q, 9q, 17q 12.43 ± 5.29 1q, 2q, 3p, 3q, 4q, 16q 4.4 ± 1.95 0.0065
Gap 1p, 1q, 2p, 3p, 3q, 4q, 5q, 6q, 9q, 11q 4.25 ± 2.19 1q, 2q, 5q, 14q, 17q 1.8 ± 0.84 0.0334
Deletion 1p, 1q, 2q, 3q, 4q, 5q, Xq 7.2 ± 2.6 1p, 1q, 5p, 6q, Xp 4.2 ± 1.1 0.0264
Addition 1q, 9q 9q NC NC

Translocations 1, 5, 8, 10, 12, X 4.83 ± 1.47 2, 4, 16 2.66 ± 0.57 0.0475
Robertsonian translocation 15, 21 26.5 ± 7.78 13, 21, 22 26.33 ± 3.79 0.9749

Telomeric associations 1, 2, 3, 12,16, 18, 19, 20 9.83 ± 3.37 7,19, X 14.33 ± 4.04 0.1182

Acrocentric chromosomes:13, 14, 15, 
21, 22

101 ± 14.73 Acrocentric chromosomes: 13, 14, 15, 
21, 22

44.8 ± 11.19 0.0008

Triradials 15, 21, 22 17 ± 5.29 14, 15, 21, 22 9.75 ± 2.36 0.0552



Page 6 of 13Kour et al. BMC Med Genomics          (2020) 13:168 

9.7%; break 9.2%; deletion 8.9%; acentric fragments 8.2%; 
marker chromosome 5.7%; triradial 3.9%; gap 3.2%; trans-
location 2.3%; endoreduplication 2.0%; dicentric 2.0%; 
double minute 0.9%; polyploidy 0.9%; addition 0.7%; ring 
chromosome 0.5%; fragile site 0.5%; duplication 0.5%; 
and inversion 0.4%.

To identify the genes harbored by the chromosomal 
regions showing increased aberration frequency in pre-
sent study sample, data was retrieved from Atlas of 
Genetics and Cytogenetics in Oncology and Hematology 
[49] and Genatlas database [50] (Table 4).

In‑silico analysis
Functional Interaction analysis revealed the involve-
ment of various genes (linker genes) that are linked to the 
query genes (observed to be harboured by the chromo-
somal region frequently involved in anomalies in the pre-
sent study) through different networks (Fig. 1). Pathway 
enrichment for invasive ductal breast carcinoma was per-
formed to identify the genes invloved in IDC as majority 
of the patients in the present study sample (89.3%) had 
IDC of breast (Fig.  2). Linker genes that were involved 
in IDC were SMAD4, EP300, PIK3CA, TP53, HIF1A and 
AKT1.

We analyzed pathways on a set of genes that are not 
linked together by checking ‘show genes not linked to 
others’ in FI Network Construction Parameters. Path-
way Enrichment analysis revealed that genes HDAC3, 

NCOA1, NLRC4, COL1A1, RARA, WWTR1, and BRCA1 
are enriched in the RNA Polymerase II Transcription 
pathway (Fig. 3).

Discussion
Aneuploidy is thought to be a principal outcome of CIN 
[51]. Chromosomally unstable cancer cells undergo chro-
mosomal missegrgation in excess of every fifth division 
[52, 53] in contrast to chromosomally stable cells with 
missegregation occurring in only 1% of cell divisions [52]. 
Mechanisms that seem to contribute to nCIN are aber-
rant sister chromatid cohesion [54–57], breach in mitotic 
checkpoint [58–61], amplification of centrosomes [62] 
and improper attachment of chromosomes to the mitotic 
spindle [63, 64]. The whole-chromosome missegrega-
tion in mitosis is associated to structural aberrations and 
DNA damage in the following interphase [65, 66].

Genomes with CIN are characterized by various forms 
of structural genomic aberrations like amplifications, 
insertions, reciprocal and non-reciprocal translocations 
and deletions [5]. In the present study the frequency of 
various structural (both chromatid type and chromo-
somal type) and numerical chromosomal aberrations in 
patients were significantly higher than controls.

Chromosomes that were observed to be frequently 
involved in aberrations in patients in the present study 
were 1, 2, 3, 4, 5, 8, 9, 17 and X. Similar aberrations in 
these chromosomes have been associated with invasive 

Table 4  Genes harboured by the chromosomal regions recurring in anomalies in present study sample

a  Source: Atlas of Genetics and Cytogenetics in Oncology and Hematology [49] and Genatlas database [50]

Chromosomal region Genesa

1p32 RNF11

1q21 ARNT, SHC1, PIP5K1A, S100A10, BCL9, MAD1L1, PDE4DIP

2p21 EML4

2p22 NLRC4, MSN, BIRC6, STRN, EIF2AK2

2p23 NCOA1, ALK

3p21 LIMD1, MAP4, RHOA, PFKFB4, MST1, SEMA3F, SETD2, PBRM1, BAP1, PBRM1, PRKCD

3q25 WWTR1, SIAH2, MLF1, RARRES1

4q12 FIP1L1

4q31 INPP4B, NR3C2

5q31 AFF4, SLIT3, VDAC1, ANKHD1, HDAC3, ARHGAP26

6q13 SMAP1

6q25 RGS17, AKAP12, LATS1

6q27 FGFR10P, THBS2

7q22 CUX1

10q21 CCDC6, RHOBTB1, ARID5B

11q23 SDHD, ARHGEF12

15q22 PCLAF, DAPK2

17q21 GSDMB, RARA, CDC6, STAT3, GAST, ACLY, BRCA1, ETV4, NMT1, KPNB1, IGF2BP1, 
NGFR, XYLT2, PPP1R9B, COL1A1
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ductal carcinoma of breast and other subtypes [67–69]. 
Among these, chromosomes 8, 14, 4, 18, X, 3, 10, 20, 
9 and 1 have also been observed to contain aberrant 
regions in breast cancer patients [70].

Large retrospective and prospective studies have given 
the evidence that the patients having tumors with high 
aneuploidy have a reduction in recurrence free survival 
rate that is half as long as those in patients with diploid 
distribution [71, 72]. Apart from describing the ploidy of 
DNA content, i.e. diploid or aneuploid, the ploidy-based 
classification has also been used to understand the degree 

of genomic instability which reveals the inconsistency of 
the DNA content in the tumor cell population [73, 74]. 
In patients with mosaic variegated aneuploidy, prema-
ture sister chromatid separation is observed in more than 
50% of lymphocytes. In various tissues aneuploidy is seen 
in more than 25% cells and this enhanced level of aneu-
ploidy leads to higher chances of cancer in these patients 
[59, 75].

The pathway analysis was performed by Reactome FI 
to find the linker genes. Pathway enrichment was then 
performed to further narrow down to the linker genes 

Fig. 2  Yellow nodes represent genes enriched in Infiltrating Ductal carcinoma of breast identified by Pathway enrichment
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that were specifically involved in IDC of breast and the 
genes identified here were SMAD4, EP300, PIK3CA, 
TP53, HIF1A and AKT1. SMAD4 has been known to 
be mainly involved in pancreatic and colorectal cancer 
[76]. Mutations in EP300 have been frequently found in 
skin squamous cell carcinoma and various types of lym-
phomas [77]. PIK3CA has been reported in higher fre-
quency in endometrial, breast and bladder cancers [78]. 
TP53 is a tumor suppressor gene and has been found 
to be mutated in a variety of cancers [79]. As a result of 
loss of function of various tumor suppressors, the levels 
of HIF1A increase, indicating that higher HIF1 activ-
ity is a common pathway in the pathogenesis of various 
human cancers [80]. Mutations in regulators of AKT1 
signalling pathway have been known to induce onco-
genic transformation in human cell. These have been 
observed mainly in glioma and endometrial cancer but 
infrequently in cancers like prostate cancer, melanoma, 

non-small cell lung cancer, breast cancer and hepato-
cellular carcinoma [81].

Finally, pathway analysis was performed not taking 
linked genes into account this time. Pathway Enrichment 
in Analyze Network Functions was performed in Reac-
tome FI application of Cytoscape to find which cellular 
pathway is enriched by our query genes and the analysis 
narrowed to 7 genes: HDAC3, NCOA1, NLRC4, COL1A1, 
RARA, WWTR1, and BRCA1 which were identified to be 
involved in RNA polymerase II transcription pathway. It 
was revealed that the genes were significantly enriched 
in RNA Polymerase II transcription pathway (p = 0.002, 
FDR = 0.01). RNA Pol II is involved in gene transcrip-
tion by playing significant role in recruitment, initiation, 
elongation and dissociation [82, 83]. The role of RNA 
polymerase II transcription in tumorigenesis has been 
elucidated in previous studies [84]. It was observed in 
mouse lymphoma models that tumor cells develop more 

Fig. 3  Pathway in FI sub-network. Genes highlighted in yellow color are the ones enriched in RNA polymerase II transcription pathway (p = 0.002, 
FDR = 0.01)
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sensitivity to apoptosis when compared to wild-type cells 
after treatment with RNA polymerase II transcription 
inhibitors [85–87]. Enhanced transcription of oncogenes 
and various transcription factors is associated with trans-
formation in cancer cells [88]. Components of transcrip-
tional apparatus, various oncogenes and ribosomal genes 
get over expressed in tumor cells in order to maintain 
proliferation [89–91]. RNPII transcription additionally is 
required to meet the high need of transcripts like onco-
genes and anti-apoptotic factors, which is required to 
support fast growth and resistance to apoptosis [92].

The role of the genes identified in the current analysis, 
HDAC3, NCOA1, NLRC4, COL1A1, RARA, WWTR1, 
and BRCA1, has already been documented in carcino-
genesis. HDAC3 represses CREB3 mediated transcription 
and migration of breast cancer cells that are metastatic 
[93]. NCOA1 promotes angiogenesis in breast tumors 
by enhancing the transcription of VEGFa via HIFα and 
AP-1 [94]. Previous studies from our lab on breast can-
cer patients from same region have reported association 
of VEGF polymorphisms + 405C > G, + 936C > T, −2549 
Insertion/Deletion, −152G/A, −116G/A, −165C/T 
and −141A/C with breast cancer risk but no association 
of VEGF −417C/T, −172C/A and −160C/T and HIF1α 
polymorphisms (g.C111A, g.C1772T and g.G1790A) 
with breast cancer risk [95–98].

Majority of the subjects, patients (67.3%) and controls 
(84%), in the present study were obese with increased 
central obesity. In the context of obesity, the tumor 
microenvironment induces an enhanced level of tumor-
infiltrating myeloid cells with an activated NLRC4 
inflammasome which further activates IL-1b, thus driv-
ing progression of disease through adipocyte-mediated 
VEGFA expression and angiogenesis [99]. Obesity might 
aid the progression of cancer through the pathways 
linked with NLRC4 and VEGFA. Thus, prevalence of 
obesity can have implications for breast cancer risk in the 
present study sample also.

Cellular expression of COL1A1 has been reported to 
possibly promote breast cancer metastasis. This became 
evident from a study which reported that high levels of 
COL1A1 were associated with poor survival and a better 
response to cisplatin-based chemotherapy was observed 
in ER + breast cancer patients who had increased 
COL1A1 levels [100]. Breast cancers displaying RARA​ 
amplifications show sensitivity to retinoic acid [101] and 
thus these subtypes of breast cancers can be treated with 
targeted therapies [102]. WWTR1 also plays a significant 
role in migration, invasion and carcinogenesis of breast 
cancer cells [103]. BRCA1 interacts with a variety of 
other proteins to carry out multiple functions at cellular 
level like controlling cell cycle, DNA damage repair, regu-
lation of transcription, replication, recombination and 

chromatin hierarchical control [104]. In breast cancer 
patients from same geographical region of north India 
no association of breast cancer risk with BRCA1 variants 
c.190  T > C, 1307delT, g.5331G > A and c.2612C > T was 
observed [105].

Previous reports have also highlighted the significance 
of integrative analysis of copy number variations and 
gene expression profiles in breast cancer [106, 107]. The 
current study employs the information inferred from 
chromosomal instability for determining the genes and 
the pathways associated with breast cancer. The genes/
pathways deduced can be further extrapolated by looking 
for potential mutations that act as key players in breast 
carcinogenesis. Following up on a lead from the present 
study, gene expression of the same individuals can be 
performed. This expression profiling can pinpoint the rel-
evant functional impact of chromosomal instability.

Conclusion
Breast cancer is a heterogenous disease where mutations 
in various genes can lead to disease progression. There-
fore it becomes important to mark out the cellular path-
ways involving multiple genes for getting a deeper insight 
of cancer causation. The present study is a first of its kind 
where the results of conventional cytogenetics have been 
exploited to perform gene enrichment analysis. The in 
silico pathway analysis based on chromosomal instabil-
ity in PBLs of breast cancer patients hinted towards the 
RNA polymerase II transcription pathway. Association 
with breast cancer risk of variants in some of the genes 
(p53, HIF, BRCA1 and VEGF) involved in this cellular 
pathway has been reported from the same population of 
North India. Further experimental work can help in iden-
tifying mutated genes in the pathway and sub-networks 
to find their relation with breast cancer progression and 
metastasis.
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