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Abstract 

Background:  Huntington’s disease (HD) is an inherited disorder caused by the polyglutamine (poly-Q) mutations of 
the HTT gene results in neurodegeneration characterized by chorea, loss of coordination, cognitive decline. How‑
ever, HD pathogenesis is still elusive. Despite the availability of a wide range of biological data, a comprehensive 
understanding of HD’s mechanism from machine learning is so far unrealized, majorly due to the lack of needed data 
density.

Methods:  To harness the knowledge of the HD pathogenesis from the expression profiles of postmortem prefrontal 
cortex samples of 157 HD and 157 controls, we used gene profiling ranking as the criteria to reduce the dimension 
to the order of magnitude of the sample size, followed by machine learning using the decision tree, rule induction, 
random forest, and generalized linear model.

Results:  These four Machine learning models identified 66 potential HD-contributing genes, with the cross-
validated accuracy of 90.79 ± 4.57%, 89.49 ± 5.20%, 90.45 ± 4.24%, and 97.46 ± 3.26%, respectively. The identified 
genes enriched the gene ontology of transcriptional regulation, inflammatory response, neuron projection, and the 
cytoskeleton. Moreover, three genes in the cognitive, sensory, and perceptual systems were also identified.

Conclusions:  The mutant HTT may interfere with both the expression and transport of these identified genes to 
promote the HD pathogenesis.
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Background
Huntington’s disease (HD) is an inherited disorder that 
results in neurodegeneration characterized by chorea, 
loss of coordination, cognitive decline, depression, and 
psychosis [1]. The prevalence of HD is 13.7/100,000 in 
North America [2] and 16.8/100,000 for the elderly in 
Western Europe [3]. The neurodegeneration of HD is fea-
tured by a general shrinkage of the brain, especially the 
medium spiny neurons (MSNs) of the striatum [4]. The 

loss of cortical mass is an early hallmark in the pathology 
of HD [5].

HD is caused by the polyglutamine (poly-Q) mutations 
in the N-terminus of the HTT gene, which encodes hun-
tingtin, a 350 kDa protein with ubiquitous expression [6]. 
The poly-Q extension is due to the abnormal CAG trinu-
cleotide repeats in the mutant HTT (mHTT). The high-
est HTT expression level is observed in the neurons of 
the central nervous system with cytoplasmic-dominant 
localization and is associated with vesicle membranes [7]. 
Although HTT is known to be necessary for embryonic 
development and acts as a transcriptional regulator and 
protein scaffold in the synapse [8], the HD pathogenesis 
is still elusive [9]. To better understand the HD pathogen-
esis, we adopted machine learning (ML) on gene profil-
ing dataset of the prefrontal cortex brain tissues of HD 
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patients and controls and identified 66 disease-predicting 
genes. Their interaction network and potential roles in 
the HD pathogenesis are also discussed.

ML refers to computer algorithms that predict rely-
ing on the patterns of the data without using explicit 
instructions [10]. ML’s application on HD is focused on 
the diagnosis of HD from neuroimaging [11, 12]. Even 
though the emergence of a wide range of biological data 
of HD, including genomic profiling and electronic health 
records, a comprehensive understanding of the mecha-
nism of HD from ML is so far unrealized, majorly due to 
the lack of needed data density [13]. For example, a pre-
vious ML study on RNA profiling of HD reported 4433 
candidate genes from 16 samples [14], which is a typical 
high dimension, low sample size (HDLSS) situation, and 
ML may suffer from overfitting and low convergence. In 
this study, to harness the knowledge of the HD mecha-
nism from the existing data, we tackled the data density 
issue by rationally reducing the dimension size, and iden-
tified the enriched pathways of HD by ML.

Methods
Data source
A gene profiling database of an essential sample size 
of HD and control is critical to this study. From the 
National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO), with the criteria 
“(“Huntington’s disease” AND “brain”) AND “Homo 
sapiens” [porgn:__txid9606]”, there were 342 series at 
the access date of June 18th, 2020. Out of them, there 
were four series with sample size > 100, including 
GSE72778, GSE33000, GSE25925, and GSE26927. We 
chose GSE33000 in this study since it provided the larg-
est sample size of brain tissue profiling. The gene expres-
sion profile of the prefrontal cortex brain tissues of 157 
HD patients and 157 non-demented control samples 
were retrieved from the GSE33000 dataset [15], which 
was profiled by microarray. This dataset contains 39,279 
detected probes, of which 13,798 were annotated, and a 
total of 10,000 genes were profiled.

In solving equations, the number of parameters (in this 
case, age, sex, and gene profiles) should not exceed the 
number of equations (the sample size). Therefore, a pre-
liminary screen of genes was essential. Since there were 
10,000 genes profiled in GSE33000, the top 2.5% would 
yield approximately the gene numbers close to the total 
sample size 314. A criterion of fold change > 1.2 or < 0.85 
resulted in 271 genes, which were selected along with 
HTT, as the input to build the prediction models. This 
fold-change criterion was chosen so that (1) the num-
ber of the selected genes was less than the number of 
total samples, and (2) the numbers of up-regulated and 
down-regulated genes were approximately equal (139 up 

and 132 down). Those genes with non-significant fold-
change, i.e., p value of T test > 0.05 were neglected. After 
transposition (sample in the row and attributes in the col-
umn) and conversion of the disease status to binomials 
(1 = HD, 0 = control), the input dataset was constructed 
(Additional file 1: Table S1).

Software and role assignment
RapidMiner Studio version 9.5 (WIN64 platform) was 
registered to Jack Cheng and was executed under the 
Windows 10 operating system with Intel® Core™ i3-3220 
CPU and 8 GB RAM. In addition to the age and sex of the 
samples, out of the 10,000 profiled genes, those expres-
sion fold change > 1.2 or < 0.85 of HD to control were 
assigned as the regular attributes (potential contributing 
factors to be analyzed in modeling operator) in the mode-
ling. The disease status (1 = HD; 0 = CTRL) was assigned 
as the Label attribute (the predicted class in modeling 
operator). The sample ID was assigned as the ID attribute 
(not be used in modeling). Four models (decision tree, 
rule induction, random forest, and generalized linear 
model) of RapidMiner were used respectively with cross-
validation to identify potential contributing genes of HD. 
The study design and over all workflow is shown in Fig. 1.

Decision tree
A decision tree is a tree-like collection of nodes, rep-
resenting a splitting rule for attributes to create a deci-
sion on the prediction class. The following parameters 
were used in RapidMiner modeling. Criterion: gain ratio; 
Maximal depth: 4; Prepruning and Pruning applied; Con-
fidence: 0.01; Minimal gain: 0.01; Minimal leaf size: 2; 
Minimal size for a split: 4; Number of pre-pruning alter-
natives: 3. The program workflow is illustrated in Fig. 2a.

Rule induction
The Rule Induction model develops a set of hypotheses 
that account for the most positive examples, but the least 
negative examples. The following parameters were used 
in RapidMiner modeling. Criterion: information gain; 
Sample ratio: 0.9; Pureness: 0.9; Minimal prune benefit: 
0.25.

Random forest
A random forest is an ensemble of random decision 
trees. The following parameters were used in RapidMiner 
modeling. The number of trees: 30; Criterion: gain ratio; 
Maximal depth: 4; Apply pruning with Confidence: 0.01; 
Apply pre-pruning with Minimal gain: 0.01; Minimal size 
for a split: 31 (~ 1/10 sample size); Minimal leaf size: 8; 
Number of pre-pruning: 3; Voting strategy: confidence 
vote.
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Generalized linear model
RapidMiner executes the GLM algorithm using H2O 
3.8.2.6., which fits generalized linear models to the data 
by maximizing the log-likelihood and determines pre-
dictors with non-zero coefficients. These parameters 
were used in the modeling. Family: binomial; Solver: 
IRLSM; Use regularization; Do lambda search with the 
number of lamdas = 31 (~ 1/10 sample size) and early 
stopping of tolerance 0.01 after three rounds; Standard-
ize and add interception.

Cross‑validation of models
In RapidMiner, the cross-validation has two subproc-
esses: a training subprocess and a testing subprocess. 
The training subprocess produces a trained model to 
be applied to the testing subprocess for the perfor-
mance evaluation. In this study, the samples were ran-
domly divided into ten subsets, with an equal number 
of samples. Each of the ten subsets was iterationaly 
used in the testing subprocess to evaluate the trained 
model from the other nine subsets. The performance of 
a model can be evaluated by its accuracy, precision, and 
recall, which are defined as below:

where T = true, F = false, P = positive, and N = negative.
A receiver operating characteristic (ROC) curve repre-

sents the sensitivity, or true positive rate, vs. false posi-
tive rate. It is calculated by first ordering the classified 
examples by confidence. Then all the examples are taken 
into account with decreasing confidence. The x-axis rep-
resents the false positive rate, and the y-axis represents 
the true positive rate. For optimistic (red) possibilities 
to calculate ROC curves, the correct classified examples 
are taken into account before looking at the false classi-
fications, and the area in the red denotes the confidence 
interval. For pessimistic (blue) possibilities to calculate 
ROC curves, the wrong classifications are taken into 
account before looking at correct classifications, and the 
area in the blue denotes the confidence interval.

Gene enrichment analysis and interaction network
For gene enrichment analysis, the identified gene sym-
bols were used as the input to KOBAS 3.0 [16] (http://
kobas​.cbi.pku.edu.cn/kobas​3/), utilizing the gene-list 

Accuracy = (TP + TN)/(TP + FP + FN + TN)

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

NCBI GEO Series GSE33000
{314 samples} {10,000 genes}

FC > 1.2 or FC < 0.85
{271 genes}

Decision Tree 
Model

{5 genes}

Rule Induction 
Model

{4 genes}

Random Forest 
Model

{49 genes}

Generalized Linear 
Model

{22 genes}

A union of {66 genes}

Microtubule/
Actin binding

9

Neuron
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Immune
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Signaling
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Transcription
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1 1 2 11

Protein 
degradation
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Fig. 1  The study design and workflow. FC denotes the fold change of gene profiling. The curly brackets indicate the number of genes that passed 
the criteria or were identified in the data science models. The Venn diagram shows the number of genes in the enriched pathways

http://kobas.cbi.pku.edu.cn/kobas3/
http://kobas.cbi.pku.edu.cn/kobas3/
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enrichment tool with default statistical criteria and speci-
fying Homo sapiens species. For the gene interaction net-
work, the identified gene symbols were used as the input 
to STRING: functional protein association networks [17] 
(https​://strin​g-db.org/).

Results
Decision tree identified EPHX1, ALDH1A1, and GLI1
A decision tree is a machine-learning algorithm to split 
rule for attributes (genes in this study) to create a deci-
sion on the prediction class (whether the sample is HD 
or not). A cross-validation strategy was used to train 
the model and to evaluate its performance (Fig.  2a). 
The machine-learned model is shown in Fig.  2c, which 
contains five genes, epoxide hydrolase 1 (EPHX1), 

aldehyde dehydrogenases 1 (ALDH1A1), zinc finger pro-
tein GLI1 (GLI1), heat shock protein beta-1 (HSPB1), 
and Echinoderm microtubule-associated protein-like 
2 (EML2). These five genes served as part of the input 
for the enrichment and network analysis. The perfor-
mance of this model is shown as a receiver operating 
characteristic (ROC) curve in Fig.  2b, with an accuracy 
of 90.79 ± 4.57%, a precision of 87.26 ± 6.95%, and a 
recall of 96.17 ± 3.30%. The separation of samples in the 
eigenspace of EPHX1, ALDH1A1, and GLI1 is shown in 
Fig.  2d. EPHX1 catalyzes epoxides and may play a role 
in the metabolism of epoxide-containing fatty acids [18]. 
ALDH1A1 may detoxify aldehydes in the brain [19]. GLI1 
acts as a transcriptional activator, which regulates genes 
of neuroprotection [20]. HSPB1 is a molecular chaperone 
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Fig. 2  The decision tree model. a The program workflow. b The receiver operating characteristic (ROC) curve showing the performance of the 
prediction power of the model. c The modeled decision tree. A decision tree plots the “If… then” splitting of samples for prediction. The nodes 
denote the attributes, while the arrows denote the split, which meets a certain criterion. The number in the result box denotes the prediction result 
of the model (1 = HD; 0 = control), and the bar denotes the actual sample disease characteristic, bar sickness for sample size and bar segment for 
the proportion of HD samples (red = HD, blue = control). d The sample distribution in the 3-dimensional eigenspace of gene profiling. Red = HD, 
blue = control

https://string-db.org/
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that maintains denatured proteins in a folding-competent 
state and exerts a cytoprotective effect by proteostasis 
[21]. EML2 is a tubulin-binding protein which inhibits 
microtubule nucleation and growth, and microtubules 
required for autophagy of aggregated huntingtin [22]. 
These identified genes participate in catalyzing ROS-pro-
ducing chemicals, proteostasis, transcriptional regulation 
of neuroprotective genes. Altogether, the dysregulation 
of these genes may advance HD pathological progress.

Rule induction identified EPHX1, OTP, and ITPKB
A rule induction model is a machine-learning algorithm, 
by judging the gene expression profiling in this study, 
that account for the most positive examples (HD), but 
the least negative examples (control). A cross-validation 
strategy was used to train the rule induction model and 
to evaluate its performance. The machine-learned model 
is shown in Fig.  3a, which contains four genes, EPHX1, 
homeobox protein orthopedia (OTP), inositol-trisphos-
phate 3-kinase B (ITPKB), and secretory carrier-associ-
ated membrane protein 1 (SCAMP1). These four genes 
also served as part of the input for the enrichment and 
network analysis. The performance of the rule induction 
model is shown as a ROC curve in Fig. 3b, with an accu-
racy of 89.49 ± 5.20%, a precision of 93.74 ± 6.81%, and 
a recall of 85.25 ± 11.10%. The separation of samples in 
the eigenspace of EPHX1, OTP, and ITPKB is shown in 
Fig. 3c. OTP is a homeobox protein with RNA polymer-
ase II-specific DNA-binding transcription factor activity 
and may involve in the differentiation of hypothalamic 
neuroendocrine cells [23]. ITPKB is a kinase catalyz-
ing inositol-trisphosphate 3 and may regulate neurite 
outgrowth by mediating MAPK cascade and RAS signal 

transduction [24]. SCAMP1 is a component of the recy-
cling carrier that transports between endosomes, and 
Golgi complex, and the plasma membrane [25].

Random forest identified 49 genes
A random forest model is a machine-learning algorithm 
of a collection of decision trees with voting hypotheses, 
by judging the gene expression profiling in this study, 
that account for the most positive examples (HD), but 
the least negative examples (control). A cross-validation 
strategy was used to train the random forest model and 
to evaluate its performance. The identified 30 decision 
trees and 49 non-redundant genes of the random forest 
are listed in Additional file  2: Table  S2. These 49 genes 
served as part of the input for the enrichment and net-
work analysis. One example of the machine-learned tree 
model is shown in Fig.  4a, which contains three genes, 
Kelch-like protein 42 (KLHDC5/KLHL42), POU domain 
class 4 transcription factor 2 (POU4F2), and forkhead 
box protein O4 (FOXO4). The performance of the ran-
dom forest is shown as a ROC curve in Fig. 4b, with an 
accuracy of 90.45 ± 4.24%, a precision of 87.25 ± 4.72%, 
and a recall of 94.79 ± 6.10%. The separation of samples 
in the eigenspace of KLHDC5, POU4F2, and FOXO4 is 
shown in Fig.  4c.KLHDC5 is a component of the BTB-
CUL3-RBX1 E3 ubiquitin-protein ligase complex, which 
mediates the ubiquitination of KATNA1 and regulates 
the microtubule dynamics in mitotic progression and 
cytokinesis [26]. POU4F2 is an RNA polymerase II spe-
cific transcription factor, which cooperates with TP53 
to increase transcriptional activation of BAX promoter 
activity mediating neuronal cell apoptosis [27]. FOXO4 
is a transcription factor, which regulates insulin signaling 
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Rule Induction Model:

if EPHX1 ≤ 1.075 then 0  (138 / 10)
if OTP > 1.032 then 1  (1 / 120)
if ITPKB > 1.055 and SCAMP1 ≤ 0.903 
then 1  (0 / 24)
else 0  (16 / 2)

correct: 298 out of 311 training examples.
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Fig. 3  The rule induction model. a The receiver operating characteristic (ROC) curve showing the performance of the prediction power of the 
model. b The modeled rule induction. The number after “if … then” denotes the prediction result of the model (1 = HD; 0 = control), and the 
numbers in the parentheses (X/Y) denote the actual sample disease characteristic, X for the number of HD samples and Y for the number of control. 
c The sample distribution in the 3-dimensional eigenspace of gene profiling. Red = HD, blue = control
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pathway, hypoxia-induced response, cell cycle, and pro-
teasome activity [28].

Generalized linear model identified 53 genes
A generalized linear model (GLM) is a machine-learning 
algorithm that maximizes the log-likelihood (prediction 
power of whether a sample is an HD) and determines 
predictors (the gene profiling) with non-zero coefficients 
indicating a linear contribution of the gene profiling 
to the prediction. A cross-validation strategy was used 
to train the GLM and to evaluate its performance. The 

coefficients of the input genes are listed in Additional 
file 3: Table S3. There are 53 genes with a non-zero coef-
ficient. We further selected more contributive genes by 
setting a threshold of the absolute value of the coefficient 
greater than 1. These 22 genes are also listed in Addi-
tional file 3: Table S3, and served as part of the input for 
the enrichment and network analysis. The top ten genes 
of coefficients are shown in Fig. 5a. The performance of 
the GLM is shown as a ROC curve in Fig.  5b, with an 
accuracy of 97.46 ± 3.26%, a precision of 95.96 ± 5.14%, 
and a recall of 99.38 ± 1.98%. The separation of samples 
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in the eigenspace of gene profiling of the top 3 genes, 
OTP, EML2, and synaptic vesicle glycoprotein 2C 
(SV2C), is shown in Fig. 5c. SV2C regulates secretion in 
neural cells by enhancing selectively low-frequency neu-
rotransmission [29].

Gene enrichment and interaction network analysis
The union of the identified 66 non-redundant genes from 
machine learning is summarized in Additional file  4: 
Table S4, and served as the input for the enrichment and 
network analysis. The significant enrichment in Gene 
Ontology, KEGG disease/ NHGRI GWAS catalog, and 
KEGG pathway are listed in Additional file 5, 6, 7: Tables 
S5, S6, and S7, respectively. As summarized in the lower 
part of Fig. 1, the enriched characteristics of the genes are 
transcription (16 genes), immune (12), neuron (11), sign-
aling (11), and microtubule/actin binding. While Fig.  6 

shows the interaction network, which indicates HSPB1, 
ITPKB, CRYAB, ACTN2, FERMT3, NEFL, POU4F2, 
RIT2, and PLXNB3 are closely related to HTT and may 
serve as pivotal points exerting consequences of HTT-
polyQ mutation in HD. CRYAB is a chaperone prevent-
ing aggregation of proteins under stress conditions [30]. 
ACTN2 is an F-actin cross-linking protein that partici-
pates in cell adhesion, MAPK cascade, apoptosis, and the 
regulation of NMDA receptor activity [31]. FERMT3 is 
an integrin-binding protein that plays a part in cell adhe-
sion and activation of the integrin-mediated signaling 
pathway [32]. NEFL is an intermediate filament protein 
that maintains neuronal caliber essential for sensorimo-
tor function and spatial orientation [33]. RIT2 is a small 
GDP-binding protein which acts as molecular switches 
for intracellular signaling cascades in neuron and is reg-
ulated by POU4 transcription factors [34]. PLXNB3 is a 
SEMA receptor regulating cell adhesion, chemotaxis, and 
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neuron projection [35]. Noticeably, HSPB1, ITPKB, and 
POU4F2 are also key attributes in the machine-learning 
models.

Discussion
In this study, from the profiling of 157 HD and 157 con-
trols, we identified 66 potential contributing genes of HD 
using machine learning models of the decision tree, rule 
induction, random forest, and generalized linear model. 
The identified genes enriched the gene ontology of tran-
scriptional regulation, inflammatory response, neuron 
projection, and cytoskeleton (Fig. 6). These pathways are 
connected by hubs of microtubule/actin binding, which 
may imply that mutant HTT mediates the HD pathologi-
cal progress through these pathways via its interaction 
with the cytoskeleton or via transcriptional regulation 
capacity. We will discuss the enriched biological func-
tions and the relevant genes in HD pathogenesis.

C20orf54 (SLC52A3) encodes a plasma membrane 
transporter mediating the uptake of vitamin B2/ribo-
flavin that is vital in biochemical oxidation–reduction 
reactions [36]. The mutation of SLC52A3 may cause 
degenerative disorders like Brown-Vialetto-Van-Laere 
syndrome (BVVL) [37] and Amyotrophic lateral sclerosis 
(ALS) [38]. Although the role of oxidative damage in HD 
pathogenesis has been discussed for decades [39]. The 
potential role of SLC52A3 in the riboflavin-related oxida-
tive damage in HD has not been noticed yet. The other 
two genes with detoxifying ability identified in this study 
are ALDH1A1 and MT1H, which detoxifies aldehydes 
[19] or copper ions [40], respectively. Whether aldehydes 
or copper ion detoxification participates in HD patho-
genesis requires further study.

One of the hallmark pathological features of HD is the 
intracellular aggregates of mutant HTT, termed inclu-
sion bodies (IBs). The insufficient clearance of toxic 
forms of mutant HTT is postulated as one hypothesis 
of HD pathogenesis [41]. Three genes involving in pro-
tein degradation were identified in this study: CRYAB, 
HSPB1, and KLHDC5. Expression of CRYAB influences 
autophagy and protein aggregation [42]. HSPB1 muta-
tion may impair autophagy and cause neuropathy [43]. 
KLHDC5 is an adapter of the BTB-CUL3-RBX1 E3 ubiq-
uitin-protein ligase and regulates the ubiquitin–protea-
some system [44]. Currently, there is a lack of knowledge 
of the roles played by CRYAB, HSPB1, and KLHDC5 in 
HD pathogenesis.

Although it is unclear whether neuroinflammation has 
an active influence or is a reactive process during the HD 
pathogenesis, both innate and adaptive immune systems 
may play important roles in HD [45]. The former includes 
activation of microglia, increased proinflammatory 
cytokines, impaired translocation of macrophages, and 

complement factors. The later includes T-cell priming by 
dendritic cells (DCs). In this study, the identified innate 
immunity genes include C4B, DARC, RAB20, SBNO2, 
SCAMP1, SERPINA3, and S100A8, while the adaptive 
immunity genes include PNP, TCIRG1, and TMEM176A. 
More specifically, C4B is one complement factor [46]; 
DARC is a chemokine receptor [47], RAB20 involves in 
endocytosis [48]; SBNO2 regulates the transcription of 
NF-κB in macrophages [49]; SCAMP1 regulates the neu-
trophil degranulation [50]; SERPINA3 inhibits neutrophil 
cathepsin G and mast cell chymase [51]. S100A8 induces 
neutrophil chemotaxis and therefore participates in both 
innate and adaptive immune systems [52], while PNP 
regulates T cell proliferation [53]; TCIRG1 isoform b is 
an inhibitory receptor on T cells [54]; TMEM176A regu-
lates the dendritic cell differentiation [55].

Since the discovery of the involvement of HTT in the 
transcription regulation of P53 and CREB [56], dys-
regulation of transcription by mHTT becomes a popu-
lar hypothesis of HD pathogenesis [9]. In this study, we 
identified several transcription regulatory genes, includ-
ing CIDEA, CIRBP, FOXO4, GLI1, KLF10, NUPR1, OTP, 
POU4F2, PRKAR1A, RIT2, SFRS5, TBX15, and TEAD2. 
Notably, OTP, RIT2, and POU4F2 also regulate neuro-
genesis (Fig. 6), while CIRBP, FOXO4, GLI1, and NUPR1 
regulate gene expression under stress circumstances [57–
60]. Furthermore, CIDEA, KLF10, PRKAR1A, TBX15, 
and TEAD2 regulate gene expression of apoptosis con-
trol [61–65]. Whether these genes are driving forces or 
merely passengers in HD pathogenesis requires further 
investigation.

Wild-type HTT is a scaffolding protein interacting with 
β-tubulin and microtubules [66]. It also interacts with the 
dynactin complex and regulates intracellular trafficking 
processes [67]. In this study, we identified several micro-
tubule/actin binding genes, including ABBA-1, ACTN2, 
CNN2, FAM110C, KIAA1949, and SEMA3E. Likewise, 
dysregulation of these genes may disturb intracellular 
trafficking processes with mHTT.

Wild-type HTT also plays a critical role at the synapse. 
It is associated with the synaptic vesicles at the pre-syn-
apse [7] and is associated with the scaffolding protein 
PSD95 at the postsynaptic density [68]. Moreover, HTT 
is required during the formation of cortical and striatal 
excitatory synapses [69]. However, the role of HTT in the 
neuron is still obscure. In this study, we identified several 
neuronal genes, including GOT1, HTR2C, PLXNB3, and 
SV2C. GOT1 synthesizes and regulates the quantity of 
glutamate [70], which is a key neurotransmitter. Besides, 
HTR2C is a serotonin receptor mediating excitatory neu-
rotransmission [71], while PLXNB3 is a SEMA5A recep-
tor mediating axon guidance [72]. Moreover, SV2C is a 
synaptic vesicle glycoprotein mediating low-frequency 
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neurotransmission [29]. The dysregulation of these genes 
may provoke HD symptoms.

We also identified three genes in the cognitive, sensory, 
and perceptual systems: DOPEY2, EML2, and NEFL. The 
deficits in these domains are the hallmark symptoms in 
HD and may serve as diagnostic cues [73–75]. The over-
expression of DOPEY2 may contribute to mental retarda-
tion [76], while EML2 has a role in visual perception [77]. 
Moreover, mutations in NEFL cause inherited motor 
and sensory neuropathy [78]. Although thousands of 
paper report HD and sensorimotor dysfunction, no one 
notices their potential roles in HD pathological symp-
toms, especially sensorimotor dysfunction. In this study, 
we revealed that HTT mutation might exert pathologi-
cal interference on NEFL by two independent routes, as 
shown in Fig.  6. One route is by dysregulation of tran-
scription through POU4F2. The other route is by dysreg-
ulation of the cytoskeleton through ACTN2 and CRYAB.

Finally, we compared our results with the existing 
ML-based method [14] for identifying HD-contributing 
genes and checked whether these 66 contributing genes 
are included in the known HD gene set. Out of the 66 
genes, 13 genes are mutually identified in both ML stud-
ies. Furthermore, 21 of the 66 genes have been identified 
in previous HD studies. This information was provided in 
Additional file 8: Table S8.

Conclusions
Machine learning using the decision tree, rule induction, 
random forest, and generalized linear model identified 66 
potential contributing genes of HD from the expression 
profiles of postmortem prefrontal cortex samples of 157 
HD and 157 controls. These genes participate in oxida-
tion–reduction reactions, protein degradation, immunity, 
transcription, neural transduction, and perception. The 
mHTT may interfere with both the expression and trans-
port of these genes to promote the HD pathogenesis.
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