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Abstract 

Background:  Existing studies have demonstrated that the integrative analysis of histopathological images and 
genomic data can be used to better understand the onset and progression of many diseases, as well as identify new 
diagnostic and prognostic biomarkers. However, since the development of pathological phenotypes are influenced 
by a variety of complex biological processes, complete understanding of the underlying gene regulatory mechanisms 
for the cell and tissue morphology is still a challenge. In this study, we explored the relationship between the chro-
matin accessibility changes and the epithelial tissue proportion in histopathological images of estrogen receptor (ER) 
positive breast cancer.

Methods:  An established whole slide image processing pipeline based on deep learning was used to perform global 
segmentation of epithelial and stromal tissues. We then used canonical correlation analysis to detect the epithelial 
tissue proportion-associated regulatory regions. By integrating ATAC-seq data with matched RNA-seq data, we found 
the potential target genes that associated with these regulatory regions. Then we used these genes to perform the 
following pathway and survival analysis.

Results:  Using canonical correlation analysis, we detected 436 potential regulatory regions that exhibited signifi-
cant correlation between quantitative chromatin accessibility changes and the epithelial tissue proportion in tumors 
from 54 patients (FDR < 0.05). We then found that these 436 regulatory regions were associated with 74 potential 
target genes. After functional enrichment analysis, we observed that these potential target genes were enriched in 
cancer-associated pathways. We further demonstrated that using the gene expression signals and the epithelial tissue 
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Background
Cancer heterogeneity results in tumors that exhibit dis-
tinct clinical features, therapeutic responses and patient 
outcomes. Understanding the factors involved in the 
onset and progression of cancers is pivotal for diagnosis 
and treatment. One of the main factors that contributes 
to the development of cancer is genetic changes [1–3]. 
However, the developmental process from genetic altera-
tions to cancer phenotypes is complex and many mech-
anisms are still unknown. One way to uncover these 
mechanisms is through the integration of biomedical 
images with omics data [4–6].

Histopathology images are generally considered the 
gold standard for cancer diagnosis and grading in the 
clinic since they provide the distribution patterns of dif-
ferent tissues and cell types in the tumor microenvi-
ronment [7]. Previous studies have shown that spatial 
features, such as epithelial and stromal tissue proportion, 
derived from a single whole-slide tissue image represent 
rich histopathological information that can be quanti-
fied and used in statistical and biological analysis [8–10]. 
The identification and quantification of epithelial and 
stromal tissues on histopathological images can uncover 
spatial features of tumor phenotypes. These image-based 
features can be further integrated with genetic data to 
investigate the molecular regulatory mechanisms behind 
cancer phenotypes using statistical analysis methods.

The systematic integration of histopathological studies 
and omics profiles is expected to provide further under-
standing of tumor molecular biology and potentially 
more accurate stratification of patient prognoses. Recent 
reports have highlighted the significance of the contribu-
tion of stromal gene expression and morphological struc-
ture as powerful prognostic determinants for a number 
of tumor types [11–13]. However, gene expression signa-
tures are affected by many factors, including the tumor 
environment, while gene regulatory landscapes are more 
stable among cells [14]. The regulatory landscape of a 
gene is specified by the overlying chromatin conforma-
tion, which may be more suitable for studying the poten-
tial effect of genomic changes at the bio-image level. To 

date, gene regulatory landscapes in tumors have largely 
been inferred through indirect means and little is known 
regarding the regulatory links between cancer gene 
expression and image features. During the past decade, 
the assay of chromatin accessibility has evolved into a 
powerful method to explore the regulatory landscape of 
primary human cancers [15–17]. The accessible genomic 
areas of chromatin are enriched with transcriptional reg-
ulatory elements which are crucial to gene expression, 
cell proliferation and tumor development. Several groups 
have reported that certain regulatory elements switch 
from inactive to active states (or vice versa) during the 
progression of diseases [18, 19]. This kind of global chro-
matin accessibility change can be detected and quantified 
by the assay for transposase-accessible chromatin using 
sequencing (ATAC-seq) [20]. Also, chromatin accessibil-
ity as a surrogate for regulatory element activity is argu-
ably a continuous signal. In bulk sequencing, more reads 
aligning to a specific location of a chromosome would 
indicate more cells in the population have open chroma-
tin at that particular site. We further inferred that such 
detectable chromatin accessibility differences, in turn, 
can induce changes in morphological features of tumor 
tissues that are quantified as spatial characteristics.

To study the association between chromatin accessibil-
ity changes and tumor phenotypes, images of tumor sec-
tions and ATAC-seq data from matched tumor samples 
are needed. The Cancer Genome Atlas (TCGA) contains 
histopathology images along with clinical outcomes and 
has recently generated high-quality ATAC-seq data in 
tumor samples from 54 estrogen-receptor (ER)-positive 
breast cancer (BRCA) patients. These large-scale experi-
mental datasets make comprehensive integrative and 
correlative analyses feasible.

Most breast cancers are carcinomas that arise from the 
epithelial components of the lobules and ducts in mam-
mary glands. Studies focused on developing tissue clas-
sification and segmentation algorithms have referred to 
tumors as epithelial tissues in image processing tasks [21, 
22]. Following this terminology, we previously proposed 
a deep-learning-based image processing framework to 

proportion extracted from this integration framework could stratify patient prognoses more accurately, outperform-
ing predictions based on only omics or image features.

Conclusion:  This integrative analysis is a useful strategy for identifying potential regulatory regions in the human 
genome that are associated with tumor tissue quantification. This study will enable efficient prioritization of genomic 
regulatory regions identified by ATAC-seq data for further studies to validate their causal regulatory function. Ulti-
mately, identifying epithelial tissue proportion-associated regulatory regions will further our understanding of the 
underlying molecular mechanisms of disease and inform the development of potential therapeutic targets.

Keywords:  ATAC-seq, Chromatin accessibility data, Histopathological images, Integrative analysis, Computational 
biology, Bioinformatics
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estimate the epithelial tissue proportion on histopatho-
logical images for breast cancers. These image analysis 
results were used to analyze the relationship between 
epithelial tissue proportion and gene expression data 
[23]. Numerous genes were observed that were associ-
ated with the epithelial tissue proportion based on our 
pipeline. However, this analysis was not able to deter-
mine whether expression of these genes might be causal 
or might have resulted from changes in epithelial tissue 
proportion due to the complexity of the gene co-expres-
sion networks. To identify causal genes, additional analy-
sis incorporating other omics information is required.

In this study, our aim was to identify key genomic 
regulatory regions that were associated with histological 
characteristics and thus, potentially impact clinical out-
come. Such regions would be important for investigating 
the etiology of the associated disease and for identifying 
potential therapeutic targets.

In this work, we systematically explored the rela-
tionship between chromatin accessibility changes and 
epithelial tissue proportion. First, we used our new 
computational pipeline to quantify the epithelial tissue 
proportion from each sample. By performing correla-
tion analysis, we observed that the change in chromatin 
accessibility of some specific open regions were strongly 
correlated with the change in epithelial tissue propor-
tion across all samples. Then we implemented a strategy 
of linking DNA regulatory elements to their target genes 
based on the correlation of ATAC-seq and gene expres-
sion data. Downstream pathway analysis demonstrated 
that those target genes enriched in breast cancer-specific 
biological processes were associated with well-known 
oncogenes. Furthermore, we showed that the identified 
target genes could effectively predict overall survival of 
BRCA patients. In summary, the integration of the multi-
omics data and histopathological images can provide new 
insights to explore the drivers and the molecular mecha-
nism of ER-positive breast cancer.

Results
Overall strategy and image processing for the integrative 
analysis
The overall strategy of our integrative analysis comprises 
three stages as shown in Fig. 1. First, a convolutional neu-
ral network (CNN)-based model was used to identify the 
epithelial and stromal tissues from one whole-slide image 
for each patient. The epithelial tissue proportion was 
calculated based on the identified epithelial and stromal 
tissue area from the hemotoxin and eosin (H&E) stained 
slide. Second, to screen for the potential regulatory 
regions that share consistent correlation patterns with 
tumor development, we calculated the Spearman correla-
tion coefficient between the epithelial tissue proportion 

and the quantitative chromatin accessibility for each 
detected open chromatin region in the ATAC-seq data 
across all 54 samples. Then, focusing on the significantly 
associated epithelial tissue proportion-open chromatin 
regions, we linked them to their potential target genes 
based on the Spearman correlation of ATAC-seq acces-
sibility and gene expression values across all samples. 
Lastly, we conducted functional enrichment and path-
way analysis to evaluate whether these potential target 
genes were enriched in BRCA-related pathways and well-
known oncogenes. The target genes of epithelial tissue 
proportion-correlated regulatory regions were used to 
predict patient survival by performing a machine learn-
ing prognosis prediction method.

We have previously developed an image processing 
pipeline that was used to classify and quantify epithelial 
tissue areas on histopathological images for all of the ER-
positive breast cancer cases in TCGA. The image pro-
cessing pipeline consists of three steps: 1) identification 
of a region of interest (ROI) on a whole-slide image; 2) 
patch-level segmentation of epithelial and stromal tissues 
in the ROI using a CNN model; 3) creation of a global 
tissue segmentation map by merging patch-level results 
followed by estimation of epithelial tissue proportions. 
For all 773 ER-positive patients, the previous image anal-
ysis results showed that these cases were enriched with 
stromal tissues, with a mean epithelial tissue proportion 
lower than 0.3 [23]. Here, we specifically focused on the 
epithelial tissue proportion of the ER-positive cases with 
paired ATAC-seq and image data (n = 54) to identify the 
associated open chromatin regions. The epithelial tis-
sue proportion data of the 54 TCGA ER-positive breast 
cancer cases is provided in Table S1. The distribution of 
epithelial tissue proportions for the 54 ER-positive breast 
cancer cases used in this study compared to all 773 cases 
in TCGA is shown in Fig. 2. Epithelial tissue proportions 
which were larger than or equal to 0.5 were classified as 
epithelial-high, while proportions smaller than 0.5 were 
classified as epithelial-low. We observed that 87% (47/54) 
of the cases used in this study had low epithelial tissue 
proportions (values smaller than 0.5) compared to 89% 
(691/773) of all ER-positive cases in TCGA. Therefore, 
the distribution of epithelial tissues in the 54 cases used 
in this study appears to be representative of the entire 
TCGA ER-positive group.

Correlation analysis reveals the open chromatin regions 
related to epithelial spatial characteristics
For each detected open chromatin region, we asked 
whether this potential regulatory region might have con-
tributed to tumor development in ER-positive breast 
cancer patients. To begin to address this question, we 
implemented canonical correlation analysis between the 
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quantitative chromatin accessibility measure and the epi-
thelial tissue proportion across all 54 patients.

The Spearman correlation coefficient, r, was used to 
evaluate whether the potential regulatory regions were 
significantly correlated with the epithelial tissue propor-
tion. A total of 215,920 open chromatin regions were ana-
lyzed. Multiple testing correction (FDR < 0.05) is used to 
account for false positives. This analysis showed that 436 
regulatory regions were significantly correlated with the 
epithelial tissue proportion, 111 of which were positively 
correlated and the other 325 were negatively correlated. 
The ATAC-seq peak signal data of 54 TCGA ER-positive 
BRCA cases is provided in Table S2 and a complete list 
of these regulatory regions can be found in Table S3. In 
addition, the peak ID, the start and end positions of the 

peak, and the p-value and the FDR of the correlation 
analysis, can be viewed on our RShiny website (https​://
yunlo​ngliu​lab.shiny​apps.io/omics​-image​/).

Examples of the correlation between chromatin acces-
sibility and spatial quantification of epithelial tissues are 
presented in Fig.  3. For the peaks BRCA_203834 and 
BRCA_100454, the correlation analysis detected a signifi-
cant positive correlation between the quantitative chro-
matin accessibility and the epithelial tissue proportion 
(Fig. 3a-b). A positive correlation indicates that larger epi-
thelial tissue areas appear to have more accessible open 
chromatin regions. This finding suggests that the regula-
tory elements in such regions could potentially enhance 
tumor tissue development. On the contrary, a clear 
negative correlation between the quantitative chromatin 
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accessibility and the epithelial tissue proportion was 
observed for peaks BRCA_165489 and BRCA_120633 
(Fig.  3c-d). A negative correlation suggests that acces-
sible chromatin regions that are associated with smaller 
epithelial tissue areas in the tumor might be repressed 
by regulatory elements in these regions. Taken together, 
these results demonstrate that this correlation analy-
sis can identify epithelial tissue proportion-associated 
regulatory regions from ATAC-seq data, which could 
potentially implicate regulatory elements responsible for 
cancer development.

Linking DNA regulatory elements to target genes
We next asked whether the epithelial tissue proportion-
associated regulatory regions identified by the correlation 
analysis could be related to elements of the breast can-
cer pathway. To address this question, we first identified 
candidate target genes for the regulatory regions that sig-
nificantly correlated with the epithelial tissue proportion 
(see Methods). For putative promoter regions, the clos-
est gene to each region was considered as the target gene. 
However, because enhancer regions can be far away from 
their target genes, we used the predicted distal peak-to-
gene links obtained from TCGA [16].

In total, 77 regulatory regions were in promoter 
regions, which we considered as potential promoter 
regulatory elements, while another 21 regulatory 

regions were detected by distal peak-to-gene links 
(< 500 kbp), which we considered potential enhancer 
regulatory elements. Many of these peak-to-gene links 
occurred in clusters that were predicted to be linked 
to the same gene, resulting in a total of 74 target genes 
that were selected for further downstream analysis. A 
complete list of these peak-to-gene links and target 
genes can be found in Table S4. Since the distal peak-
to-gene links were based on the correlation of ATAC-
seq accessibility and gene expression across all samples 
(see Methods), the target genes can be further divided 
into two groups according to whether the expression 
data were positively or negatively correlated with the 
epithelial tissue proportion. Among the 74 target genes, 
22 of them were positively correlated with the epithelial 
tissue proportion while the other 52 genes were nega-
tively correlated. Some important breast cancer and 
tumor oncogenes, such as PARI, CCNE2 and RAD54B, 
were detected to have positive correlations with epithe-
lial tissue proportion in our study. Previous studies have 
demonstrated that PARI overexpression was correlated 
with aggressive tumor cell proliferation and poor prog-
nosis in breast cancer [24], high expression of CCNE2 
in breast cancer is strongly predictive of shorter distant 
metastasis-free survival following endocrine therapy 
[25] and RAD54B potentiates tumor growth and pre-
dicts poor prognosis of breast cancer patients [26].
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For these 74 target genes, we performed pathway and 
function enrichment analysis using Ingenuity Pathway 
Analysis (IPA). We further observed that these genes 
were enriched in breast cancer-related pathways and 
functions, especially genes that were positively correlated 
with epithelial tissue proportion (Fig.  4). For instance, 
the breast cancer-crucial pathways, Estrogen-mediated 

S-phase Entry and Breast Cancer Regulation by Stath-
min1, were significant findings from our integrative 
analysis. In addition, some tissue development and dis-
order associated functions were specifically enriched, 
such as Connective Tissue Disorders and Developmental 
Disorder. Altogether, these results underscore the ability 
to utilize our integrative analysis of image and chromatin 
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accessibility data to identify genes that play a role in 
breast cancer development.

Integrative analysis enhances the prognostic prediction 
power
We next asked whether the integrative analysis could bet-
ter predict patient prognosis. To address this question, 
we first examined the performance of patient stratifica-
tion when using image features or the target genes alone. 
For the survival analysis, we used additional ER-positive 
breast cancer cases with paired histopathological images, 
gene expression data and survival data available from 
the TCGA-BRCA cohort. Cases with missing expression 
data or histopathological images were excluded, leaving a 

selected set of 663 samples. Target gene expression data 
and clinical information of these 663 TCGA ER-positive 
breast cancer cases can be found in Table S5. Univariate 
analysis showed that the epithelial tissue proportion was 
significantly related to prognosis (Fig. 5a), as were 37.8% 
(28/74) of the target genes (p-value < 0.05). The log-rank 
test results of all survival-related variables are listed in 
Table  S6. These results showed that many individual 
target genes derived from the integrative analysis strati-
fied patients with distinct prognosis. For example, cases 
with high expression of BCL3 had significantly worse 
overall survival than those with low BCL3 expression 
(p = 0.004, Fig.  5b). Previous studies have proven BCL3 
as an independent prognostic factor [27]. Based on this 
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finding, we performed a multivariate survival analysis 
using all of the significant univariate features to further 
investigate whether the integrative analysis would pro-
vide better prognostic prediction. As shown in Figs.  5c 
& d, the integrated multi-modal feature achieved supe-
rior stratification performance compared to using the 
image- or omics-features alone (pgenes + image = 7.23e-06, 
pgenes = 4.37e-05, pimage = 8.74e-04, psingle gene = 0.004). It 
is noteworthy that the patients with relatively low epithe-
lial tissue proportions showed longer survival (Fig.  5a), 
which likely reflects the fact that most breast cancers are 
epithelial tissues and a lower epithelial tissue propor-
tion corresponds to a smaller area of cancer cells. Taken 
together, these results suggest that the prognostic model 

based on the target genes and epithelial tissue propor-
tions identified using our integrative framework can be 
used to effectively guide the risk stratification of ER-posi-
tive breast cancer.

Discussion
The integration of biomedical images with different kinds 
of omics data has the potential to identify new biomark-
ers and improve mechanistic understanding of diseases. 
Nevertheless, screening for the true image feature-asso-
ciated genomic regulatory regions remains a challenging 
problem. In this study, we introduced an integrative anal-
ysis framework, based on ATAC-seq data and matched 
histopathological whole-slide images, for detecting gene 
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regulatory regions that correlated with the proportion of 
epithelial tissue in ER-positive breast cancer.

The major conclusion of this study is that by integrat-
ing histopathological images with ATAC-seq data, we 
can efficiently evaluate associations between chromatin 
accessibility changes and the epithelial tissue proportion. 
This conclusion is based on the following evidence: First, 
we detected epithelial tissue proportion-associated open 
chromatin regions using canonical correlation analysis. 
Second, we provided evidence that the target genes of 
these detected regulatory regions tended to be enriched 
for breast cancer-related pathways. Interestingly, we 
found that 40.5% (30/74) of the target genes identified 
in this study were also identified in our previous work, 
which directly analyzed the relationship between the epi-
thelial tissue proportion and gene expression data [23]. 
Importantly, 25 of these 30 genes have been described 
as breast cancer-associated genes in the literature. For 
example, independent breast cancer studies have shown 
that AKT1 suppresses migration and metastasis [28–30] 
and BCL3 inhibits apoptosis and tumor progression [31]. 
The enrichment results from our integrative study fur-
ther support the evidence of how these identified genes 
contribute to the epithelial tissue proportion. Although 
some genes, such as DHX34 and RELB, have not yet been 
shown to be directly related to breast cancer, it’s possi-
ble that they could lead to the discovery of new breast 
cancer related genes or biomarkers. Finally, we found 
that the integration of identified genes with the epithe-
lial tissue proportion can better stratify patient progno-
sis compared to either alone. Collectively, these findings 
demonstrate that the integrative analysis approach pre-
sented here can be used to identify potential epithelial 
tissue proportion-associated regulatory regions, and 
thereby further our understanding of the molecular 
mechanisms of complex diseases.

While the integrated analysis approach used in this 
study revealed a relationship between image morpho-
logical and genomic features, there are limitations to this 
study. First because obtaining matched ATAC-seq and 
image datasets is challenging, only 54 ER-positive breast 
cancer samples were used in the correlation analysis. As a 
result, pairwise correlations between specific chromatin 
accessibility changes and the image-based epithelial tis-
sue proportion could not be validated in other datasets, 
which could introduce dataset-specific bias such that 
the detected open chromatin regions may not represent 
all regulatory regions in this tumor type. A second limi-
tation is that only the epithelial tissue proportion was 
used as an image feature in this study. The tumor micro-
environment is a complex system and histopathological 
images demonstrate a complicated distribution of dif-
ferent tissues and cell types. Other histopathological 

image features have proven to be important for the diag-
nosis and prognosis of breast cancer, such as the tex-
tural features of epithelial tissue [32, 33] and the spatial 
relationship between tumor cells and tumor-infiltrating 
lymphocytes [34, 35]. Extracting such features requires 
a more elaborate image processing system which could 
identify not only tissues but also different cells. Despite 
these limitations, our findings should apply more gener-
ally to other ER-positive breast cancer cases because of 
the relatively stringent correlation coefficient (r > 0.5) and 
the multiple testing correction (FDR < 0.5) that were used 
to minimize false positive findings. Furthermore, the dis-
tribution of the epithelial tissues in the 54 cases used in 
this study were consistent with those in the entire TCGA 
ER-positive breast cancer cohort, which further supports 
the generalizability of our findings.

Our future studies will extend this framework to incor-
porate additional representative image features to further 
investigate the intrinsic relationship between genotypes 
and clinical phenotypes. Future comparative ATAC-seq 
experiments with normal samples are needed to verify 
our findings. Additionally, to further understand the 
genetic basis of this disease, future studies could inte-
grate our algorithm with rare variant or eQTL analysis.

Conclusions
Our analysis demonstrates the ability to integrate chro-
matin accessibility signals and histological images for 
exploring the drivers and molecular mechanisms of ER-
positive breast cancer. This integrated analysis will enable 
efficient prioritization of gene regulatory regions identi-
fied by correlation studies for further studies to validate 
their causal regulatory function. Ultimately, identifying 
regulatory regions and their target genes will further our 
understanding of the underlying molecular mechanisms 
of breast cancer. Furthermore, the entire pipeline can be 
easily applied to different diseases.

Methods
Datasets
Chromatin accessibility data, gene expression data, H&E-
stained whole-slide histopathology images and matched 
clinical information were obtained from TCGA and can 
be downloaded from the link provided in the Data Avail-
ability section. Both the ATAC-seq and mRNA expression 
data were obtained from frozen tissue sections in proximity 
to the sections that were used to generate the H&E-stained 
tissue slides [36]. The 74 BRCA samples with quantitative 
chromatin accessibility data were obtained from TCGA 
ATAC-seq cohort. Among these, 58 samples were cat-
egorized as ER-positive, based on the clinical annotation 
data. Matched histopathological images and gene expres-
sion data for 1000 breast cancer cases were obtained from 
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TCGA BRCA cohort. Among these, 663 samples were cat-
egorized as ER-positive and were chosen for the survival 
analysis. Four samples from the ATAC-seq cohort with 
missing image data were excluded. The remaining 54 ER-
positive breast cancer samples were chosen for correlation 
analysis. Demographic and clinical characteristics of the 
selected cases used in this study are listed in Table 1.

The TCGA BRCA cohort provides two types of H&E 
stained whole-slide images: tissue slides and diagnostic 
slides. Tissue slides are sections from frozen tumor speci-
mens that are typically used to determine whether the 
tumor borders are clean. Diagnostic slides are formalin-
fixed paraffin-embedded (FFPE) sections, which typically 
have better preservation of cell morphology; however, 
these sections frequently show areas with tissue dam-
age. Only tissue slides were used for the histopathological 
images in this study. Histopathological images were down-
loaded in the native image format as Aperio SVS files. Each 
image was acquired at a 40X objective lens using Aperio 
Scanscope, with each pixel corresponding to a 0.24 × 0.24 
square micron area.

Algorithm for tissue quantification on tissue slides
We used our previously described whole-slide image-pro-
cessing framework [23] to calculate the epithelial tissue 
proportion from histopathological images. This frame-
work first employed a convolutional neural network (CNN) 
segmentation model to classify the epithelial and stromal 
tissues. The CNN model was trained on an independent 
image cohort and validated on TCGA tissue slides. Then 
based on the tissue segmentation results derived from 
CNN model, we calculated the epithelial tissue proportion 
as:

Proportionepi = Areaepi/
(

Areaepi + Areastro
)

where Proportionepi represents the epithelial tissue pro-
portion and Areaepi and Areastro represent the epithelial 
and stromal tissue area identified by the CNN model, 
respectively.

Omics‑image correlation analysis
Associations between chromatin accessibility changes 
and the epithelial tissue proportion were determined 
using canonical correlation analysis. Specifically, for each 
detected open chromatin region, chromatin accessibil-
ity was quantified using the normalized count from that 
specific region for each case. The Spearman correlation 
coefficients r between each quantitative chromatin acces-
sibility and epithelial tissue proportion were calculated 
across all ER-positive BRCA cases. Given the correlation 
coefficient r and the sample size, the P-value for the cor-
relation coefficient was calculated using the exact permu-
tation distributions for the two-tailed test. The FDR was 
calculated following the Benjamini–Hochberg procedure 
[37]. Finally, open chromatin regions were considered 
significantly correlated with epithelial tissue proportions 
when FDR < 0.05.

Linking DNA regulatory elements to genes
To associate regulatory regions with the genes they are 
predicted to regulate, we adopted the same procedure as 
TCGA [16]. Specifically, a promoter region was defined 
to lie within 1000 to 100 bp upstream of transcription 
start site (TSS). The promoter peak-to-gene mapping 
information was derived from peak summits located 
within the promoter region of a gene.

The distal peak-to-gene link was based on the cor-
relation of ATAC-seq accessibility and gene expression 
across all samples. All peaks whose summit were located 
within 500 kbp from a gene’s TSS were considered. A 
conservative FDR cutoff of 0.01 was used to avoid false 

Table 1  Demographic and clinical characteristics for TCGA breast cancer patients

Cohort TCGA BRCA​

Analysis type Correlation analysis Survival analysis

Total cases (No.) 74 1092

ER-positive cases (No.) 58 773

Age (years) Range 34 ~ 80 26 ~ 90

Median 58 60

Follow-up (days) Range 348 ~ 4275 1 ~ 7067

Median 956 1313

Data category ATAC-seq 58 N/A

Image (tissue slide) 54 773

RNA-seq N/A 663

Matched cases 54 (ATAC-seq and image) 663 (RNA-seq and image)
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positives. Putative enhancer peaks were further filtered 
if (i) the correlation with gene expression was strongly 
driven by DNA copy number amplification, or (ii) links 
involved an ATAC-seq peak that overlapped the pro-
moter of any gene.

Canonical pathway and function enrichment analysis
Ingenuity Pathways Analysis (IPA, Qiagen) was used 
to explore possible signaling pathways and functions 
for genes whose regulatory region was correlated with 
epithelial tissue proportion. IPA core analyses was con-
ducted for each identified gene using experimentally 
observed knowledge in the Ingenuity Knowledge Base. 
Pathway analysis was conducted using Canonical Path-
ways and function analysis was derived from Diseases & 
Functions.

Machine‑learning methods for prognostic prediction
For the univariate survival analysis, we used the median 
value of each feature to stratify cases into low-risk and 
high-risk groups. The Kaplan-Meier method and log-
rank test were used to fit the survival data and test for 
survival difference between the two groups.

For the multivariate survival analysis, a previously 
described method utilizing a k-means clustering algo-
rithm [38] was implemented to aggregate the patients 
into low-risk and high-risk groups, before testing if these 
2 subgroups had distinct survival outcomes using the log-
rank test.
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