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A novel somatic BRCA2 point mutation 
in a metastatic pancreatic cancer patient: a case 
report
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Abstract 

Background:  In addition to ovarian and breast cancers, loss-of-function mutations in BRCA1 and BRCA2 genes are 
also linked to an increased risk of pancreatic cancer, with ~ 4 to 7% of pancreatic cancer patients harboring germline 
BRCA​ mutations. Most BRCA​ alterations in pancreatic cancer are frame-shifting indels, stop-gain, and splice-site muta-
tions, but single nucleotide substitutions are rare. Recent studies demonstrated a significant progression-free survival 
(PFS) benefit from maintenance olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor administered to patients 
with germline BRCA​ mutations and metastatic pancreatic cancer.

Case presentation:  Here, we report a metastatic pancreatic cancer case who harbored a novel somatic BRCA2 
c.6944T > C (p. I2315T) point mutation. After 6 weeks first-line chemotherapy, the patient was refractory to treatment 
and had a progressive disease. Due to the novel nonsynonymous BRCA2 point mutation, we decided to change the 
strategy by administering olaparib. The patient benefited from olaparib therapy and achieved a PFS of ~ 6.5 months.

Conclusions:  We describe a patient carrying a novel somatic BRCA2 p. I2315T point mutation, which is first reported 
in metastatic pancreatic cancer. This case report indicates that a gene mutation-based strategy should be considered 
in the clinic to provide more effective treatment.
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Background
Pancreatic cancer is the 7th leading cause of cancer-
related deaths worldwide, with a 5-year survival rate of 
< 5% [1]. This devastating malignancy is generally diag-
nosed at metastatic stages in the clinic, indicative of its 
late detection and biological aggressiveness [1]. Tremen-
dous efforts are ongoing with the aims of discovering 
early diagnostic markers and novel therapeutic avenues 
for pancreatic cancer; however, progress is remarkably 
hindered by the complicated heterogeneity within and 
between patient tumors.

BRCA1 and BRCA2 are essential players involved in 
homologous recombination repair of double-strand 
deoxyribonucleic acid (DNA) breaks [2]. BRCA​ inacti-
vation due to somatic mutations or BRCA1 promoter 
methylation have been observed in various cancer types, 
including a small subgroup of metastatic pancreatic can-
cer [3–5]. Most BRCA​ alterations in pancreatic cancer 
are frame-shifting indels, stop-gain, and splice-site muta-
tions, whereas single nucleotide substitutions are rarely 
identified [2, 4, 5].

A large body of evidence showed that the poly (ADP-
ribose) polymerase (PARP) inhibitors are synthetically 
lethal in BRCA​-mutated tumors with DNA repair defects 
and displayed potent anti-tumor activity when combined 
with DNA-damaging agents. Thus, patients carrying 
germline mutations in BRCA​ or the various patterns of 
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somatic BRCA​ mutations that could result in the inacti-
vation of BRCA​ are sensitive to PARP inhibitors [6].

A recent phase 3 POLO (Pancreas Cancer Olaparib 
Ongoing) trial demonstrated that the administration 
of a PARP inhibitor, olaparib, as a maintenance therapy 
significantly prolonged the median progression-free 
survival (PFS) of patients with germline BRCA​ muta-
tions and metastatic pancreatic cancer who had not 
progressed during platinum-based chemotherapy com-
pared to the placebo arm (7.4  months vs. 3.8  months) 
[7]. More importantly, olaparib treatment did not com-
promise health-related quality of life in those patients 
[8]. However, PARP inhibitor resistance is common due 
to homologous recombination repair restoration (HRR), 
epigenetic modification, reversion mutations, restoration 
of ADP-ribosylation (PARylation), and pharmacological 
alteration [9].

In this report, we present the case of a metastatic pan-
creatic cancer patient who had progressive disease (PD) 
following chemotherapy with gemcitabine and nab-pacli-
taxel. Mutational profiling analysis using targeted next-
generation sequencing (NGS) revealed that the patient 
carried a novel somatic BRCA2 c.6944T > C (p. I2315T) 
point mutation. Olaparib was thereby administered in 
combination with a modified FOLFIRINOX regimen 
or as a monotherapy. The patient showed a significant 
response to this treatment strategy and exhibited stable 
disease and a PFS of ~ 6.5 months was observed.

Case presentation
A 57-year-old Chinese male with no obvious symptoms 
was admitted to the hospital due to the identification 
of a low-density shadow in the liver during his physical 
examination. In January 2019, a computed tomography 
(CT) scan revealed a 5.0 × 3.0 cm tumor in the uncinate 
process of the pancreas with hepatic metastases (Fig. 1a). 
The patient had a family history of cancer: his mother 
was diagnosed with stomach cancer at the age of 65 years 
and his father had lung cancer. According to the National 
Comprehensive Cancer Network (NCCN) Guidelines, 
the patient first received gemcitabine treatment at a dose 
of 1.4  g once per week, and nab-paclitaxel at a dose of 
200 mg every 2 weeks as a first-line chemotherapy in Jan-
uary 2019 (Fig. 1b). Unfortunately, a CT re-evaluation at 
6 weeks post-treatment showed progressive enlargement 
of both pancreatic and hepatic lesions (Fig. 1a), accompa-
nied with a marked elevation of serum carcinoembryonic 
antigen (CEA, 270.35  ng/mL) and carbohydrate antigen 
19-9 (CA19-9, 352.56  U/mL) levels (Fig.  1c); thus, sug-
gesting that the patient was refractory to treatment and 
had a PD.

To determine a more effective and appropriate tar-
geted therapy, we performed a targeted NGS analysis 

of 425 cancer-related genes on the patient’s plasma and 
tumor tissue biopsy samples. The cancer mutation panel 
test revealed multiple deleterious somatic mutations, 
such as the driver mutations, KRAS Q61R (c.182A > G), 
TP53 R110del (c.329_331delGTC), and APC S1465RfsX9 
(c.4393_4394dupAG), and copy number gain of several 
genes (Table  1). Interestingly, we also observed a novel 
nonsynonymous BRCA2 c.6944T > C (p. I2315T) point 
mutation with a mutant allele frequency (MAF) of 28.0% 
in the plasma and 39.5% in the tumor biopsy specimens. 
The novel BRCA2 point mutation was not detected in 
white blood cells, and thus, it was confirmed as a somatic 
mutation.

Given the clinical efficacy of olaparib in treating BRCA​
-mutated advanced solid tumors, we decided to revise the 
therapeutic strategy by administering olaparib at a dose 
of 150 mg twice per day in combination with a modified 
FOLFIRINOX regimen (irinotecan at a dose of 100 mg on 
days 1, 8 and 15; oxaliplatin at a dose of 150 mg on days 1 
and 15; S-1 at a dose of 40 mg twice per day from day 1 to 
day 14) for one cycle beginning in March 2019 (Fig. 1b). 
However, due to the occurrence of adverse events (e.g., 
diarrhea, general weakness, fatigue, and loss of appetite) 
and myelosuppression, including grade 2–3 leukopenia 
and thrombocytopenia, chemotherapy was not given 
on day 15 and the frequency of irinotecan was reduced 
to only be administered on days 1 and 15 in the subse-
quent treatment. Additionally, megestrol acetate and 
granulocyte-colony stimulating factor (G-CSF) were pre-
scribed to increase appetite and promote the recovery of 
myelosuppression. In May 2019, a reduction in the size of 
both pancreatic and hepatic lesions was revealed by the 
CT scan, while the levels of the serum tumor biomark-
ers, CEA (63.38 ng/mL) and CA19-9 (40.53 U/mL) were 
considerably reduced (Fig. 1a, c). Olaparib and modified 
FOLFIRINOX were thus continued with irinotecan and 
oxaliplatin being administered only on day 1 (Fig.  1b). 
After 2  weeks of treatment, CEA and CA19-9 levels 
decreased to 32.69 ng/mL and 25.57 U/mL, respectively 
(Fig.  1c). A CT scan performed in June 2019 showed a 
significant size reduction in the primary and metastatic 
tumors, which indicated a partial response (PR, Fig. 1a). 
Since the patient experienced severe marrow suppres-
sion during treatment, only olaparib monotherapy was 
administered since July 2019 to reduce adverse effects 
(Fig. 1b). Stable disease (SD) was subsequently observed 
in August 2019 (Fig. 1a). In September 2019, aside from 
an increase in CEA and CA19-9 levels (Fig. 1c), labora-
tory blood tests demonstrated that the patient underwent 
acquired granulocytopenia, anemia, and thrombocyto-
penia. Consequently, G-CSF, thrombopoietin, and eryth-
ropoietin were administered for symptom management. 
After olaparib treatment for another 1.5 months, PD was 
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indicated by a CT scan (Fig. 1a). The patient achieved a 
PFS for ~ 6.5 months following olaparib combination and 
monotherapy.

Discussion and conclusions
Neoplastic cells lacking a functional homologous 
recombination repair system, such as those carry-
ing BRCA​ mutations, are sensitive to PARP inhibi-
tion through accumulated DNA damage via multiple 
mechanisms [6]. As a new therapeutic concept, main-
tenance olaparib has shown promising results in the 

treatment of germline BRCA​-mutated breast, ovarian, 
and metastatic pancreatic cancer [7, 10, 11]. To date, 
the majority of BRCA2 mutations identified in pancre-
atic cancer were frame-shifting indels (e.g., c.6174delT, 
c.6158insT) and splice-site mutations. In contrast, sin-
gle point mutations have been rarely reported [4, 5, 12]. 
Mesman [13] recently assessed the potential pathogenic 
impact of a large set of BRCA2 missense variants using 
a mouse embryonic stem cell (mESC)-based functional 
assay, and found that BRCA2 missense mutations, such 
as c.93G > T (p. W31C) and c.8351G > A (p. R2784Q), 
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Fig. 1  CT images and measurements of serum tumor biomarkers during the course of treatment. a Serial CT scans demonstrated a reduction in the 
size of the pancreatic (red arrows) and metastatic hepatic lesions (green arrows) following olaparib therapy. b A timeline indicating the application 
of different therapeutic strategies and the patient’s response. c Measurements of serum CEA and CA19-9 levels at different treatment times. Blue 
line: CEA; green line: CA19-9; orange arrows: time points of the CT scans. PD progressive disease, PR partial response, SD stable disease
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were able to increase susceptibility to PARP inhibitor 
treatment.

The patient in our report harbored an unreported 
BRCA2 point mutation [c.6944T > C (p. I2315T)] located 
in exon 13 of BRCA2 between the G-CSF. Different ger-
mline BRCA2 mutations (e.g., p. I2315V, p. I2315L) at 
the same site have been documented with unknown 
functional significance [14, 15]. Although the underly-
ing molecular mechanism(s) by which this novel BRCA2 
p. I2315T mutation impairs DNA repair and sensitizes 
tumor cells to PARP inhibition remains to be elucidated. 
We postulate that it may be related to a change in the 
polarity of amino acid residues since isoleucine (I), valine 
(V) and leucine (L) are all non-polar and hydrophobic, 
while threonine (T) is hydrophilic. Thus, we hypothesize 
that the p. I2315T mutation is likely to cause a struc-
tural abnormality in the BRCA2 protein, which results 
in defective DNA double strand break (DSB) repair by 
homologous recombination (HR) and its sensitivity to 
olaparib. To test this hypothesis, we attempted to gen-
erate a three dimensional (3D) structural model of the 
BRCA2 p. I2315T mutation, but failed due to the absence 
of an established crystal structure of the full-length 
human BRCA2 due to its size and segmental nature [16].

In summary, we report a metastatic pancreatic can-
cer patient carrying a novel somatic BRCA2 p. I2315T 
point mutation. Furthermore, advances in NGS technol-
ogy have provided a solid basis for precise detection of 
well-known driver mutations, and rare or novel muta-
tions. Thus, NGS may provide clinicians with invaluable 
information (e.g., BRCA1/2 status of tumors) that can be 
leveraged for therapeutic decision making, and perform 

better evaluations of patients’ responses during the 
course of treatment.
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Table 1  Genetic alterations detected in the patient’s plasma and tumor biopsy specimens

–, not detectable; NA, not applicable; MAF, mutant allele frequency. Gene amplification was presented as the relative fold change to normal controls

Genes Alternations Nucleotide change MAF (plasma) MAF (tumor)

BRCA2 p. I2315T c.6944T > C 28% 39.5%

KRAS p. Q61R c.182A > G 27.4% 43.2%

TP53 p. R110del c.329_331delGTC​ 37.4% 81.6%

APC p. S1465RfsX9 c.4393_4394dupAG 26.7% 71.7%

CCNE1 Gene amplification NA 16.0-fold 27.4-fold

CCNE1 IGR (downstream UQCRFS1) ~ CCNE1 
fusion

NA 0.1% –

PIK3CA Gene amplification NA – 1.9-fold

PKHD1 p. R909X truncation c.2725C > T 4.9% 16.9%

SOX2 Gene amplification NA – 2.0-fold

STMN1 Gene amplification NA – 1.8-fold

TERC Gene amplification NA – 1.9-fold

TUBB3 Gene amplification NA – 2.2-fold
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