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Abstract

Background: Currently, numerous studies indicate that circular RNA (circRNA) is associated with various human
complex diseases. While identifying disease-related circRNAs in vivo is time- and labor-consuming, a feasible and
effective computational method to predict circRNA-disease associations is worthy of more studies.

Results: Here, we present a new method called SIMCCDA (Speedup Inductive Matrix Completion for CircRNA-
Disease Associations prediction) to predict circRNA-disease associations. Based on known circRNA-disease
associations, circRNA sequence similarity, disease semantic similarity, and the computed Gaussian interaction profile
kernel similarity, we used speedup inductive matrix completion to construct the model. The proposed SIMCCDA
method obtains an area under ROC curve (AUC) of 0.8465 with leave-one-out cross validation in the dataset, which
is obtained by the combination of the three databases (circRNA disease, circ2Disease and circR2Disease). Our
method surpasses other state-of-art models in predicting circRNA-disease associations. Furthermore, we conducted
case studies in breast cancer, stomach cancer and colorectal cancer for further performance evaluation.

Conclusion: All the results show reliable prediction ability of SIMCCDA. We anticipate that SIMCCDA could be
utilized to facilitate further developments in the field and follow-up investigations by biomedical researchers.

Keywords: CircRNA-disease associations, CircRNA sequence similarity, Disease semantic similarity, Inductive matrix
completion

Background
As endogenous noncoding RNA, circular RNA (cir-
cRNA) is extremely distinct from linear RNA. The lar-
gest difference is that the circRNA does not possess a
terminal structure (i.e., 5′ caps and 3′ polyA tails) and is
covalently closed to form a loop structure [1]. Such a
loop structure facilitates the resistance of the circRNA
to the degradation of RNA exonuclease and offers a
stable biological effect compared with the corresponding
linear structure [2, 3].
Although circRNA was discovered as early as the 1970s,

it was considered ‘junk’ RNA [4]. Recently, circRNA has

been re-recognized and has gradually gained attention.
CircRNA is involved in numerous important biological
functions, especially regulatory functions [5]. Accumulat-
ing evidence has clearly demonstrated that changes in
circRNA plays an important role in developing various
pathological conditions and exhibits a significant correl-
ation with diseases, especially cancer. For example, the
circRNA CDR1as is an inhibitor of miR-7, which is known
to be involved in various diseases, such as neurodegenera-
tive diseases, atherosclerosis and breast cancer [6].
Therefore, circRNA is thought to be a promising disease
biomarker and treatment target [5]. Analysis of existing
circRNA-disease associations is necessary to help predict
other potential associations and help us understand the
molecular mechanisms of human disease and identify
biomarkers for disease diagnosis, treatment, and preven-
tion at the circRNA level [7].
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To date, an increasing number of experimentally
verified or reported databases are available for the
circRNA-disease associations, such as circR2Disease [7],
circRNA disease [8], circ2Disease [9], and circ2Traits
[10]. However, experimental methods are too expensive
and time-consuming to obtain a large validated circRNA-
disease association data. Developing computational
methods to predict novel circRNA-disease associations
has attracted considerable attention as they can effectively
decrease the time and cost of biological experiments. In
addition, few methods are available for predicting the
circRNA-disease associations using computational
methods. Lei et al. [11] developed the method of
predicting circRNA-disease associations based on a path
weighted model, and Fan et al. [12] proposed the
KATZHCDA method using the KATZ model on hetero-
geneous networks. However, these methods predict
potential associations using a single database, which is not
enough to illustrate the stability of the model. Moreover,
it remains challenging to achieve significant performance
for predicting circRNA-disease associations.
In this work, we proposed a new method called

SIMCCDA (Speedup Inductive Matrix Completion for
CircRNA-Disease Associations prediction), which con-
siders the prediction of circRNA-disease associations as
a recommendation system problem. To the best our
knowledge, we are the first to apply the recommendation
system approach inductive matrix completion (IMC)
[13–15] to predict circRNA-disease associations. This
method has been applied for various bioinformatics
problems, such as drug-target interactions [16], drug re-
positioning [17], lncRNA (long non coding RNA)-disease
[18] and miRNA (microRNA)-disease associations [19].
We model the circRNA-disease association prediction
problem as a recommendation task and solve it using
speedup IMC [20]. Three databases, including circRNA
disease, circ2Disease and circR2Disease, are used as our
raw data in this study. We then perform data screening,
generate corresponding three sub-datasets (Dataset-1,
Dataset-2 and Dataset-3), and combine them into a total
dataset (named TotalCircRD-1). We first calculate cir-
cRNA sequence similarity and disease semantic similar-
ity in these four datasets. Next, these two types of
similarities are combined into a Gaussian interaction
profile kernel to generate new circRNA similarity and
disease similarity. Primary feature vectors of the similar-
ity matrix are extracted by principal component analysis
(PCA). The final model based on IMC is built for
predicting circRNA-disease associations.
Leave-one-out cross validation (LOOCV) is used to

examine the performance of our method. The optimal
AUC on TotalCircRD-1 is 0.8465. The AUC results on
the three datasets are 0.8682 (Dataset-1), 0.8303 (Data-
set-2) and 0.8509 (Dataset-3), respectively. To further

evaluate the performance of the proposed method, we
rank and select the top 30 predictions of each dataset to
determine the number of results that existed in verified
associations. We also conduct case studies in breast can-
cer, stomach cancer and colorectal cancer to support
our predictions. Finally, we compare our method with
KATZHCDA, and the prediction results indicate that
our method outperforms the previous method in pre-
dicting circRNA-disease associations. In summary, the
proposed SIMCCDA method has the ability to predict
associations in circRNA-disease and offers a guiding sig-
nificance for future biomedical clinical experiments.

Methods
Model overview
Here, we apply IMC with feature vectors to build the
model called SIMCCDA. In addition, we add a linear
Bregman iteration to speed up the process of calculating
the final score matrix. The flowchart is presented in
Fig. 1. Aij = 1 indicates that circRNA circi and disease dj
are associated, whereas Aij = 0 indicates that their associ-
ation is currently in an unknown state. Given a known
circRNA-disease association matrix A ∈ℝm × n with cir-
cRNA sequences and disease DOIDs (disease ontology
identities), we obtain circRNA and disease similarity, re-
spectively. Then, PCA is employed to extract primary
feature vectors from acquired similarity. Finally, we con-
struct the model with IMC based on the above informa-
tion to predict circRNA-disease associations.

Human circRNA-disease associations data
We use three databases, including circRNA disease,
circ2Disease and circR2Disease, all of which include
known human circRNA-disease associations. All data
were downloaded before September 2018. The initial
information regarding each downloaded dataset is as
follows: the first database circRNA disease contains
354 circRNA-disease associations (including 330 cir-
cRNAs and 48 diseases), the second database circ2Di-
sease includes 273 circRNA-disease associations
(including 249 circRNAs and 61 diseases) and the
third database circR2Disease includes 739 associations
(including 661 circRNAs and 100 diseases). The se-
quence information of circRNA and disease DOID
matching are applied to the circBase [21] and Disease
Ontology [22] (DO) databases. Based on the above
data processing, we generate the final three datasets
(Dataset-1, Dataset-2 and Dataset-3). These datasets
are merged to obtain TotalCircRD-1 without dupli-
cated redundancy. Table 1 lists the detailed statistics
of the four datasets.
The uncompleted associations in the datasets include

circRNAs without sequences or diseases without DOIDs.
Given that the calculation of circRNA sequence
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similarity requires the circRNA sequence and the disease
similarity requires the disease DOID information, the
preceding datasets exclude the uncompleted associa-
tions. We wanted to assess whether these uncom-
pleted associations would influence the prediction

performance, so we add several uncompleted associa-
tions to form four new datasets (Dataset-4, Dataset-5,
Dataset-6 and TotalCircRD-2) based on Dataset-1,
Dataset-2, Dataset-3 and TotalCircRD-1, respectively
(Additional file 1: Table S1).

CircRNA sequence similarity
The sequence information of all the corresponding cir-
cRNAs in the aforementioned databases is obtained
from circBase, and Levenshtein distance [23] is used to
calculate the similarity between each two circRNA se-
quences. As a string metric for measuring the difference
between two strings, the Levenshtein distance between

Fig. 1 The overall procedure of SIMCCDA. Step 1: compute circRNA similarity and disease similarity. Step 2: extract primary feature vectors. Step 3:
predict the circRNA-disease association matrix with speedup IMC. Lev: Levenshtein distance, Gkl: Gaussian interaction profile kernel

Table 1 Details of four datasets

Dataset Number of
circRNAs

Number of
diseases

Number of
associations

Matrix
density

Dataset-1 223 34 241 0.032

Dataset-2 215 46 240 0.024

Dataset-3 389 61 445 0.019

TotalCircRD-1 512 71 609 0.017
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two strings is the minimum cost of single-character edits
(insertions, deletions or replacements) required to
change one string into the other. In the present study,
both editing costs of insertion and deletion are 1, and
the replacement editing cost is 2. Formula (1) is the
calculation of similarity for two circRNA sequences:

Simlev circi; circ j
� � ¼ 1−

dist

len circið Þ þ len circ j
� � ð1Þ

where dist represents the minimum editing cost of
converting the circRNA circi sequence to the circRNA
circj sequence, and len(∙) represents the length of cir-
cRNA sequence.

Disease semantic similarity
We use DOSim [24] in DO-based DOSE (R package) to
calculate the disease semantic similarity with Wang
measure [25]. The detailed formula is displayed as
follow:

SimWang di; d j
� � ¼

P
t∈Tdi∩Td j

Sdi tð Þ þ Sd j tð Þ
� �

P
t∈Tdi

Sdi tð Þ þ
P

t∈Td j
Sd j tð Þ ð2Þ

For a given disease di, Tdi is the ancestor term set of
term di (including di itself). SdiðtÞ is defined as the con-
tribution score of disease t (t∈Tdi ) to disease di. It can
be expressed by the following formula:

fSdi dið Þ¼1

Sdi tð Þ¼ max we�Sdi t0ð Þjt0∈childrenof tð Þf g if t≠di
ð3Þ

Here, we is the semantic contribution factor of edge e,
where e belongs to the set of edges connecting di and its
ancestor Tdi . In DOSim, we set we = 0.7.

Gaussian interaction profile kernel similarity for circRNA
and disease
By considering the assumption that similar circRNAs
tend to be bound with similar diseases, Gaussian inter-
action profile kernel similarity is computed based on the
known circRNA-disease association datasets. Inspired by
van Laarhoven et al. [26], we calculate the circRNA and
disease similarity using the Gaussian interaction profile
kernel on four datasets. Equations (4) and (5) determine
the similarity between circi and circj, where m is
circRNA number, IP(circi) is the associated disease set
corresponding to the circi, and γc is the regulation par-
ameter of kernel bandwidth.

Gkl circi; circ j
� � ¼ exp −γc IP circið Þ−IP circ j

� ��� ��2� �
ð4Þ

γc ¼
1

1
m

Xm

i¼1
IP circið Þk k2

ð5Þ

The Gaussian interaction profile kernel similarity of
diseases di and dj is similar to the defined equations (6)
and (7), where n is the number of diseases:

Gkl di; d j
� � ¼ exp −γd IP dið Þ−IP d j

� ��� ��2� �
ð6Þ

γd ¼ 1
1
n

Xn

i¼1
IP dið Þk k2

ð7Þ

Integrated similarity for circRNA and disease
Based on the previously defined circRNA sequence
similarity, disease semantic similarity and Gaussian
interaction profile kernel similarities, the integrated cir-
cRNA similarity matrix CS and the disease similarity
matrix DS are calculated using the following equations
(8) and (9):

CS circi; circ j
� � ¼ Simlev circi; circ j

� �þ Gkl circi; circ j
� �

2
ð8Þ

DS di; d j
� � ¼ SimWang di; d j

� �þ Gkl di; d j
� �

2
ð9Þ

Extract primary feature vectors
To remove the similarity redundancy, we use principal
component analysis (PCA) to extract the primary feature
vectors from integrated similarity, CS and DS. In this
method, based on the dominating energy strategy [27],
we use singular value decomposition (SVD) to perform
PCA and formulas (10) and (11) to obtain the primary
feature vectors of circRNA and disease similarity.

arg min
f c

P f c
i¼1 Scð ÞiiPm
j¼1 Scð Þjj

≥αc

( )
ð10Þ

arg min
f d

P f d
i¼1 Sdð ÞiiPn
j¼1 Sdð Þjj

≥αd

( )
ð11Þ

In the above formulas, Sc and Sd are the singular
values of circRNA and the disease similarity matrix, re-
spectively. αc and αd are adjusted parameters to obtain
optimal results. In this study, Dataset-2, Dataset-3 and
TotalCircRD-1 share the parameters αc =0.6 and αd =
0.9, whereas the parameters of Dataset-1 are αc =0.7 and
αd =0.9. Detailed adjustment work of αc and αd is dis-
cussed in the Results section.
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Model construction
In this study, we formulate circRNA-disease association
prediction as a recommendation system problem. Gener-
ally, a recommendation system is an information filter-
ing system that seeks to predict the user’s preference of
a certain item based on partial known preference infor-
mation. We here use the recommendation system
method IMC [15] to identify circRNAs for a disease that
is dependent on validated circRNA-disease associations.
Observing the matrix density of the last column in

Table 1, we find that the association matrix is very
sparse. As we know, there are a small amount of experi-
mental data of associations due to the structural com-
plexity of circRNAs and ignored biological functions.
The available data scale is in the primary stage. As a re-
sult, we cover the unknown associations of circRNAs
and diseases through IMC to enhance the quality of our
data. The advantage is that IMC can solve matrix com-
pletion problems using a relatively small set of known
information. The detailed process of IMC is described
below. First, based on the assumption that the human
circRNA-disease association matrix is A, the row vectors
in A lie in the subspace spanned by the column vectors
in D (disease feature vectors), and the column vectors in
A lie in the subspace spanned by the column vectors in
C (circRNA feature vectors). The problem can be de-
fined as:

min
Z∈ℜ f c� f d

λ Zk k� þ
1
2

ℜΩ CZDT−A
� ��� ��2

F ð12Þ

where Z is the objective matrix to complete A, CZDT is
the final scoring matrix based on the association matrix
and the similarity matrix, Ω represents known associ-
ation sets, ‖∙‖∗ is the nuclear norm defined as the sum of
the singular values, λ is the regularization parameter
controlling the extent of the nuclear norm (here we set
λ to 1), and ‖∙‖F is the Frobenius norm of the matrix.

Representing f(Z) as 1
2 kRΩðCZDT−AÞk2F , the formula

(12) can be expressed as:

min
Z∈ℜ f c� f d

λ Zk k� þ f Zð Þ ð13Þ

For any given Y∈Rf c� f d , the following quadratic ap-
proximation of f(Z) at Y can be considered as:

f Zð Þ ≈ f τ Z;Yð Þ ¼ f Yð Þ þ ∇ f Yð Þ;Z−Yh i
þ τ
2

Z−Yk k2F þ P Zð Þ

¼ τ
2

Z− Y−
1
τ
∇ f Yð Þ

� �����
����
2

F

þ f Yð Þ− 1
2τ

‖∇ f Yð Þ2F‖ ð14Þ

where ∇ f ðY Þ ¼ CTRΩðCYDT−AÞD is the gradient of
f(Z) at Y, 〈∙〉 represents matrix inner product, and τ is a
proximal parameter for estimating the second-order gra-
dient ∇2f(Y). Accordingly, the above formula (13) calcu-
lates the minimum model, which can be converted into
the following formula:

min
Z∈ℜ f c� f d

λ Zk k� þ
τ
2

Z− Y−
1
τ
∇ f Yð Þ

� �����
����
2

F

ð15Þ

Then, we use the accelerated proximal gradient singu-
lar value thresholding algorithm [28] with iterate h times
to obtain Z [29].

In order to see the relationship between the objective
function value and the number of iterations, we divide
the circRNAs into several categories according to their
chromosomal location and then select randomly one
from each class to view the trend of the curve.

Fig. 2 Adjusted parameters αc and αd with their impact on
TotalCircRD-1 dataset
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Additional file 1: Figure S1 shows that the value of
the objective function decreases as the number of it-
erations increases. When the gap of objective function
values between two iterations is particularly small, i.e.

1− objective valuek
objective valuek−1

< 10−5, the iterative process will end.

Results
LOOCV
To assess the predictive accuracy of SIMCCDA, we per-
formed the following method using the leave-one-out

cross validation (LOOCV) framework on the known
circRNA-disease associations. The reason why LOOCV
is used in this study is that the current common practice
in this field (prediction of lncRNA/miRNA/circRNA-dis-
ease associations) [30–32] is to use LOOCV to measure
the performance of the model. For a disease di, each
known circRNA association corresponding to the disease
was left as a test sample. Other known associations were
used as training samples, and an initial non-association
was regarded as a candidate sample. In the candidate
samples and test sample set, the test sample was deemed

Fig. 3 ROC curve and PR curve using LOOCV of eight datasets under optimal parameters. a PR curve in four datasets (Dataset-1, Dataset-2,
Dataset-3 and TotalCircRD-1). b ROC curve in four datasets (Dataset-1, Dataset-2, Dataset-3 and TotalCircRD-1). c PR curve in four datasets
(Dataset-4, Dataset-5, Dataset-6 and TotalCircRD-2). d ROC curve in four datasets (Dataset-4, Dataset-5, Dataset-6 and TotalCircRD-2)
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as a positive sample, and the others were negative sam-
ples. After running the model, the probabilities of associ-
ations between candidate samples and disease di were
calculated. We took the highest values as the final score
of the candidate sample among probabilities. Finally, we
calculated the sensitivity and specificity as follows:

sensitivity ¼ TP
TP þ FN

ð16Þ

specificity ¼ TN
TN þ FP

ð17Þ

where TP indicate true positives, FP is false positives,
TN refer to true negatives, and FN represent false
negatives.
A Receiver Operating Characteristics (ROC) curve is

drawn based on the LOOCV result. The X-axis of the
ROC graph is the 1-specificity, and the Y-axis is the sen-
sitivity. From the ROC curve, the Area Under ROC
Curve (AUC) can be calculated as an evaluation measure
for the model.

The effect of adjusting parameters on the prediction
result
In the PCA section of the Methods, two parameters αc
and αd were included, which represent the percentage of
singular values of circRNA and disease similarity matrix,
respectively. We tried to take values between 0.1 and 1
for αc and αd, and the step size was 0.1. The results of
the parameterization of TotalCircRD-1 are presented in
Fig. 2, and results for Dataset-1, Dataset-2 and Dataset-3
are presented in Additional file 1: Figures S2-S4. As
noted in Fig. 2, as αc increases, AUC is initially stable
and the generally declines. The results are consistent
when αd =0.1 or αd =0.2. As αd increases, the AUC grad-
ually increases, but the growth rate is slow. The optimal
parameters of the three datasets of Dataset-2, Dataset-3,
TotalCircRD-1 are all αc =0.6 and αd =0.9, whereas the
optimal parameters for Dataset-1 are αc =0.7 and αd =
0.9. LOOCV-based AUC results for four datasets with
optimal parameters are shown in Fig. 3b. The results of
our model on the four datasets are at a solid level, and
the gap between the maximum and minimum values is
3% in four datasets, which reveals that our model
exhibits better robustness. Figure 3a shows the PR (Pre-
cision-Recall) curves on the four datasets, respectively,
which have the same trend as the ROC curve. Figure 4
presents the number of experimental validated associa-
tions predicted by our model from the top 30 predicted
associations from our four datasets. Additional file 1:
Table S2 shows the predicted results of the top 10, 30,
50 and 100. It can be observed that whether it is top 10,
top 30, top 50, or top 100, the ultimate trends are simi-
lar. For the sake of convenience, we only show the

results of top 30 in this work. Based on the above
optimal parameters, we predicted 30 known circRNA-
disease associations from Dataset-2, Dataset-3 and
TotalCircRD-1, and 26 known associations from the
Dataset-1. This shows that our results are optimal under
these parameters, and four unknown associations in
Dataset-1 may be potential associations based on subse-
quent analysis.
In addition, we added weights to each part of the inte-

gration similarity to see how the performance could be
impacted. We added weights (range from 0 to 1) to
Simlev(circi, circj) and Gkl(circi, circj) in equation (8) and
(9), respectively. For different weights circRNAs and
diseases similarity, the final results were obtained by
combining the two pairs. The Additional file 1: Figure
S5 shows that the combinations of different similarity
weights have similar results for the models obtained on
different datasets. So, in the end, our model used equa-
tion (8) and (9) to respectively calculate the circRNAs
similarity and diseases similarity.

The effect of uncompleted associations
The αc and αd were adjusted in the same manner as de-
scribed above, and the optimal parameters were selected
to calculate the AUC in Dataset-4, Dataset-5, Dataset-6
and TotalCircRD-2 datasets, as presented in Fig. 3c and
d. The AUC scores of new-added datasets (Fig. 3d) are
slightly reduced compared with the initial datasets (Fig.
3b). Given that most of the newly added circRNA only
involved in one disease, thus making the final association
matrix sparser than previous one. For example, circ-
BANP is only associated with colorectal cancer and is
not associated with other diseases. Increasing association
data are noted between circ-BANP and colorectal can-
cer, and the unknown associations of circ-BANP with
other diseases also increase, as observed from the matrix
density columns of Additional file 1: Table S1. In

Fig. 4 The number of associations validated by our model for the
top 30 on four datasets (Dataset-1, Dataset-2, Dataset-3,
and TotalCircRD-1)
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summary, uncompleted associations exhibit a minimal
effect on the results and only slightly reduce the per-
formance of predictions.
The above results show that the sparseness of the data

set has little effect on the prediction results. But if the
correlation matrix is too sparse, it will still affect the
final prediction results. So our method has a premise
that the association matrix cannot be too sparse. We
conducted the following experiment to explore how the
varying sparsity of datasets affect the overall perform-
ance. Since the final result has a certain relationship with
the dataset, we performed sparsity processing on each
dataset (0.002 was the step size, and the sparsity was

reduced by 0.002 each time), respectively. The Add-
itional file 1: Figure S6 shows that the result is not much
changed when the sparsity of Dataset-1 is 0.015. But
when the sparsity is 0.013, the performance starts to
drop significantly. Similarly, for the other three datasets
(Dataset-2, Dataset-3, TotalCircRD-1), the performance
starts to drop significantly when the sparsity is 0.013,
0.009, and 0.007, respectively.

Compared with the other method
Two methods are currently available for predicting
circRNA-disease associations: PWCDA [11] and
KATZHCDA [12]. Given that the PWCDA method

Fig. 5 Comparison of SIMCCDA with KATZHCDA on the TotalCircRD-1 and Total CircRD-2 dataset. a Performance of methods in terms of ROC
curve using LOOCV in TotalCircRD-1 dataset. b The number of experimental validations of the top 30 predicted circRNA-disease associations from
four datasets (Dataset-1, Dataset-2, Dataset-3 and TotalCircRD-1). c Performance of methods in terms of ROC curve using LOOCV in TotalCircRD-2
dataset. d The number of experimental validations of the top 30 predicted circRNA-disease associations from four datasets (Dataset-4, Dataset-5,
Dataset-6 and TotalCircRD-2)
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needs to set the circRNA similarity and disease similarity
< 0.5 part to 0 and most of the similarities on our data-
sets are less than 0.5, we only compared our method
with KATZHCDA. KATZHCDA is a computational
model of KATZ measures and constructs heterogeneous
networks by employing the circRNA expression profiles,
disease phenotype similarity and Gaussian interaction
profile kernel similarity. Here, we used the same eight
datasets in KATZHCDA model and obtain predicted re-
sults. The results of six datasets (Dataset-1, Dataset-2,
Dataset-3, Dataset-4, Dataset-5 and Dataset-6) are
presented in Additional file 1: Figure S7, and
TotalCircRD-1 and TotalCircRD-2 results are presented
in Fig. 5a and c. As shown in Additional file 1: Figure
S7, both the PR curve and the ROC curve indicate that
our model performance is superior to KATZHCDA. The
AUC scores of four datasets (Dataset-1, Dataset-2,
Dataset-3 and TotalCircRD-1) are 0.7604, 0.7458, 0.7442
and 0.7558, respectively. According to the comparison of
two methods, our model obtains an average AUC of
0.8490, which is 9% higher than KATZHCDA. The
resulting top 30 predicted associations are also analyzed,
demonstrating that our predicted top 30 results are su-
perior to KATZHCDA (Fig. 5b, d).
In addition, we compared our method with

KATZHCDA by using Dataset-1 as the training set
and Dataset-2, Dataset-3 as the test set. As can be
seen from Additional file 1: Figure S8, our perform-
ance is slightly better than KATZHCDA. Specifically,
the early stage of KATZHCDA prediction effect is
better than ours, but its accuracy is reduced in the
prediction of later stages. A comprehensive look at

the above two results, our model is superior to
KATZHCDA on the whole.

Case study
Analysis of predicted circRNA-disease associations with
experimental evidence from the TotalCircRD-1 dataset
To further measure the performance of SIMCCDA,
case studies of three diseases, including breast cancer,
stomach cancer and colorectal cancer, from the
TotalCircRD-1 dataset were analyzed in detail. The
top 30 predicted disease-related circRNAs by
SIMCCDA and supporting evidence from PubMed are
presented in Tables 2, 3 and 4.
Breast cancer is the most common cancer and remains

the leading cause of cancer death among women world-
wide [33]. Among top 30 predicted candidate circRNA
for breast cancer, 29 are associated with breast cancer in
related studies (Table 2). For instance, hsa_circ_0001875
(top 1) is upregulated in breast cancer tissues compared
with the normal breast tissue [34]. In addition, circRNA
hsa_circ_0006054 (top 2) expression is significantly
downregulated in breast cancer tissues compared with
non-breast cancer tissues [34].
Gastric cancer is the second disease to lead cancer-

related mortality and the fourth most frequent cancer
globally [35]. Using the SIMCCDA method, we success-
fully predicted 30 of top 30 candidate circRNAs for
gastric cancer (Table 3). Among them, CircRNA hsa_
circ_0084606 (top 1) is one of the top 10 upregulated
circRNAs in stomach cancer tissues [36], whereas hsa_
circ_0000140 (top 2), a typical circular RNA, is

Table 2 Top 30 candidate circRNAs for breast cancer

Rank circRNA Evidence (PMID) Rank circRNA Evidence (PMID)

1 hsa_circ_0001875 28484086 16 hsa_circ_0000911 28744405

2 hsa_circ_0006054 28484086 17 hsa_circ_0092276 28803498

3 hsa_circ_0000098 28744405 18 hsa_circ_0008945 28744405

4 hsa_circ_0107327 29221160 19 hsa_circ_0003838 28803498

5 hsa_circ_0001785 29045858 20 hsa_circ_0004619 28484086

6 hsa_circ_0103038 29221160 21 hsa_circ_0033144 29221160

7 hsa_circ_0002874 28803498 22 hsa_circ_0001283 28744405

8 hsa_circ_0002220 29221160 23 hsa_circ_0057129 29221160

9 hsa_circ_0006528 28803498 24 hsa_circ_0001824 28484086

10 hsa_circ_0008717 28744405 25 hsa_circ_0085495 28803498

11 hsa_circ_0000893 28744405 26 hsa_circ_0000732 28744405

12 hsa_circ_0068033 29045858 27 hsa_circ_0086241 28803498

13 hsa_circ_0011946 29593432 28 hsa_circ_0003221 unconfirmeda

14 hsa_circ_0001982 28933584 29 hsa_circ_0018293 28744405

15 hsa_circ_0001667 28803498 30 hsa_circ_0093859 29593432
awithout the evidence reported in literatures
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significantly increased in stomach cancer tissues com-
pared with paired adjacent non-tumorous tissues [37].
Colorectal cancer is the third most common cancer

worldwide with 1.36 million people diagnosed in 2012
[38]. The inferred results cover 23 experimental verified
associations out of the top 30 ranked predictions
(Table 4). The evidence in the literature reveals that cir-
cRNA hsa_circ_0000523 exhibits significantly reduced
expression in cancer compared with normal colorectal

tissues. In colorectal cancer cells, the well-validated cir-
cRNA hsa_circ_0000504 is upregulated [39].

Analysis of predicted circRNA-disease associations
without experimental evidence from four datasets
Given that the top 30 well-validated associations were
successfully investigated by our method using Dataset-2,
Dataset-3 and TotalCircRD-1 dataset, here we concen-
trated on four new predicted potential circRNA-disease

Table 4 Top 30 candidate circRNAs for colorectal cancer

Rank circRNA Evidence (PMID) Rank circRNA Evidence (PMID)

1 hsa_circ_0000523 25624062 16 hsa_circ_0006174 28656150

2 hsa_circ_0000504 28656150 17 hsa_circ_0001724 29207676

3 hsa_circ_0002138 25624062 18 hsa_circ_0001451 26884878

4 hsa_circ_0000567 29333615 19 hsa_circ_0074806 28656150

5 hsa_circ_0007006 28656150 20 hsa_circ_0003221 unconfirmeda

6 hsa_circ_0024169 25624062 21 hsa_circ_0001577 unconfirmeda

7 hsa_circ_0082333 26138677 22 hsa_circ_0008509 28656150

8 hsa_circ_0087862 28656150 23 hsa_circ_0022080 28656150

9 hsa_circ_0005949 28656150 24 hsa_circ_0002024 unconfirmeda

10 hsa_circ_0007031 28656150 25 hsa_circ_0000172 unconfirmeda

11 hsa_circ_0008494 28656150 26 hsa_circ_0000677 27058418

12 hsa_circ_0000069 28003761 27 hsa_circ_0002768 unconfirmeda

13 hsa_circ_0048232 28656150 28 hsa_circ_0091017 unconfirmeda

14 hsa_circ_0003098 28103507 29 hsa_circ_0002702 27058418

15 hsa_circ_0074930 28656150 30 hsa_circ_0128454 unconfirmeda

awithout the evidence reported in literatures

Table 3 Top 30 candidate circRNAs for stomach cancer

Rank circRNA Evidence (PMID) Rank circRNA Evidence (PMID)

1 hsa_circ_0084606 28544609 16 hsa_circ_0076304 28831102

2 hsa_circ_0000140 25689795 17 hsa_circ_0057104 28831102

3 hsa_circ_0008383 28761361, 28206972 18 hsa_circ_0138960 28980874

4 hsa_circ_0074362 28544609, 29240459 19 hsa_circ_0013048 28657541, 28206972

5 hsa_circ_0003159 28618205 20 hsa_circ_0003789 28544609

6 hsa_circ_0006022 28639908 21 hsa_circ_0035445 28544609

7 has_circ_0031027 28206972 22 hsa_circ_0058766 28831102

8 hsa_circ_0050547 28544609 23 hsa_circ_0001895 28443463

9 hsa_circ_0001546 28544609 24 hsa_circ_0005927 28737829

10 hsa_circ_0063809 28544609 25 hsa_circ_0076305 28831102

11 hsa_circ_0084720 28831102 26 hsa_circ_0006633 28656881

12 hsa_circ_0032821 28737829 27 hsa_circ_0000154 28544609

13 hsa_circ_0001539 28184940 28 hsa_circ_0006470 28544609

14 hsa_circ_0003707 28639908 29 hsa_circ_0001017 29098316

15 hsa_circ_0006127 28974900 30 hsa_circ_0003222 28893265
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associations from Dataset-1 (as shown in Fig. 4). We
employed circRNA-miRNA and miRNA-disease associa-
tions to construct corresponding circRNA-miRNA-
mRNA networks for the four new circRNA-disease
associations.
We used the hsa_circ_0070963-stomach cancer associ-

ation as an example for a detailed exposition. First,
possible miRNA targets of hsa_circ_0070963 were pre-
dicted with the miRNA Target Sites tool of CircInterac-
tome [40]. Their target genes with experimental
verification were screened out from miRTarBase [41],
and then, hsa_circ_0070963-miRNA-disease regulatory
network was constructed using Cytoscape [42]. Finally,
the corresponding experimentally verified miRNA-
stomach cancer associations were obtained from HMDD
[43] and added to the above network. As noted from the
result (Fig. 6), hsa_circ_0070963 may be targeted by four
miRNAs, including has-miR-223, has-miR-421, has-miR-
610 and has-miR-526b. CircRNA can act as competing

endogenous RNAs (ceRNAs) (also termed miRNA
sponges) to buffer the target genes expression (i.e.,
mRNA) of miRNAs [36, 37], and miRNA has-miR-223 is
linked the most number of targets. Thus, we hypothesize
that hsa_circ_0070963 may function as a hsa-miR-223
sponge to interact with stomach carcinoma.
Other three predicted new associations (hsa_circ_

0061893, hsa_circ_0071410, and hsa_circ_
0054345 in stomach cancer) exhibit similar scenarios,
which are presented in Additional file 1: Figures S9-S11.

Conclusions
Increasing evidence demonstrates that circRNA plays an
important role in the development of various diseases.
Understanding the underlying mechanisms of circRNA
in disease is becoming an urgent problem worldwide. To
date, the number of experimentally validated circRNA-
disease associations is small, and few computational
methods for predicting circRNA-disease associations are

Fig. 6 hsa_circ_0070963-miRNA-mRNA regulatory network in stomach cancer

Li et al. BMC Medical Genomics 2020, 13(Suppl 5):42 Page 11 of 13



available. In this paper, we proposed a method called
SIMCCDA for predicting circRNA-disease associations
based on known circRNA-disease associations. Integrat-
ing data regarding circRNA similarity and disease simi-
larity, we employed IMC to construct the model.
LOOCV was applied to assess the accuracy of the
SIMCCDA. We then compared our method with
KATZHCDA. Further case studies were also performed
on breast cancer, stomach cancer and colorectal cancer.
Based on the prediction results, SIMCCDA performs
well in cross validations on the four datasets we used.
Simultaneously, the compared results indicate that our
method can identify more associations between circRNA
and disease.
The prominent performances of SIMCCDA may have

been facilitated by the following factors. First, SIMCCDA
was constructed based on the integrated circRNA and
disease similarities, which can make a full use of various
similarity data to characterize potential circRNA-disease
associations. Second, SIMCCDA transformed circRNA-
disease associations into a recommendation system
problem and applied the IMC algorithm of the recom-
mendation system to predict potential circRNA-disease
associations. A decisive advantage of IMC is that it can
supplement the missing values in the circRNA-disease
association matrix to improve the performance. Third,
the datasets used in this study were derived from various
validated databases. Observing the results obtained on
the four datasets, we found that the prediction ability of
our model was better than the previous method.
However, our model also has some limitations. First,

although we introduce the sequence similarity of cir-
cRNA and the semantic similarity of disease, the calcula-
tion of Gaussian interaction profile kernel similarity
relies heavily on known circRNA-disease associations,
thus causing inevitable bias towards well-investigated
circRNAs and diseases. Second, SIMCCDA could not be
applied to unknown circRNA and diseases. In our future
work, we will extend our method to solve these
limitations.
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