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Abstract

compared to those identified using genomic data only.

Background: Neoantigens can be differentially recognized by T cell receptor (TCR) as these sequences are derived
from mutant proteins and are unique to the tumor. The discovery of neoantigens is the first key step for tumor-specific
antigen (TSA) based immunotherapy. Based on high-throughput tumor genomic analysis, each missense mutation can
potentially give rise to multiple neopeptides, resulting in a vast total number, but only a small percentage of these
peptides may achieve immune-dominant status with a given major histocompatibility complex (MHC) class | allele.
Specific identification of immunogenic candidate neoantigens is consequently a major challenge.

Currently almost all neoantigen prediction tools are based on genomics data.

Results: Here we report the construction of proteogenomics prediction of neoantigen (ProGeo-neo) pipeline, which
incorporates the following modules: mining tumor specific antigens from next-generation sequencing genomic and
MRNA expression data, predicting the binding mutant peptides to class | MHC molecules by latest netMHCpan (v.4.0),
verifying MHC-peptides by MaxQuant with mass spectrometry proteomics data searched against customized protein
database, and checking potential immunogenicity of T-cell-recognization by additional screening methods. ProGeo-
neo pipeline achieves proteogenomics strategy and the neopeptides identified were of much higher quality as

Conclusions: The pipeline was constructed based on the genomics and proteomics data of Jurkat leukemia cell line
but is generally applicable to other solid cancer research. With massively parallel sequencing and proteomics profiling
increasing, this proteogenomics workflow should be useful for neoantigen oriented research and immunotherapy.

Keywords: Neoantigen prediction, Proteogenomics, Workflow, Immunogenicity screening

Background

Cancer neoantigens arise from tumor-specific mutations,
which are bound to human leukocyte antigen (HLA)
molecules and shuttled to the cell surface, they are
highly immunogenic because they are not present in
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normal tissues and hence bypass central thymic toler-
ance [1]. In human being, the MHC molecules are
encoded by a cluster of genes on chromosome 6 and
often referred to as HLA. They are broadly split into two
types: MHC-class I (HLA-I) and MHC-class II molecules
(HLA-II). MHC class I-associated peptides are generated
following degradation of intracellular proteins by the
ubiquitin-proteasome system, which can be recognized
by cytotoxic CD8+ T cells [2]. Helper CD4+ T cells
recognize MHC class II-associated peptides, which are
derived from protease-mediated degradation of exogen-
ous proteins in extracellular origin [3]. We chose to
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focus our study here on class I CD8 + T cell epitopes be-
cause CD8+ T cells are the main mediators of naturally
occurring and therapeutically induced immune re-
sponses to cancer.

Neoantigens could be immunogenic and thus become
ideal targets for cancer immunity. Some projects have
confirmed that tumor-specific antigens can be targets
for checkpoint blockade therapy and personalized vac-
cine therapy [4, 5]. Anagnostou et al. found that neoanti-
gens were relevant targets of initial response to
checkpoint blockade in non-small cell lung cancer [6]. T
cell responses against tumor neoantigens have been ob-
served after immune checkpoint blockage with ipilimu-
mab [7]. Lu et al. demonstrated that adoptive T cell
therapy targeting a tumor-specific antigen can mediate
long-term survival for a patient with metastatic melanoma
[8]. It has also been shown that naive T cells from non-
cancer patients could react against tumor neoantigens, pro-
viding evidence that de novo anti-neoantigen responses
could be elicited [9]. Furthermore, two studies examining
the effects of neoantigen vaccines on patients with stage III
or IV melanoma demonstrated clinical safety and immuno-
genicity efficacy data in phase I studies [1, 10].

In recent years, technologies in genomics and proteo-
mics have been significantly improved, in the meantime
some supportive bioinformatics and in silico HLA-binding
prediction tools have been developed. Multiple immu-
noinformatics studies endeavored to predict mutation-
derived neoantigens and identify those with clinical rele-
vance from large-scale cancer sequencing data [11, 12].
These methods, such as Tumor Immunology miner
(TIminer) [13], pVACSeq [14], INTEGRATE-neo [15],
TSNAD [16], have contributed to a major breakthrough
in the discovery of neoantigens. TIminer integrates bio-
informatics tools to predict tumor neoantigens through
analyzing single-sample RNA-seq data and somatic DNA
mutations. pVACSeq combines the tumor mutation and
expression data to predict and filter neoantigens.
INTEGRATE-neo was designed to predict neoantigens
from fusion genes, which combines peptide prediction
and HLA allele prediction results. TSNAD is an integrated
software for cancer somatic mutation and tumor-specific
neoantigen detection.

However, previous neoantigen prediction tools only
predict HLA-binding with genomic and transcriptome
data, without considering proteomics data. In this work,
we constructed a workflow to predict and verify HLA-I
binding peptides on personalized level by proteogenomic
strategy which integrates genomics and proteomics data.
The workflow was developed based on a specifed tumor
cell line data, but it would be applicable to specific
tumor patient data. The workflow is implemented in a
software package, ProGeo-neo. ProGeo-neo integrated
latest genomics and proteomics data analysis as well as
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neoantigen prediction methods, with in-house coding,
and further filtering and immunogenicity screening, to
facilitate users to predict and select tumor neoantigen.
ProGeo-neo consists of three modules: construction of
customized protein sequence database, HLA alleles pre-
diction, neoantigen prediction and filtration. Users can
run ProGeo-neo by performing command lines under
the Linux operation system (centos6). Full source code
and installation instructions are freely available from
https://github.com/kbvstmd/ProGeo-neo.

Material and methods

The ProGeo-neo workflow construction is illustrated in
Fig. 1, including: Transcriptome and genome data pro-
cessing and annotating of mutant peptides; NetMHCpan
[17] predicting neoantigens based on peptide-MHC
binding affinity; mutant peptides filtered considering
transcripts per million (TPM) to select only candidate
neoantigens arising from expressed genes; proteoge-
nomics identification of potential predicted neoantigens
based on constructed mutant peptidome database and
MaxQuant [18] software. Furthermore, sequence simi-
larities between the neoantigens and the cross-reactive
microbial peptides were calculated to select more likely
immunogenic neoantigens. At last, the workflow was im-
plemented in a software package for potential further
application on personalized proteogenomic discovery of
tumor neoantigens.

Data

The paired end 200 bp sequencing RNA-seq data for the
Jurkat cell line generated from Illumina HiSeq 2000 was
downloaded at NCBI's Gene Expression Omnibus
(GEO) [19] repository with accession number GSE45428
[20]. LC-MS/MS Jurkat proteomics data generated by
LTQ Orbitrap velos in raw format were obtained from
PeptideAtlas (http://www.peptideatlas.org/) with the
identifier PASS00215. Jurkat whole genome sequencing
data were obtained from Zenodo (400615) [21] The data
set of known positive epitopes, that were cross-reactive
microbial peptides, was from the Immune Epitope Data-
base [22] (IEDB, http://www.iedb.org/).

Human normal protein sequences were downloaded in
fasta format from Uniprot Database (http://www.uniprot.
org/) [23]. Contaminated protein sequences were down-
loaded in fasta format from common Repository of Adven-
titious Proteins (cRAP) (http://www.thegpm.org/crap/).

RNA-seq data processing

The RNA sequencing data in SRA format were con-
verted to fastq with the fastq-dump tool which is part of
the SRA Toolkit [24]. Then low-quality reads were re-
moved by using Sickle (version 0.1.18), which confirmed
that the sequencing was of high quality. All clean reads
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Fig. 1 The workflow of ProGeo-neo: neocantigen prediction and selection with proteogenomic strategy. It includes three functional blocks: (1)
RNA-seq data analysis, leading to variant peptides, which was used to create a customized database (highlighted in blue above); (2) HLA alleles
were inferred from RNA-seq data (highlighted in red above). To increase the flexibility of ProGeo-neo, users have the option to upload their own
HLA alleles; (3) Neoantigen prediction based on genomic data. Neoantigen screening by proteomics data (LC-MS/MS). Neoantigen filtration by
RNA expression and by T cell receptor recognition (epitope). (highlighted in green above)
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were aligned to the human genome (release hg38) using
Burrows-Wheeler Alignment tool (BWA) (version
0.7.17) [25]. Samtools (version 1.9) [26] was used to con-
vert the resulting sam files to binary format (bam). Du-
plicate reads were marked and removed using the Picard
tool MarkDuplicates. Base recalibration was performed
with GATK (version 4.0.10.1) [27] to reduce false-
positive variant calls. Samtools mpileup command was
used to calculate the genotype likelihoods supported by
the aligned reads. And then the Bcftools (version 1.9)
[28] use the genotype likelihoods generated from the
previous step to call SNVs, and output all identified vari-
ants in the variant call format (VCF). Only single nu-
cleotide variants (SNVs) with a quality score (QUAL)
higher than 20 were used for subsequent analysis. Fi-
nally, annotation of single nucleotide polymorphisms
(SNPs) against hg38 human reference genome was per-
formed using Annovar [29].

Kallisto (V 0.45.0) [30] was used to quantify transcripts
expression by TPM level from RNA-seq data.

HLA alleles were inferred from RNA-seq data using
OptiType [31] with default settings.

Neoantigen prediction

NetMHCpan has been verified by several groups to be
the most accurate tool currently available for predicting
neoantigens. Therefore, we integrate it to forecast mu-
tant peptides that bind to MHC class I molecules using
artificial neural network algorithm. The predicted HLA
alleles and the mutated expressed peptides were used as
input for the algorithm NetMHCpan4.0 to estimate their
binding affinities and predict neoantigens.

Mutation annotation and peptide extraction

Tumor missense mutations, translated into amino acid
substitutions, provide a form of antigens that the im-
mune system perceives as foreign, which elicits tumor-
specific T cell immunity. Hence, we focused on missense
variants in this study. All the mutations were annotated
with Annovar. Sequences corresponding to each of the
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coding missense mutations that would cause amino-acid
substitutions were translated into a 21-mer amino acid
fasta sequence, with 10 amino acids flanking the
substituted amino acid on each side.

Classification of neoantigen prediction result

Percentile rank scores return a higher sensitivity in
MHC ligand identification compared to half-maximum
inhibitory Concentration (IC50) [32], the rank score ap-
proach starts from the extreme assumption that the
number of presented peptides is identical for all MHC
molecules, this measure is not affected by inherent bias
of certain molecules towards higher or lower mean pre-
dicted affinities. We therefore select candidate binders
based on %Rank rather than IC50, the smaller of %rank
value indicates the stronger affinity of the predicted
neoantigen with its corresponding HLA subtype. Each
peptide may be classified as a strong binder (%Rank<0.5),
weak binder (0.5 < %Rank<2) or non-binder (%Rank> 2).
We included both strong and weak binding predicted
neoantigens in sebsequent analyses.

Neoantigen filtration

Not all predicted neoantigens resulting from cancer mu-
tations can be expected to express as neo-peptides, or to
be immunogenic, as only a small fraction of peptides in
most current vaccines are capable of eliciting CD8 + T
cell responses. It is necessary to screen the reliability of
the predicted candidate antigens based on peptide pres-
ence and potential immunogenicity.

Identification of mutant peptides in protein level

SNVs from RNA-seq data provide a better reference
proteomics datasets compared with WGS, of which the
read coverage is generally lower [33]. Therefore, mass
spectrometry (MS)-based proteogenomic neoantigen dis-
covery workflow is better to use customized searchable
peptide databases derived from tumor RNA-seq. A Py-
thon script was written to directly map single amino acid
variants (SAAVs) from the Annovar annotated SNPs.
Mutant protein sequences with missense mutation sites
are generated by substituting the mutant amino acid in
human normal protein sequences and all these sequences
are appended to the human normal protein and cRAP
fasta file. cRAP is a database of protein sequences that are
found as contaminants in proteomics experiments.

In this work raw LC-MS/MS Jurkat proteomics spectra
were searched against the customized Uniprot+cRAP+-
Variant peptides database using the MaxQuant to filter
neoantigens. MaxQuant identified mutant peptides with
MS data, which could verify the presence of expressed
neoantigens. The parameter settings of MaxQuant were
as follows: for peaklist-generating the default parameters
were used; the variable modifications included protein
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N-terminal acetylation, methionine oxidation; strict tryp-
sin specificity was required allowing up to two missed
cleavages; carbamidomethylation of cysteine was set as
fixed modification. Reversed sequences were used as a
decoy database. False discovery rate (FDR) thresholds for
protein, peptides were specified at 1%. Minimum re-
quired peptide length was set to 7 amino acids.

Filtering neoantigens potentially recognizable by T cell
receptors

An immunogenic peptide should fulfill at least two cri-
teria: presentation by an MHC molecule and recognition
by a T-cell receptor. It is known that neoantigen has
homology to infectious disease-derived epitopes, which
are recognized by the human TCR repertoire. Tumor-
infiltrating T cells can cross reactively recognize both
cancer neoantigens and homologous non-cancer micro-
bial antigens [34]. The higher the sequence similarity be-
tween the neoantigen and the cross-reactive microbial
peptide, the greater the probability that the neoantigen
is recognized by T cells. Hence, blastp [35] method is
used to measure the sequence similarity of neoantigens
and cross-reactive microbial peptides in the pipeline.
These cross-reactive microbial peptides are linear epi-
topes from human infectious diseases that are positively
recognized by T cells after class I MHC presentation.

Results

Neoantigens identified by NetMHCpan

Two HLA genotypes of each gene could be obtained be-
cause humans are diploid, we only considered mutated
epitopes whose HLA class I allele restriction was defined
at four-digit resolution, including one HLA-A allele
(HLA*A03:01), two HLA-B alleles (HLA-B*07:02, HLA-
B*35:03), two HLA-C alleles (HLA*C07:02, HLA*C04:01)
identeified from Jurkat cell line.

Class I MHC dimers are responsible for presenting
CD8+ cytotoxic T-cell epitopes and binding peptide li-
gands of 8-11 amino acids. Hence, the results from
NetMHCpan were peptides of 8—11 amino acids in length
for Jurkat cell line used in this study. The peptides without
mutation sites were removed, which resulted in 36,835
expressed candidate neoantigens predicted by NetMHC-
pan, originated from 9817 missense mutations based on
Jurkat whole genome sequencing data (Additional file 1:
Table S1). Candidate neoantigens included 9966 high-
affinity peptides (%Rank<0.5) and 26,869 low-affinity pep-
tides (0.5 < %Rank<2). Neoantigens distribution in binding
each HLA allele was shown in Fig. 2, with the number of
neoantigens varied across genotypes and ranged from
6175 to 8499. In addition, we observed that some neoanti-
gens were shared between HLA genotypes, which reflects
the flexibility of interaction between antigen peptides and
MHC molecules, the same type of HLA-I molecules can
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selectively identify antigenic peptides with the same or
similar anchoring residues, this could facilitate generation
of novel vaccines for immunoprophylaxis and immuno-
therapy. These shared neoantigens only represent identical
peptides originated from one gene, they have the ability to
combine with different HLA typing. MHC-class I genes
have significant population variation, with polymorphisms
resulting in amino-acid differences particularly concen-
trated in the region that binds the processed peptides.
This results in different binding strengths to the same
peptides being conferred by these individual genotypes,
which may lead to differences in response intensity. It in-
dicates that MHC molecules with its polymorphism par-
ticipate in, as well as regulate immune response.

Neoantigens filtered in gene expression level

Peptide presentation is statistically associated with expres-
sion of RNA [36, 37]. Peptides from genes expressed at O
TPM (unexpressed at RNA level) were excluded from candi-
date peptides (8-11AA) even if their %rank values were <2,
resulted in 30,141 binding peptides being filtered out.

Neoantigens filtered in protein level
MS-based tumor specific antigen discovery workflows
must use proteogenomic approaches to build customized

databases derived from tumor RNA-seq data [38]. The
RNA-seq data were analyzed to find Jurkat cell-specific
SNVs and used to create a customized database for pep-
tide identification by MS searching in this study. During
the pre-processing of RNA-seq data, only SNVs with a
quality score higher than 20 were used for subsequent
analysis, which is a phred-scaled score that reflects the
confidence of the SNV call. Eventually, high-quality
non-synonymous missense mutations were identified.
For each missense mutation, a custom Python script was
used to translate the reference amino acid to the variant
amino acid and totally generated 9083 mutant protein
sequences. Using these mutant protein sequences, along
with the human reference proteome (Human 21,410 en-
tries) and cRAP (Human 68 entries), a customized fasta
database was created.

The customized database was searched against the MS
data using the MaxQuant software with described pa-
rameters. Seventy thousand six hundred twenty-two
peptides were identified at a 1% FDR. From these, there
were a total of 487 mutant peptides (7-43AA) mapping
to 473 missense SNV sites (Additional file 2: Table S2),
corresponding to 0.69% of all peptides. This percentage,
representing the proportion of single amino acid poly-
morphism peptides detected in a shotgun proteomics
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experiment, is similar to previous findings [39, 40]. We
further selected only the candidate neoantigens from the
487 mutant peptides (7-43AA) identified from Max-
Quant. Finally, 655 candidate neoantigens with identified
peptides proof at protein expression level were retained
for further screening of potential clinical relevance
(immunogenicity).

Filtering neoantigens potentially recognized by T cell
receptors

Peptides of bacterial and viral pathogens can be recog-
nized by immunogenic T cells, therefore neoantigens
cross-reactive with these extrogenous pathogens may be
recognized by tumor reactive T cells. Among the 655
candidate neoantigens, 313 neoantigens were found to
be most likely recognized by the TCR repertoir based on
a sequence comparison analysis (Additional file 3: Table
S3), with a comparison probability of 47.79%. The results
of sequence similarity between neoantigens and cross-
reactive peptides were ranged from 20 to 100. We artifi-
cially divided the sequence similarity score of neoanti-
gens into four stages (20-39, 40-59, 60-79, 80-100)
(Fig. 3), it is observed that the scores of sequence simi-
larity are greater than 60 among the majority of neoanti-
gens. Generally, the higher the sequence similarity, the
greater the likelihood that a neoantigen will be recog-
nized by a T cell receptor.

To test if our method provides the accuracy to identify
mutant peptides as neoantigens, we performed the se-
quence similarity analysis of peptides that were not fil-
tered by mass spectrometry in the same way. It was
found that 11,100 peptides have sequence similarity with

® 80-
§ HLA type
= HLA-A*03:01
.‘—é’ == HLA-B*07:02
@ — _B*35:
@ co- HLA-B*35:03
2 m— HLA-C*04:01
(0]
=2 HLA-C*07:02
[0
0]

40- |

0 50 100 150 200
Neoantigen.count

Fig. 3 Sequence similarity scores of neoantigens correlating with
higher number of cross-reactive microbial peptides
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cross reactive microbial peptides among the 29,486 can-
didate neoantigens, with a comparison probability of
37.64%, which was significantly lower than our previous
alignment probability 47.79%. It proves the validity of
identification at the protein level.

Confirmation of potentially significant neoantigens by
functional analyses

To acquire understanding of the biological functions of
77 mutant proteins, we used our in-house OmicsBean-
Cancer workflow software (http://www.omicsbean-can-
cer.com/), which incorporated pathway and network
analysis tools such as KEGG [41] and protein-protein in-
teractions (PPI) [42]. The results showed that multiple
neoantigen proteins participated in AMPK, MAPK,
mTOR signaling pathways which are key players in oc-
currence and development of leukemia from which Jur-
kat cell line was originated from. Specifically, MAPK14
gene was involved in the regulation of multiple immune
signaling pathways, such as Hematopoietic cell lineage,
Toll like receptor signaling pathway, etc. MAPK14 can
promote the expression of autophagy related genes at
transcriptome level, autophagy may lead to the presenta-
tion of longer HLA-I peptides from the pathogens or
from the self-proteome. Furthermore, the String database
was used to depict the integrated PPI of proteins associ-
ated with neoantigens, which help to judge the signifi-
cance of a neoantigen protein by checking its position in
PPI network. Fifty-five mutant proteins were interrelated
in the neoantigen network (Fig. 4). We found that eEF2
was a driver gene, and an important node in protein net-
work. It has been reported that eEF2-derived immuno-
genic peptide was able to further enhance its capacity of
inducing antigen-specific cytotoxic T lymphocytes (CTLs)
against colon cancer cells [43]. These are examples to
show that if the mutant peptides derived from MAPK14
or eEF2 are used as neoantigen targets to stimulate the
body, the specific immune response will likely benefit the
destruction of tumor cells. These neoantigens may qualify
further experimental validation.

Test of other customized data

To test this pipeline, we analyzed the high-throughput
sequencing and mass spectrometry data in Mono-allelic
Cells [44]. First, we generated a customized personalized
reference database based on RNA-seq data. Then, we
searched the raw MS data against this database, directly
identified 9 peptide ligands harbouring mutations from
eluted HLA class I peptides assigned to HLA-B5701.
These data of limited size are provided as test data for
ProGeo-neo pipeline. Different modules of the pipeline
can be called into function according to the availability
of data types.
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ProGeo-neo: integrated software for neoantigen
prediction and screening based on customized
proteogenomics workflow

We have further implemented the proposed approach as
an integrated software named ProGeo-neo, which is writ-
ten in Python programming language (v2.7), and calls for
standard third-party software. In order to run normally,
third-party softwares are provided, but Licenses for aca-
demically used software (NetMHCpan) must be obtained
by users. Compared with other neoantigen prediction
pipelines, ProGeo-neo has a number of advantages: first, it
offers a pipeline for mutation calling from high-
throughput sequencing data; second, it offers a proteoge-
nomic strategy to build customized database derived from
tumor RNA-seq data; third, it not only takes into consid-
eration the neoantigens presented by class I MHC mole-
cules, but also directly identifies these mutant peptides
with MS data; fourth, it offers additional filtration criteria:
tumor vs. closest microbial peptide sequence similarity.

The software consists of three toolkits: construction of
customized protein sequence database, HLA alleles pre-
diction, neoantigen prediction and filtration. Before run-
ning the toolkit, users need to configure the software
paths and parameters. This step is of great significance.
After setting the configurations, users can run the pipe-
line by performing command lines. Detailed operations
and scripts used to produce this result are provided in
the user’s manual. ProGeo-neo is available at https://
github.com/kbvstmd/ProGeo-neo.

Discussion

Based on high-throughput tumor genomic analysis, each
missense mutation can potentially give rise to multiple
neopeptides, resulting in a vast total number, only one out
of 2000 of the peptides may achieve immunodominant
status with a given class I allele [45] (Fig. 5a). Specific
identification of immunogenic candidate neoantigens is
consequently a major challenge. Here we provide ProGeo-
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neo pipeline, by incorporating state of the art key bioinfor-
matics tools and screening methods in one workflow, the
numbers of reliable neoantigen candidates can be greatly
cut down (Fig. 5b), which will benefit preclinical studies.
In our work, 9871 mutant peptides (21AA), which map to
5482 genes, give rise to 373,046 theoretical mutant pep-
tides. About 10% potential HLA-I binding neoantigens
were identified by NetMHCpan. Tandem mass spectra
were processed by MaxQuant to infer mutant peptides,
only a minority of them were verified at the level of prote-
ome (Fig. 5b). The neopeptides identified from this cus-
tomized database workflow were of much higher quality
as compared to those identified using genomic data with-
out filtering. Finally, sequence homology analysis was per-
formed based on blastp algorithm, 313 neoantigens on 77
mutant proteins were identified. Furthermore, we found
that the fraction of neoantigens derived from driver genes
were less than the number of neoantigens expressed by
passenger genes (Fig. 4), which was consistent with previ-
ous report [46]. A direct implication of this bias in
neoantigen-specific T cell reactivity toward patient-
specific passenger mutations is that the targeting of de-
fined neoantigens will likely require the development of
personalized  immunotherapies [47].  Furthermore,
ProGeo-neo can be applied not only to identify putative
neoantigens, but also to compare neoantigens with cross-
reactive microbial peptides. The analysis results can be
used for subsequent clinical biomarker discovery.

So far, the large body of publicly available MS/MS data
has been used for training HLA-I binding prediction [44,
48, 49] or building spectral libraries [50]. Mass spec-
trometry analyses of peptides from the peptide-human
leukocyte antigen (HLA) complex have enabled the dis-
covery of HLA ligandome tumor antigens for personal-
ized vaccines, LC-MS/MS being an important part for
identification of potential cancer neoantigens. Therefore,
proteogenomic method was used to predict personalized

neoantigens in this study. To the best of our knowledge
there is currently no publicly available integrated com-
putational pipeline to perform prediction of neoantigens
in consideration of proteomics data. Our ProGeo-neo
presents a bioinformatic pipeline for mining tumor spe-
cific antigens from next-generation sequencing including
genomic and mRNA expression data, incorporating lat-
est netMHCpan (v.4.0) to predict the binding informa-
tion of mutant peptides to class I MHC molecules,
achieving MHC-peptides validation at the peptide/pro-
tein level by MaxQuant, and checking potential of T-
cell-recognization by adding sequencing screening
methods. Our approach efficiently captured peptides
generated by missense variants. With massively parallel
sequencing and proteomics becoming increasingly ap-
plicable, such analyses will be increasingly useful for
cancer research and immunotherapy.

Historically our group utilized proteogenomics strat-
egy for genome reannotation [51, 52], we also estab-
lished methods to study tumor fusion genes and virus
genome insertion into human tumor genome by proteo-
genomics analyses [53, 54]. In recent years the proteoge-
nomics strategy has gained wider attention in high-
profile cancer research, because of its integration nature
to directly connect proteomics data and genomics data
[55, 56]. However, using proteogenomics method to dis-
cover neoantigen is still a new field in its infancy. The
main bottle neck lies in the lower coverage of proteo-
mics peptide detection compared to whole-genome se-
quencing, especially when neoantigens are among the
low-abundance proteins and hardly detectable by general
mass spectrometry. The keep-progressing development
of high accuracy tandem mass spectrometry technology
has greatly improved the peptide capture coverage and
depth, yet the most ideal proteomics data for proteoge-
nomics discovery of neoantigens are HLA-binding
enriched peptidomics data. As such data are being
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deposited into public resources [57], researches in this
field are anticipated to increase, and our pipeline ProGeo-
neo would be a useful bioinformatics aid.

We are aware that our study bears several limitations.
First, mutations in tumor include not only point muta-
tions but insertion/deletion mutations or frame shift
mutations. It is clear that insertion/deletion and frame-
shift mutation will lead to larger changes in amino acid
sequence and spatial structure, which may also generate
potential neoantigens, these genomic variations are not
yet considered in current version of our tool. A recent
study reported that noncoding regions are the important
source of targetable tumor-specific antigens [58]. Neoan-
tigen discovery currently relies on whole exome sequen-
cing and predominantly on the predictive power of
algorithms that infer HLA-ligand binding. Thus, focus-
ing on the exome as the only source of tumor-specific
antigens is very restrictive. Lastly, our work does not
currently address prediction of HLA class II binding epi-
topes presented to CD4 + T cells because so far the pre-
diction accuracy for MHC-II binders is still low due to
their longer size. These represent future developing di-
rections for us, as well as for the field of proteogenomics
prediction and selection of personalized tumor neoanti-
gens, which would help the important vaccine-based im-
munotherapy for human cancers.

Conclusions

Mass spectrometry-based proteogenomics is a promising
new strategy for identifying tumor neoantigens. We
propose a workflow to predict and verify HLA-I binding
neoantigen peptides on personalized level with proteoge-
nomic methodology. The workflow is constructed based on
the genomics and proteomics data of Jurkat leukemia cell
line but suitable for predicting neoantigens in other individ-
ual solid tumors. The workflow is implemented in a soft-
ware package, called ProGeo-neo. ProGeo-neo can be
applied not only to identify putative neoantigens, but also
to screen neoantigens for their immunogenicity. The neo-
peptides identified from this customized database workflow
are of much higher quality as compared to those identified
using genomic data only, and could greatly reduce the val-
idation scope of potential subsequent experiments. With
parallel sequencing and proteomics becoming increasingly
applicable, ProGeo-neo may prove to be a useful bioinfor-
matics tool for cancer research and immunotherapy.
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