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Abstract

Background: Obesity is common among kidney transplant recipients; However biological mediators of obesity are
not well understood in this population. Because subcutaneous adipose tissue can be easily obtained during kidney
transplant surgery, it provides a unique avenue for studying the mechanisms of obesity for this group. Although
differential gene expression patterns were previously profiled for kidney transplant patients, gene co-expression
patterns can shed light on gene modules not yet explored on the coordinative behaviors of gene transcription in
biological and disease processes from a systems perspective.

Methods: In this study, we collected 29 demographic and clinical variables and matching microarray
expression data for 26 kidney transplant patients. We conducted Weighted Gene Correlation Network Analysis
(WGCNA) for 5758 genes with the highest average expression levels and related gene co-expression to clinical
traits.

Results: A total of 35 co-expression modules were detected, two of which showed associations with obesity-
related traits, mainly at baseline. Gene Ontology (GO) enrichment was found for these two clinical trait-
associated modules. One module consisting of 129 genes was enriched for a variety of processes, including
cellular homeostasis and immune responses. The other module consisting of 36 genes was enriched for tissue
development processes.

Conclusions: Our study generated gene co-expression modules associated with obesity-related traits in kidney
transplant patients and provided new insights regarding the cellular biological processes underlying obesity in
this population.
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Background
Obesity is a growing health concern worldwide and
is associated with renal co-morbidities such as
Chronic Kidney Disease (CKD), End Stage Renal Dis-
ease (ESRD), and other kidney complications [1–7].
In 2011, 23% of kidney transplant recipients in the

United States were obese, 9.4% were morbidly obese,
and 2.1% were morbidly obese [8]. In addition, post-
transplantation weight gain in kidney transplant co-
horts is common, thus exacerbating patients’ preex-
isting obese phenotype and decreasing the likelihood
of long-term renal allograft success [9, 10].
Obesity is influenced by the interaction of genetic

and environmental factors [11–13], and as obesity
prevalence increases and genetic methods evolve,
there is a growing interest in studying the genetic
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and biological mechanisms driving weight gain. Sev-
eral studies have investigated genetic mechanisms of
obesity through various methodologies, including
gene expression studies, Genome Wide Association
Studies (GWAS), and obesity-related biomarkers [14,
15]. However, more comprehensive systems-based
genetic analyses, which could provide a more robust
understanding of gene interactions, pathways, and
biological functions, are underexplored. Such inquiry
could provide a more robust understanding of gene
interaction networks, their pathways, and biological
functions. Weighted gene correlation network ana-
lysis (WGCNA) is one such systems-based approach
that offers the ability to create modules of gene net-
works (groups of co-expressed genes) that are highly
associated with clinical variables of interest (e.g.,
Body Mass Index).
In addition to underutilizing systems-based approaches

to study obesity, very few researchers have conducted gen-
etic studies in human subcutaneous adipose tissue. Col-
lecting human tissue, including adipose tissue, involves
invasive procedures, making other noninvasive methods
of sample collection (i.e., blood, stool, and saliva) more
feasible and attractive to research participants. However,
subcutaneous adipose tissue can be easily obtained during
kidney transplant surgery. Furthermore, subcutaneous adi-
pose tissue is a particularly promising candidate for gene
studies of obesity, because it is metabolically active and
plays an important role in endocrine pathways that modu-
late eating behavior and metabolism (e.g., appetite regula-
tion, insulin signaling, and leptin signaling) [16].
A recent study by Joseph at al. carried out an analysis of

gene co-expression patterns associated with body mass
index using expression data in whole blood cells [17].
However, it is still unknown how gene co-expression pat-
terns in adipose tissue are related to obesity. A longitu-
dinal study by Cashion et al. analyzed gene expression
data from a cohort of kidney transplant recipients to iden-
tify individual genes and molecular pathways that could
be driving weight gain [18]. Differential gene expression
analysis revealed that changes in gene expression were as-
sociated with insulin, inflammatory signaling pathways,
and leptin. Their analysis also identified four obesity-
associated genes (CPE, LEP, NPY1R, and NPY5R) that
were positively correlated with weight gain and two genes
(APOM and CRP) that were negatively correlated with
weight gain. Cashion et al. also found demographic and
environmental factors were associated with weight gain
following kidney transplantation [19]. Although Cashion
et al. compared expressed genes between those who did
and did not gain weight, they did not analyze the inter-
action patterns among expressed genes. The current study
builds on these previous findings by Cashion et al. and uti-
lizes gene expression data to analyze gene co-expression

networks to examine obesity-related traits in kidney trans-
plant recipients [18].

Methods
Materials and methods
Design and setting
This study utilized gene expression data to examine gene
interactions in human adipose tissue of kidney trans-
plant recipients. Tissue samples were obtained from in-
vestigators at a regional MidSouth transplant center,
who recruited 153 transplant recipients from 2006 to
2011 to study the genetic and environmental factors as-
sociated with weight gain following kidney transplant-
ation. Written informed consent was obtained from all
participants, and some patients also signed an optional
repository consent. The parent study was approved by
the Institutional Review Board of the University of Ten-
nessee Health Science Center. Additional analyses on
the repository samples were approved by the Office of
Human Subjects Research and the Institutional Review
Board of the National Institutes of Health.
All adults, regardless of race or sex, were eligible for

participation. To control for the effect of pre-
transplantation immunosuppressant therapy on gene ex-
pression profiles, exclusion criteria included prior treat-
ment with prednisone or other immunosuppressant
therapies. Other exclusion criteria included underweight
status (i.e., BMI < 18.5 kg/m2) and pre-existing condi-
tions that may impact weight, including gastrointestinal,
pulmonary, neurologic, or gynecological diseases. Of the
153 transplant recipients, thirty signed a repository con-
sent and also had RNA microarray data. Of these thirty
participants, three were excluded due to excessive weight
loss, which was determined to be a potential indicator of
an abnormal recovery. An additional participants’ sample
was excluded as it did not meet quality control criteria.
A total of 26 participant samples were included in the
current study.

Demographic and clinical variables
Demographic data (age, race, and sex) were collected
from electronic medical records (Table 1). Clinical la-
boratory values were collected at the time of trans-
plantation and at 3, 6, and 12 months post
transplantation. Clinical variables were analyzed in-
cluding height, weight, BMI, body fat, creatinine
levels, and glucose levels. Body weight and height
were used to calculate BMI (weight in kilograms di-
vided by height in meters squared). Weight categories
were selected as recommended by the Centers for
Disease Control, with greater than 30 kg/m2 indicating
obesity. Body fat was determined using dual-energy
X-ray absorptiometry (DEXA) scans. Blood samples
were collected to determine laboratory values (e.g.,

Jaime-Lara et al. BMC Medical Genomics           (2020) 13:37 Page 2 of 12



fasting glucose and creatinine). Reference values of
normality for creatinine and fasting glucose levels
were 0.5–1.2 mg/dL and 70–100 mg/dL respectively.
The baseline clinical variables included weight (WT_

BL), height, total subcutaneous body fat (SubTot_Fat_
BL), percent of subcutaneous body fat (SubTot_Pfat_
BL), whole-body fat percent (WB_Tot_Pfat_BL), body
mass index (BMI_BL), blood creatinine (CREATININE_
BL), and blood glucose (GLUCOSE_BL). The following
variables were also measured at 3, 6, and 12months after
kidney transplantation: blood creatinine (CREATININE_
3M, CREATININE_6M, CREATININE_12M) and blood
glucose (GLUCOSE_3M, GLUCOSE_6M, GLUCOSE_
12M). Other variables were measured at 12 months, in-
cluding SubTot_Fat_12M, SubTot_Pfat_12M, and BMI_
12M.
Additionally, other pre-existing conditions (i.e. hyper-

lipidemia, hypertension, diabetes and depression) were
also collected from the medical charts and controlled for
in our analysis. Adipose tissue samples were collected
for all eligible participants at the time of transplant sur-
gery. Participants followed similar immunosuppressant
therapy for 6 months following transplantation, 80% re-
ceived 20 mg prednisone, 8% received 10 mg of prednis-
one, and 4% received 50 mg of prednisone. Six months
after undergoing a kidney transplant, 92% received 5 mg
of prednisone and 8% did not take prednisone.

Microarray data processing and annotation
As a part of the parent study, RNA was extracted from
adipose tissue samples and gene expression values were
obtained by the authors and Cashion et al. [18]. For
RNA extraction procedures please refer to Cashion et al.
[18]. The expression values were generated by Affyme-
trix Human Gene 1.0 ST Array (GEO platform ID:
GPL6244) and results were made available via GEO
(https://www.ncbi.nlm.nih.gov/geo/, Dataset ID: GSE33070;
annotation file: GPL6244.annot). These microarray data
are publicly available, although due to privacy concerns
only limited amount of demographic and clinical data
for these subjects are publicly available. Such data were

available to the authors on this paper through this
current collaboration, though they are still limited to
the repository dataset (specific available variables are
described above).
The microarray data were annotated using custom

programs to process the annotation file and to generate
mapping between genes and transcript IDs. For each
gene, we selected the transcript with the highest average
expression level to represent the expression of that gene.
Using this process, we obtained a total of 19,192 gene
expression profiles.

Constructing gene co-expression networks
A total of 5758 (30%) highly expressed genes were selected
for co-expression network analysis. The WGCNA package
was used to construct gene co-expression networks and
examine their associations with clinical variables [20]. A
soft-threshold power of 7 was used as it met scale-free
topology criteria (R2 ≈ 0.8) while generating reasonable
module sizes (mean = 37) (Fig. S1). Then, one-step net-
work construction and module detection were performed
with the following parameters: TOMType = “unsigned”,
minModuleSize = 10, reassign Threshold = 0, and merge-
CutHeight = 0.25. Next, for each detected gene module, its
eigenvector (vectors associated with linear system equa-
tions) was computed. Module-trait associations were
assessed based on the Pearson’s correlation between the
eigenvector of each module and each clinical variable. Ori-
ginal p-values of module-trait associations were adjusted
for multiple testing using the Benjamini-Hochberg (i.e.
False Discovery Rate or FDR) approach [21].

Enrichment analysis
Functional enrichment analysis was performed using
the online version of GOStat (http://gostat.wehi.edu.au/
cgi-bin/goStat.pl) [22]. Parameters were chosen as fol-
lows- database: goa_human; minimal length of consid-
ered GO paths: 3; maximal p-value: 0.05; maximum
number of GOs: 30; cluster GOs: 5; direction: over-
represented; correct for multiple testing: false discovery
rate. The 5758 highly expressed genes were used as a
genomic background to examine enrichment of co-
expression gene modules.

Identification of hub genes in co-expression gene
modules
Hub genes were identified using topology similarity as
described previously by Joseph et al. [17]. Briefly, we
used topology similarity to measure the comparability
between gene expression profiles, and computed the
topological matrix for the 5758 highly expressed genes.
Subsequently, 95% quantile of the topological matrix
was used as the cutoff for determining whether two
genes were connected. The connectivity of a gene was

Table 1 Demographic characteristics of the study cohort (N =
26)

Characteristic Value

Age at transplantation, mean (range) 47.7 (19~67)

Sex, n (%)

Male 11 (42.3%)

Female 15 (57.7%)

Race, n (%)

African American 15 (57.7%)

Caucasian 11 (42.3%)
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the number of genes connected with it in the same gene
module. This hub gene identification method was cus-
tom built using R software. In our analysis, hub genes in
co-expression gene modules were defined as genes with
high connectivity (ranked at the top 10%) in the candi-
date modules.

Pathway analysis
Ingenuity pathway analysis (IPA), https://www.
qiagenbioinformatics.com/products/ingenuity-pathway-
analysis/ was used for functional analysis, integration,
and interpretation of the biological role of the magenta
and darkgreen modules. One hundred twenty-nine genes
within the magenta module and 36 genes within the dark-
green module were input separately into IPA and a “Core
Analysis” was used to construct canonical pathways and
networks. Canonical pathways were constructed to exam-
ine the role of genes within each module (i.e. their role in
cell signaling and metabolic pathways). Networks were
constructed to identify and visualize gene-gene interac-
tions, each connection representing known relationships
between genes. Identified networks were scored based on
the degree of relevance (i.e. -log (Fisher’s Exact test)) of
their genes with a list of biological functions stored in the
Ingenuity Knowledge Base. The Human Gene 1.0 ST
Array was used as the reference background in order to
reduce bias towards pathways identified in the default of
option which uses the entire “Ingenuity Knowledge Base
(Genes Only)” as a reference set. Additionally we ran the
5758 highly expressed genes separately and compared the
results. We report the findings, canonical pathways and
networks, for the module results.

Results
Study data
The demographic characteristics of our 26 kidney trans-
plant recipients are summarized in Table 1. The clinical
characteristics for these same recipients are shown in
Table 2. A total of 26 different clinical variables were
measured.
The adipose tissue samples were used to generate raw

RNA expression data as a part of a previous study [18].
These samples were taken at the time of transplantation
surgery, and thus expression data were available for each
subject at baseline. We further processed the existing
RNA expression data to generate expression profiles for
a total of 19,192 genes (see Methods).
In the original study dataset, associations between

gene expression and weight change were controlled for
sex and race. Weight/height traits were frequently re-
lated to demographic characteristics [18, 23]. To more
accurately control for age, sex, and race as correlated to
weight and height traits, we computed the association
levels between each of the demographic and clinical

variables (Table 3). Using this method, when an associ-
ation between demographic and clinical variables was
noted, it was controlled for demographic characteristics.
We found that weight change variables were not associ-
ated with any demographic variable, and age was not as-
sociated with any weight and height trait in this study.
Height, weight, and BMI variables showed significant as-
sociations with sex at all time points (baseline, and 3, 6,
and 12 months) and with race at baseline. Therefore,
when we calculated the association between eigenvectors
and clinical variables, we adjusted height/weight traits
for sex and race at baseline and for sex at other time
points.
We further assessed whether gene expression data

could be affected by confounding factors at baseline. To
this end, we computed the first three principal compo-
nents of gene expression data and related them to demo-
graphic characteristics (gender, age group and race),
clinical parameters (glucose and creatinine), and preex-
isting diseases (hyperlipidemia, hypertension, diabetes
and depression). Ages were divided into binary groups
by age (above or below age 50). Age was divided into
two even groups (above or below age 50) in order to bet-
ter compare age with sex and race (both categorical vari-
ables). Additionally, age was tested as a continuous
variable and as a continuous variable age was not signifi-
cantly correlated with the first three principal compo-
nents of microarray data. For each discrete variable, an
ANOVA model was fit between the first three principal
components and the variable. For each quantitative vari-
able, a linear regression model was fit between the first
three principal components and the variable. The p-
values for all variables were retrieved and adjusted for
multiple testing according to the Benjami-Hochberg
procedure [21]. The outcome (Supplementary Table S1)
shows that none of these variables is significantly associ-
ated with the first three principal components of the
gene expression data. This analysis suggests that poten-
tial confounding factors are not substantially affecting
gene expression analysis.

Gene co-expression networks and their relationship to
obesity traits and fat-related traits in kidney transplant
patients
Gene co-expression networks can reveal coordinative be-
haviors of gene transcription for diseases or medical in-
terventions. We conducted Weighted Gene Correaltion
Network Analysis (WGCNA) to obtain a better under-
standing of gene expression mechanisms underlying
obesity-related traits. 5758 (30%) of the most highly
expressed genes were examined to reduce the noise (i.e.,
genes not actually expressed). Fitting of scale-free top-
ology identified 35 gene modules with sizes ranging from
10 to 1451 genes and a median size of 49 (Fig. 1). We
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Table 2 Clinical characteristics of the study cohort (N = 26)

Clinical parameter Mean ± Standard deviation Range (min; max)

Weight at Baseline

WT_BL (lbs) 174.80 ± 37.54 129.19; 257.90

Weight at 3 Months

WT_3M (lbs) 170.22 ± 38.79 123.00; 242.00

Weight at 6 Months

WT_6M (lbs) 179.96 ± 39.91 133.00; 259.80

Weight at 12 Months

WT_12M (lbs) 182.69 ± 47.33 128.00; 294.62

BMI at Baseline

BMI_BL (kg/m2) 27.41 ± 3.36 22.30; 33.62

BMI at 3 Months

BMI_3M (kg/m2) 26.68 ± 3.82 20.52; 34.85

BMI at 6 Months

BMI_6M (kg/m2) 28.21 ± 3.73 22.30; 34.70

BMI at 12 Months

BMI_12M (kg/m2) 28.58 ± 4.97 22.64; 39.95

Weight Change at 3 Months

WT_CHG_3M (%) −2.71 ± 6.10 −13.92; 8.13

Weight Change at 6 Months

WT_CHG_6M (%) 3.01 ± 6.69 −12.02; 14.24

Weight Change at 12 Months

WT_CHG_12M (%) 4.11 ± 10.83 −17.00; 25.84

Subtotal Body Fat at Baseline

SubTot_Fat_BL (g- below the head) 22,006.51 ± 7037.55 7505.83; 35,429.71

Percent Body Fat at Baseline

SubTot_Pfat_BL (%) 29.79 ± 7.39 14.05; 38.47

Whole Body Fat at Baseline

WB_Tot_Pfat_BL (g) 29.25 ± 6.95 14.50; 37.60

Subtotal Body Fat at 12 Months

SubTot_Fat_12M (g- below the head) 26,416.99 ± 9604.71 14,528.39; 49,349.50

Percent Body Fat at 12 Months

SubTot_Pfat_12M (%) 34.07 ± 6.85 19.20; 50.19

Whole Body Fat at 12 Months

WB_Tot_Pfat_12M (%) 33.28 ± 6.52 19.25; 48.84

Creatininie at Baseline

CREATININE_BL (mg/dL) 6.24 ± 3.60 1.20; 14.10

Glucose at Baseline

GLUCOSE_BL (mg/dL) 116.50 ± 44.23 70.00; 234.00

Creatinine at 3 Months

CREATININE_3M (mg/dL) 1.58 ± 0.42 1.00; 2.50

Glucose at 3 months

GLUCOSE_3M (mg/dL) 125.68 ± 51.46 70.00; 266.00

Creatininte at 6 Months

CREATININE_6M (mg/dL) 1.42 ± 0.28 1.00; 1.90
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then examined associations between these 35 gene mod-
ules and 26 clinical variables (see Methods, Fig. 2). In
order to ensure detection of reliable associations, the p-
values obtained from the WGCNA software were further
adjusted for multiple testing according to the Benjami-
Hochberg approach. At an adjusted p-value cutoff of
0.05, two modules showed association with at least one
clinical trait: the “magenta” module was correlated with
SubTot_Fat_BL; the “darkgreen” module was correlated
with SubTot_Pfat_BL and WB_Tot_Pfat_BL.
For each module, the eigengene represents its major

gene expression pattern among its component gene
members. The gene module membership measures
how close a gene’s expression profile is to its eigen-
gene, and it is expected that genes with higher mod-
ule memberships are more functionally important in
the module and are more likely to be correlated with
clinical traits. In turn, if genes in a module show high
correlations between module memberships and gene
significance (for association with traits), that suggests
that the association between the gene module and the
clinical trait is highly reliable. To this end, we made

plot gene module memberships and gene significance
for the modules associated with clinical traits (Fig. 3).
The magenta module showed a highly significant
module-membership to gene-significance correlation
with the SubTot_Fat_BL trait. The darkgreen module
held moderate module-membership to gene-
significance correlations with SubTot_Pfat_BL and
WB_Pfat_BL. This analysis confirmed that both the
magenta and darkgreen modules are functionally im-
portant for obesity-related traits.

Functional landscapes of obesity-related gene modules
We then utilized GO enrichment analysis to examine
the association between functional properties and
clinical traits within the magenta and darkgreen mod-
ules. Both modules showed GO enrichment at an
FDR-corrected p-value of 0.05. The magenta module
contains 129 genes. The GO term enrichment for the
co-expression modules is shown in supplementary
Table S2. GO enrichment of the magenta module
identified multiple biological components and pro-
cesses associated with SubTot_Fat_BL, including

Table 2 Clinical characteristics of the study cohort (N = 26) (Continued)

Clinical parameter Mean ± Standard deviation Range (min; max)

Glucose at 6 Months

GLUCOSE_6M (mg/dL) 121.48 ± 37.72 79.00; 224.00

Creatinine at 12 Months

CREATININE_12M (mg/dL) 1.60 ± 0.45 0.85; 2.68

Glucose at 12 Months

GLUCOSE_12M (mg/dL) 135.29 ± 59.50 78.00; 285.00

Height (in) 66.61 ± 4.07 60.00; 75.00

Table 3 Assessment of associations between clinical and demographic characteristics

Clinical characteristics Association (p-value)

Age at Transplantation (by linear
regression)

Gender (by Analysis of
Variance)

Race (by Analysis of
Variance)

Height 0.542 1.22 × 10−5 0.282

Weight, baseline 0.737 4.59 × 10−6 0.049

Weight at 3 months 0.672 3.25 × 10−5 0.066

Weight at 6 months 0.939 6.66 × 10−6 0.088

Weight at 12 months 0.991 7.38 × 10−5 0.216

BMI at baseline 0.235 2.33 × 10−3 0.037

BMI at 3 months 0.242 0.013 0.074

BMI at 6 months 0.643 3.36 × 10−3 0.121

BMI at 12 months 0.697 0.011 0.429

Weight change percentage at 3 months 0.739 0.928 0.849

Weight change percentage at 6 months 0.276 0.778 0.542

Weight change percentage at 12
months

0.476 0.442 0.292
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immune system processes and lipid metabolism. En-
richment of the darkgreen module using GOStat
found an association of SubTot_Pfat_BL and WB_
Tot_Pfat_BL with heart and vasculature development.
To further explore the functionality of the magenta

and darkgreen module, we classified the top 10% of
genes with the highest connectivity as hub genes. The
top 2 hub genes within the magenta module were
ITGAM (92 connections), CD68 (89 connections). The
top 2 hub genes within the darkgreen module were
CRLS1 (18 connections) and ACSS3 (12 connections).
IPA-identified canonical pathways and gene networks

within the magenta and darkgreen module. Canonical
pathways within the magenta module included: phago-
some maturation, autophagy, lipid antigent presentation,
and inflammatory signaling (e.g. Il-6 and Il-8) (Fig. 4).
Eight networks where identified in the magenta module;
Top networks were associated with immune cell traffick-
ing (score 12), cardiovascular disease (score 18), lipid
metabolism (score 22), and inflammatory response
(score 11). Canonical pathways within the darkgreen

module included: hypoxia signaling in the cardiovascular
system, cardiac hypertrophy signaling, and the Methyl-
malonyl Pathway. Top networks in the darkgreen mod-
ule were associated with infectious diseases (score 30),
gastrointestinal disease (score 27), and cardiovascular
system development and function (score 22).

Discussion
This study sought to identify sets of genes that could
provide insight into the genetic underpinnings of
obesity-related traits in kidney transplant recipients.
Using gene expression data from adipose tissue of kid-
ney transplant recipients, we created gene co-expression
networks and correlated them to clinical variables. Previ-
ous work has identified individual genes associated with
weight gain in kidney transplant populations [18, 23],
but to our knowledge no studies have incorporated
WGCNA in similar cohorts. Using WGCNA, we found
two modules, the magenta module and the darkgreen
module, to be significantly correlated with obesity-
related traits at baseline.

Fig. 1 Dendrogram showing the module-gene relationships generated by the WGCNA software
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GO enrichment analysis and identification of hub
genes revealed plausible biological functions of genes
within the magenta and darkgreen modules. GO enrich-
ment analysis identified that among the 129 genes com-
prising the magenta model, multiple genes are involved
in immune function, inflammation, lipid metabolism,
and cardiovascular disease. This is supported by the role
of the hub genes within the magenta module. As men-
tioned previously, the top two hub genes in the magenta
module are ITGAM and CD68. ITGAM plays a role in
the adhesion of monocytes, macrophages, and granulo-
cytes and the uptake of pathogens [24, 25]. CD68 codes
for a glycoprotein expressed in monocytes and macro-
phages and is related to the innate immune system and
low-density lipoprotein (LDL) oxidation in Atherogen-
esis [26, 27]. Thus, GO enrichment and hub genes are
consistent, both suggesting the magenta module may
hold immune-related, metabolic, and cardiovascular
roles in kidney transplant patients.

The biological processes identified by GO enrichment
and the hub genes’ function are also consistent with our
network analysis using IPA. Network analysis of the ma-
genta module revealed that 15 genes within this module,
including ITGAM and CD68, have immune-related func-
tions. Additionally, within the magenta module, IPA
identified 2 networks associated with lipid metabolism
(22 genes) and metabolic disease (11 genes). Other genes
within the magenta module play a role in metabolic
functions and obesity including genes that code for lip-
ase (LIPA), phospholipid transfer protein (PTLP), [28]
and lipid metabolism (e.g., LPIN1) [29]. This suggests
that there is a relationship between metabolism, immune
response, inflammatory-related genes, and body-fat in
kidney transplant patients.
Like the magenta module, the darkgreen module con-

tains genes associated with lipid metabolism and cardiovas-
cular processes. The darkgreen module was enriched for
cardiovascular processes including heart and vasculature

Fig. 2 Detection of gene modules associated with clinical traits. Heatmap plot illustrating module-trait relationships. Each element in the
heatmap contains a correlation value based on the correlation between gene modules (y-axis) and corresponding clinical traits and p-values (X-
axis). The strength of the correlation is depicted by its color
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development. Additionally, the darkgreen module contains
genes associated with cellular energy expenditure (e.g.
mitochondrion and sodium: potassium-exchanging
ATPase activity). The top 2 hubgenes, CRLS1 and ACSS3
are involved in lipid metabolism, including the catalysis of
key phospholipids and acetyl-CoA from short-chain fatty
acids [30, 31]. Network analysis of the darkgreen module
was also consistent with the GO enrichment analysis and
the function of the hub genes, containing three networks
associated with the immune response (e.g. infectious dis-
eases), and cardiovascular processes (e.g. cardiovascular
system development and function). Thus, body-fat

associated genes within the darkgreen module are associ-
ated with cardiovascular health, lipid metabolism, and cel-
lular energy expenditure. Both modules from our analysis
are tied to immunological responses such as inflammation,
suggesting the immune system may play a role in regulat-
ing obesity-related traits (e.g. total subcutaneous body fat)
in kidney transplant patients.
The findings of the current study are supported by

previous studies which have found immunological, in-
flammatory, and metabolic genetic drivers are influential
in the determination of obesity [32–34]. Only one previ-
ous study by Muniandy et al. used adipose tissue

Fig. 3 Correlations between gene module memberships and gene significance for the modules associated with clinical traits
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(subcutaneous) to study clinical changes associated with
obesity; The study found that the heavier twin in BMI-
discordant monozygotic twin pairs displayed an upregu-
lation of inflammation and other immunological path-
ways/genes (e.g. IFI30 and CCL18) [32]. Other studies
have used blood samples to examine differential gene ex-
pression and weighted gene co-expression network ana-
lysis from a cohort of monozygotic twins [27]. A study
by Wang et al. found 32 differentially expressed genes
(DEGs) that were upregulated in the higher BMI twins
including DEGs associated with obesity (e.g. NAMPT,
TLR9, PTGS2, HBD, and PCSK1N), immunological (e.g.,
TLR9), and metabolic functions (e.g., PTGS2). Wang
et al. also used WGCN to identify two modules strongly
correlated to BMI including genes responsible for regu-
lation of phospholipase activity, high density lipoprotein
particle clearance, and voltage-gated potassium channel
complex. Animal studies have also found that an associ-
ation between obesity-related genes and inflammation.
Studies have found inflammatory signaling affects adipo-
cyte insulin receptors and causes insulin resistance,
which further contributed to fatty acid accumulation
and obesity [35, 36].
Gene modules were constructed based on gene expres-

sion at baseline. As these modules were constructed at
baseline, we did not observe significant associations be-
tween gene modules and clinical traits beyond the baseline
(i.e. following kidney transplant). As presented by Cashion
et al. additional variables (aside from gene associations)
contribute to clinical traits following transplantation [19].
For example younger age, higher carbohydrate consump-
tion, higher trunk fat, and higher perception of mental
health quality of life are predictors of weight gain follow-
ing kidney transplantation [19].

Importantly, our analysis is limited to the clinical and
demographic variables collected in the parent study. Add-
itionally, only a portion of the participants in the parent
study signed the repository consent and had available micro-
array data. Future studies should examine the co-expression
patterns in larger more diverse populations of kidney trans-
plant patients. Studies must also examine whether the
obesity-related gene co-expression patterns observed in this
study apply to weight gain in the general population.

Conclusion
The current study examined gene co-expression patterns
associated with obesity-related traits in kidney transplant
recipients. Utilizing WGCNA, we generated gene co-
expression networks associated with obesity-related traits to
highlight possible gene modules responsible for obesity, and
assessed these modules’ pathways, molecular functions, and
gene-gene interactions with obesity-related traits. A total of
35 co-expression modules were detected, two modules were
associated with clinical traits. These modules are involved
in metabolic and immune processes (including genes in-
volved in lipid metabolism and immune-related functions)
and are associated with multiple obesity-related traits, total
subcutaneous body fat and whole-body fat percent. This
study offers a deeper understanding of the gene network
properties underlying obesity-related traits and provides
new insights regarding the biological processes underlying
obesity in kidney transplant patients.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12920-020-0702-5.

Additional file 1: Fig. S1. Scale-Free Topology Model Fit.

a b

Fig. 4 Top canonical pathways for magenta and darkgreen modules generated by IPA. a Magenta canonical pathway. b Darkgreen
canonical pathway
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Enriched GO terms in the clinical trait-associated modules.
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