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Abstract

Background: Since it is assumed that genetic interactions play an important role in understanding the mechanisms
of complex diseases, different statistical approaches have been suggested in recent years for this task. One interesting
approach is the entropy-based IGENT method by Kwon et al. that promises an efficient detection of main effects and
interaction effects simultaneously. However, a modification is required if the aim is to only detect interaction effects.

Methods: Based on the IGENT method, we present a modification that leads to a conditional mutual information
based approach under the condition of linkage equilibrium. The modified estimator is investigated in a
comprehensive simulation based on five genetic interaction models and applied to real data from the genome-wide
association study by the North American Rheumatoid Arthritis Consortium (NARAC).

Results: The presented modification of IGENT controls the type I error in all simulated constellations. Furthermore, it
provides high power for detecting pure interactions specifically on unconventional genetic models both in simulation
and real data.

Conclusions: The proposed method uses the IGENT software, which is free available, simple and fast, and detects
pure interactions on unconventional genetic models. Our results demonstrate that this modification is an attractive
complement to established analysis methods.
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Background
It is generally assumed that genetic interactions play an
important role in understanding the mechanisms of com-
plex diseases such as coronary heart disease, Alzheimer’s
disease, breast cancer or diabetes [1]. In the statisti-
cal sense, interaction refers to a situation in which the
effect of one factor depends on the values of another
factor on a given scale. In our case, genetic interactions
come in two flavours. Firstly, interactions between genetic
loci, usually termed gene-gene interactions or epistasis,
occur, as described for rheumatoid arthritis (RA) [2–4].
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Specifically, Liu et al. [2] described interactions between
the locations DQA2 and DQB2 in the HLA region on
chromosome 6. Secondly, gene-environment interactions
denote interactions between genetic and environmental
factors [5]. For example, Chandra et al. reported that
the interaction between serum cholesterol levels and the
sigma4 genotype [6] plays a role in Alzheimer’s disease.
As a starting point, we will in this paper focus on the

detection of gene-gene interactions in a case-control set-
ting, although interactions of higher order can also be of
interest. For simplification, our description is restricted
to the situation where diallelic genetic markers such as
single nucleotide polymorphisms (SNPs) are used lead-
ing to three possible genotypes. However, the results are
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generalizable to gene-environment-interactions with cat-
egorical environmental factors or indeed interactions of
any categorical variables.
Generally, a single locus testing strategy is undertaken as

the primary analysis in a genome-wide association study
(GWAS), but this may be unsuitable to detect loci that
interact with other variants since the relevant loci may
not display effects on their own [7]. A variety of methods
exists to detect or control for the presence of gene-gene
interactions [8]. For a binary phenotype, most of them
are based on the saturated logistic regression model for
interaction [9, 10] or a simplication of it. The regression
parameters are penetrances, odds or log odds. As Cordell
[8] notes, this procedure implicitly assumes that the scale
used for the regression parameters is the scale of interest.
The saturated model has nine two-locus genotypes that
are modeled by one intercept, four main effects parame-
ters and four interaction parameters with a dummy coding
of the genotypes. Although the saturated model is the
best fitting one, a model with fewer parameters might be
preferable, e.g. because of greater stability. This can be
achieved by assuming a specific genetic model and thus
estimating, for example, the additive effect of the number
of risk alleles at both genetic loci. In this case, only one
parameter is estimated for the interaction effect. In this
line, the standard software PLINK [11] provides an overall
4 degree-of-freedom (df) test for interaction or a derived
1-df test assuming additive effects at both loci.
However, interaction models have been observed in

reality that cannot easily be described by regression mod-
els for gene-gene-interactions without dummy coding.
An example is given by Ziegler and König for sporadic
breast cancer [10]. Therefore, the restriction to linear
models is not optimal. As an alternative, a number of
novel techniques have been developed in the last years
that are based on different concepts such as rank build-
ing (ANOVA technique) [12], data-mining with the mul-
tifactor dimensionality reduction (MDR) approach [13,
14], machine learning methods with random forests (RF)
[14, 15] or with support vector machines (SVM) [16].
Although promising, it is not always clear which interac-
tion effects can be reliably detected by thesemethods [17].
Another new idea is borrowed from information the-

ory, the entropy-based method. This concept is model-
free and measures the uncertainty or disorder in a sys-
tem and could therefore lend itself to detect interac-
tions for many genotype constellations. This technique
is suggested as particularly powerful and, because of the
nonlinearity, as better able to capture nonlinear relation-
ships between genetic variants or other variables [18].
Ferrario et al. reviewed different entropy-based measures
providing information on suggested test statistics, simula-
tions and implementations [18]. Focusing on second order
interaction, there are three important concepts, namely

conditional mutual information, information gain, and
relative information gain. These are based on the follow-
ing definitions: First, entropy can be defined as a measure
for uncertainty in a random variable [19]. Then, mutual
information refers to the reduction of uncertainty of one
variable conditional on the knowledge of the other vari-
able [18]. Furthermore, mutual information can also be
conditioned on a third variable yielding the conditional
mutual information (CMI) [18], which has been used for
a test statistic by Zuo et al. [20]. Second, the term infor-
mation gain is defined in different ways: Fan et al. [21]
subtract the mutual information of two genetic variants
estimated in the cases from the same quantities estimated
in the controls. Alternatively, in the method IGENT Kwon
et al. [22] subtract the conditional entropy of the phe-
notype, given two genetic variants, from the entropy of
the phenotype. Kwon et al. [22] also work with the so-
called relative information gain, which is given as the
relation between the information gain and the entropy of
the phenotype.
The advantage of the approach by Kwon et al. lies in the

freely available and fast implementation that is also called
IGENT [18]. The software has been implemented in C++
and is available at http://statgen.snu.ac.kr/software/igent/
(different from the information in the paper from 2014
[22]). In contrast, Zuo et al. [20] work with an individual
software.
One characteristic of entropy-based procedures is that

main effects may also present themselves as a deviation
from disorder, i.e. the entropy falls and the test reacts. This
is an advantage if we search for main effects and interac-
tion effects simultaneously and do not need to distinguish
between either. This might be the case in a first step of an
analysis in which the focus is on generally learning about
variants having an effect on the outcome. Also, this offers
the possibility to reduce the variants for a second compu-
tationallymore intensive step. However, it should be noted
that if we are interested in interaction effects only, a main
effect of one or both genetic variants without an interac-
tion will lead to a false positive result. Zuo et al. [20] state
that the CMI concept achieves better or comparable con-
trol of the false positive error, compared to four previously
proposed model-free metrics [20].
In the following, we are only interested in interaction

effects, so it is necessary to eliminatemain effects, without
diminishing the advantages of the entropy approach. We
therefore introduce a modification of IGENT that elim-
inates the problem of the increased type-I-error in the
case of only main effects, but keeps the advantages of
the entropy method as far as possible. We illustrate the
behavior of the proposed procedure with data simulated
for different genotypic models and apply it to the analy-
sis of real data on the genetic background of RA [23, 24]).
The same data set was analyzed previously by Liu et al.

http://statgen.snu.ac.kr/software/igent/
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[2], who utilized a regression-based approach combined
with random forest analyses and Chattopadhyay et al. [3]
who worked with three non-parametric scores. Further-
more, most comparisons of interaction methods have so
far focused on assessing deviation from additive or mul-
tiplicative effects. However, we assume that the strongest
advantage of entropy-based methods is seen in more
unconventional interaction models not following classical
genetic models, and we considered these unconventional
interaction models in our simulations.

Methods
Entropy and IGENT-estimator
Entropy is originally a term from thermodynamics refer-
ring to the level of disorder or uncertainty. Information
theory has utilized this phenomenon as a measure for
the lack of structure in a system [19]. Shannon defines
the entropy H of a set of probabilities p1, . . . , pn as
− ∑

pi log pi.
In the context of a disease state D depending on the

genotypes at two genetic loci, Kwon et al. [22] derive the
Information Gain similarly as follows:
First let entropy of the phenotype be written as

H(D) = −
1∑

k=0
P(Dk) log2 P(Dk) (1)

with D0 and D1 denoting the unaffected and affected
state, respectively.
The second order entropy (conditional entropy of the

disease state on the genotypes G) is then given by the
expression

H(D|G) = −
2∑

i,j=0

1∑

k=0
P(Gij)P(Dk|Gij) log2 P(Dk|Gij)

= −
2∑

i,j=0

1∑

k=0
P(Gij,Dk) log2 P(Dk|Gij). (2)

Here, for (i, j = 0, 1, 2), i and j define the genotype at the
1st and 2nd locus. Thus, all possible genetic models are
considered.
From that, the Information Gain can be derived as

IG(D|G) = H(D) − H(D|G)

=
2∑

i,j=0

1∑

k=0
P(Gij,Dk) log2

( P(Gij,Dk)

P(Gij)P(Dk)

)

.(3)

The estimator (2nd order) then leads to

ÎG(D|G) =
2∑

i,j=0

1∑

k=0
P̂ijklog2

(
P̂ijk

P̂ij.P̂..k

)

. (4)

For this, Xijk are the observations of Gij and Dk in N
individuals, leading to the mean X̄ = ∑2

i,j=0
∑1

k=0 Xijk .

Then, P̂ijk = Xijk/X̄, P̂ij. = ∑1
k=0 Pijk and P̂..k =

∑2
i,j=0 Pijk .
Furthermore we define the mutual information as

MI(G) =
2∑

i,j=0
P(Gij) log2

( P(Gij)

P(Gi.)P(G.j)

)

. (5)

Finally, the conditional mutual information is given by

CMI(G) =
2∑

i,j=0

1∑

k=0
P(Gij,Dk) log2

( P(Gij|Dk)

P(Gi.|Dk)P(G.j|Dk)

)

(6)

Considering two genetic loci with three genotypes each,
we construct 3 × 3 contingency tables which tabulate the
values in terms of penetrances or odds for the resulting
9 genotype combinations. In this scenario, the IGENT
method estimates an imbalance of the 9 odds, i.e., the
deviation for the value of 1 for all odds.
The estimator of IG(D|G) (IGENT-estimator) asymp-

totically and approximately follows a gamma distribution
under the null hypothesis that genotype combinations and
disease states are independent. This null hypothesis is also
violated in the case of association with one or both of the
genetic variants. Thus, the type-I-error is inflated if this
estimator is used as a test for interactions only.

Modification of the iGENT-estimator
In the following, we want to utilize the IGENT approach
while eliminating the influence of main effects so as to
yield a purely interactive effect etimator. For this, we
first estimate the main effect of one genetic variant by
applying the IGENT approach to a 1st order calculation.
Specifically, the Information Gain of 1st order for the first
genotype is given by

IG(D|G1) = H(D) − H(D|G1)

=
2∑

i=0

1∑

k=0
P(Gi.,Dk) log2

(
P(Gi.,Dk)

P(Gi.)P(Dk)

)

(7)

This can be estimated by

ÎG(D|G1) =
2∑

i=0

1∑

k=0
P̂i.k log2

(
P̂i.k

P̂i..P̂..k

)

=
2∑

i,j=0

1∑

k=0
P̂ijk log2

(
P̂i.k

P̂i..P̂..k

)

(8)

with P̂i.k = ∑2
j=0 Pijk .

The estimator (1st order) for the second genotype is
given analogously.
This leads to the following intuitive modification of

IGENT:

IGmod(D|G) = IG(D|G) − IG(D|G1) − IG(D|G2) (9)
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All three components can be estimated within the
IGENT software.
The estimator of IGmod is
̂IGmod(D|G) = ÎG(D|G) − ÎG(D|G1) − ÎG(D|G2)

=
2∑

i,j=0

1∑

k=0
P̂ijk log2

(
Êijk
L̂ij.

)

(10)

with Êijk = P̂ijk P̂..k
P̂i.k P̂.jk

and L̂ij. = P̂ij.
P̂i..P̂.j.

.

Here, the factor Êijk takes the value 1 if the two geno-
types are conditionally independent, and the factor L̂ij.
equals 1 under the condition of no correlation between the
genetic variants, i.e., no linkage disequilibrium (LD).
Under this condition of no LD, we can simplify the

formula for ̂IGmod(D|G) to

̂IGmod0(D|G) =
1∑

k=0

2∑

i,j=0
P̂ijk log2

(
P̂kij

P̂ki.P̂
k
.j

)

(11)

with P̂kij = P̂ijk
P̂..k

, P̂ki. = P̂i.k
P̂..k

, and P̂k.j = P̂.jk
P̂..k

.
This conversion shows that this estimator works with

conditional mutual information. Specifically, it estimates
the deviation from the conditional independence, and it
follows asymptotically and approximately a gamma distri-
bution with shape-parameter 4 and scale parameter 1

N ln(2)
under the null hypothesis of conditional independence of
the genetic variants [25].

Comparison with genoCMI
Recently, Zuo et al. [20] introduced an estimator called
GenoCMI that was defined as follows:

GenoCMI =
1∑

k=0

2∑

i,j=0
P(Gij,Dk) ln

( P(Gij|Dk)

P(Gi.|Dk)P(P(G.j|Dk)

)

.

(12)

Under the condition of no LD, this is identical to our
modified IGENT-estimator ̂IGmod, except for the basis
of the logarithm. GenoCMI follows asymptotically and
approximately a χ2(ν)/2N distribution where the degree
of freedom ν is 8. This statement is equivalent to the
above result of a gamma distribution with shape parame-
ter 4 and scale parameter 1

N ln(2) . An obvious disadvantage
of GenoCMI is that there is no freely available software
implementation, whereas IGENT is freely available and
efficiently implemented.

Simulation models for gene-gene-interactions
The aim of our simulation study was to evaluate the per-
formance of different estimators not only in commonly
assumed interaction models but also in more unusual
interaction settings. We therefore selected five interaction

models, of which the first four models were proposed by
Wan et al. [26], the fifth model was based on Ritchie et al.
[27] (there model 4) and was generated using the epista-
sis model discovery method of Moore et al. [28]. Of note,
the models display interaction effects but little or no main
effects and can be written as 3 × 3 contingency tables of
odds for the first interacting variant with genotypes aa,
aA, and AA, and the second interacting variant with geno-
types bb, bB, BB, where the minor alleles are denoted by
capital letters (see Supplement). The specific values are
each determined by a prevalence parameter α and amulti-
plicative interaction parameter θ and are shown in Table 1
and visualized in the accompanying Figs. 1, 2, 3, 4 and 5
(after conversion to the case-control scenario).
Three models (epistasis model, two allele interaction-

model and XOR model) display only two levels of risk,
whereas the multiplicative and the no margin-model
a more complicated risk pattern. Specifically, the no
margin-model was selected because it exhibits interaction
effects in the absence of any main effects. Furthermore, all
marginal odds are equal for this special model.

Data simulation
We simulated data according to the five genotype inter-
action models using the software GAMETES [29, 30].
Genotypes were generated according to Hardy-Weinberg
proportions, and a range of allele frequencies and patterns
of risk-genotype associations was chosen [31].
For the models according to Wan (multiplicative model,

epistasis model, two allele interaction-model and XOR
model), three different minor allele frequencies (MAFs)
were chosen (0.1, 0.2, and 0.4) leading to twelve odds
tables (see Supplement). Setting the prevalence to 0.1
and the heritability to 0.03 for the multiplicative model
and to 0.02 for the other models, the prevalence param-
eter g and the interaction parameter t were determined.
The heritability is defined as described by Wan et al.
[26]:

h2 =
2∑

i,j=0
P(Gij)

(
(P(D1|Gij) − P(D1))2

P(D0)P(D1)

)

(13)

For utilization in GAMETES, these odds tables were
converted to penetrance tables. The no margin-model is
directly taken from Ritchie et al. [27, 32]. With the MAF
for the interacting variants set to 0.25 this model shows no
marginal effects.
Each model was simulated with 100 variants, with

2 of them interacting, 1000 replicates (datasets), and
800 cases and 800 controls. The MAFs of the non-
interacting SNPs were chosen randomly between 0.05
and 0.5.
For simulations under the null hypothesis, we used the

four different interaction models according to Wan et al.
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Table 1 Odds tables and ideal HLO-matrices for five interaction models

Odds HLO

Multiplicative model bb bB BB bb bB BB

aa α α α H L L

aA α α(1 + θ) α(1 + θ)2 L H H

AA α α(1 + θ)2 α(1 + θ)4 L H H

Epistasis model bb bB BB

aa α α(1 + θ) α(1 + θ) L H H

aA α(1 + θ) α α H L L

AA α(1 + θ) α α H L L

Two allele interaction-model bb bB BB bb bB BB

aa α α α(1 + θ) L L H

aA α α(1 + θ) α L H L

AA α(1 + θ) α α H L L

XOR model bb bB BB bb bB BB

aa α α(1 + θ) α L H L

aA α(1 + θ) α α(1 + θ) H L H

AA α α(1 + θ) α L H L

No margin-model with MAF=0.25 bb bB BB bb bB BB

aa 0.03 0.10 0.08 L H H

aA 0.09 0.01 0.04 H L L

AA 0.10 0.01 0.00 H L O

α, prevalence parameter, and θ , multiplicative interaction parameter. High (H), low (L), and undetermined (O) risk genotype combinations in the interaction models

[26] with three different MAFs, resulting in 12 models
that were simulated with 1000 replicates each. Given that
for every model, 100 SNPs were simulated with two inter-
acting SNPs, we had 4949 non-interacting SNP pairs per
model. Thus, a total of more than 50 million SNP pairs

Fig. 1 Odds in case-control scenario of model 1 (multiplicative
model) with MAF=0.4

without interactions were simulated. Simulated data was
evaluated at significance thresholds of 5× 10−2, 5× 10−3,
5 × 10−4, 5 × 10−5, and 5 × 10−6.
In the resulting data sets, we estimated ̂IGmod0 as

described above.

Fig. 2 Odds in case-control scenario of model 2 (epistasis model) with
MAF=0.4
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Fig. 3 Odds in case-control scenario of model 3 (Two allele
interaction model) with MAF=0.4

Comparison with other approaches
To compare our estimator with previous established
approaches, we estimated logistic regression models test-
ing for interaction in an additive genetic model with 1 df
as implemented in the module epistasis of the software
PLINK [11]. Furthermore, we performed likelihood ratio
tests (LRT) comparing a model with 4 parameters (2 addi-
tive and 2 dominant terms) with the full model with 8
parameters [33]. Finally, another entropy-based approach
with the test statistic TIG was used as described by
Fan et al. [21].

Fig. 4 Odds in case-control scenario of model 4 (XOR model) with
MAF=0.4

Fig. 5 Odds in case-control scenario of model 5 (Model with no
margin effects) with MAF=0.25

Essentially, Fan et al. [21] subtract the mutual informa-
tion of two genetic variants estimated in the cases from
the same quantities estimated in the controls.

Submodel classification
To illustrate the underlying genetic models of the simu-
lated data, we utilized one step of the model-based mul-
tifactor dimensionality reduction (MB-MDR) algorithm,
which is an efficient algorithm to performmultiple testing
in epistasis screening [34]. The procedure tabulates the
frequencies of cases and controls in the 3 × 3 genotype
combinations and uses a test for association between the
trait and the specific genotype combination. The test is
performed for every cell of the 3×3 contingency table and
denotes the individuals with the genotype combination of
the specific cell as having a high risk of being affected (H),
or a low risk (L), or not sufficient evidence or information
(O). The result is a 3 × 3 matrix, denoted as HLO-matrix.
For illustration, thesematrices are shown in Table 1 (right)
under the assumption that sample size is large enough to
yield sufficient evidence.

Real data
We use the data from the genome-wide association study
by the North American Rheumatoid Arthritis Consor-
tium (NARAC) that were also analyzed by Liu et al. [2].
The data set comprises genotype data of 2,062 individu-
als, 868 cases with RA and 1,194 controls, predominantly
of Northern European origin. The data had been geno-
typed on the Illumina 550k platform. After exclusion of
monomorphic SNPs and SNPs showing deviation from
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HWE at p < 0.0001, 515,680 SNPs were available for
further analysis [24]. Quality control procedures included
removing individualswhohad a lowoverall call rate (< 95 %)
of SNPs [23]. From these data we select the HLA-region
on chromosome 6 encompassing 2010 SNPs. This area
offers a large number of SNPs of which many are associ-
ated with RA, and previous analyses hinted at gene-gene
interactions in this region. To reduce the number of SNP-
pairs to investigate, we further selected only SNPs overlap-
ping with the 749 SNPs analyzed by Liu et al. [2]. Because
of the assumption of no LD, we furthermore eliminated all
SNP pairs with a LD of r2 > 0.01.

Significance thresholds for the modified IGENT interaction
evaluation
As described above, the estimator ̂IGmod0 asymptoti-
cally and approximately follows a gamma distributionwith
shape parameter 4 and scale parameter 1

N ln(2) under the
null hypothesis of conditional independence of the genetic
variants [25].
Because of the fact that

• the characteristic of the underlying distribution is
given only asymptotically and approximately,

• the Bonferroni correction is very conservative, and
• the test statistic is dependent on allele frequencies

and marginal effects,

fixing the shape parameter at 4 is partially very con-
servative. Thus, we utilize alternative cut-offs to identify
relevant pairs of interacting SNPs. For the simulated data,
we set the global significance level to α = 0.05 and apply
a Bonferroni correction to adjust for the number of inter-
actions being tested from the gamma distribution with
shape parameter 2 (liberal criterion). For the real data, we
also set the global significance level to α = 0.05 but apply
a Bonferroni correction to adjust for the number of inter-
actions being tested from the gamma distribution with
shape parameter 4 (conservative criterion).
Assuming the scale parameter of 1

N ln(2) , this leads to a
cut-off at < 0.012836 (see below) for the simulated data
and at < 0.017331 for the real data.
For the regression analysis we set the global significance

level to α = 0.05 with Bonferroni correction (for the simu-
lated data based on the number of SNP pairs), which leads
to significance levels of 1 × 10−5 for the simulated data
and 5 × 10−8 for the real data.

Results
Evaluation of type I error
Firstly, the type I error is evaluated in the simulation data.
For the null simulation we took about 59million SNP pairs
like described above. The global significance level of 5% is
controlled using the liberal cut-off of 0.012836 (Table 2).
This is due to the structure of the null simulation data with

different MAFs, but only a small portion of SNPs with
main effects. Table 2 shows that the type I error matches
the different thresholds of 5 × 10−2, 5 × 10−3, 5 × 10−4,
5×10−5, and 5×10−6 under the gamma distribution with
shape parameter 2 very well.

Evaluation of power
Figure 6 shows the power to detect the interaction in the
simulated data for all interaction models and MAF set-
tings. There are four scenarios that display a limited power
of < 80%, i.e., the multiplicative model with MAF=0.1,
0.2 and 0.4, and the two allele interaction-model with
MAF=0.1. By comparison, the logistic regression model
shows overall lower power to detect the interactions,
with scenarios having power < 80% including the multi-
plicative model with MAF=0.4, the epistasis model with
MAF=0.1, the two allele interaction-model as well as the
XOR model with all MAFs. The no margin-model pro-
vides satisfying power for both estimators, the proposed
estimator and logistic regression. Thus, specifically for the
epistasis model at a low MAF and unconventional mod-
els at all MAFs, the proposed estimator ̂IGmod0 performs
better than the classical logistic regression in detecting
interactions. The LRT shows overall comparable power
as ̂IGmod0 with better performance in the multiplicative
model but lower power in the epistasis and XOR models
with low MAF. Finally, the estimator TIG provides good
results (power > 80%) in the epistasis and XOR mod-
els with higher MAFs and for the no margin-model, but
the power is lower than that of the proposed estimator
throughout.

Submodel classification
We observed an intermediate power of ̂IGmod0 depend-
ing on the specific setting and interaction model. Thus,
to get a more detailed impression of the underlying inter-
actions, we classified the frequently occuring identified
interaction pairs using HLO-matrices as described above.

Multiplicativemodel
Table 3 shows the frequencies of the more common sub-
models occuring in the simulation of the multiplicative

Table 2 Type I error in simulated data at cut-off from gamma
distribution with shape parameter 2

Threshold Type I error

5 × 10−2 5.38 × 10−2

5 × 10−3 5.39 × 10−3

5 × 10−4 5.41 × 10−4

5 × 10−5 5.36 × 10−5

5 × 10−6 5.25 × 10−6
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Fig. 6 Power in simulation data. Approaches are the proposed estimator IGmod0 (with cutoff = 0.012836), logistic regression (LogReg), likelihood
ratio test (LRT), and TIG as proposed by Fan et al. [21] for different minor allele frequencies (MAF)

model with MAF=0.2 along with the power of ̂IGmod0
and the logistic regression to detect the interaction.
It can be seen that ̂IGmod0 provides high power for

mostly complete submodels, in which almost every cell
contains enough information to perform the association

Table 3 HLO-matrix for frequent submodels in the multiplicative
model (MAF=0.2) with frequency and power in simulated data

Power Power

HLO-matrix Freq ̂IGmod0 Logistic regression

bb bB BB 0.07 0.90 1

aa H L L

aA L H H

AA L H H

bb bB BB 0.36 0.76 0.99

aa H L L

aA L H H

AA L H O

bb bB BB 0.08 0.53 0.88

aa H L L

aA L H H

AA L O O

bb bB BB 0.07 0.49 0.91

aa H L L

aA L H O

AA L H O

bb bB BB 0.07 0.42 0.83

aa H L L

aA L O H

AA L H O

Frequency (freq) of specific submodels and power to detect the interaction for
specific submodels. Submodels are described by HLO-matrices as illustrated in
Table 1

test. In incomplete submodels, in which not all cells
of the HLO-matrix show an effect or the cells contain
not enough information to perform the association test,
̂IGmod0 shows more difficulty to detect the interaction.
In contrast, the regression model provides a power higher
than 80% in all submodels.

Epistasis model
Analogously, Table 4 shows the respective submodel
results for the epistasis model with MAF=0.1.

Table 4 HLO-matrix for frequent submodels in the epistasis
model (MAF=0.1) with frequency and power in simulated data

Power Power

HLO-matrix Freq ̂IGmod0 Logistic regression

bb bB BB 0.14 0.99 0.98

aa L H H

aA H L O

AA H O O

bb bB BB 0.22 0.99 0.87

aa L H O

aA H L O

AA H O O

bb bB BB 0.23 0.96 0.91

aa L H H

aA H L O

AA O O O

bb bB BB 0.41 0.95 0.65

aa L H O

aA H L O

AA O O O

Frequency (freq) of specific submodels and power to detect the interaction for
specific submodels. Submodels are described by HLO-matrices as illustrated in
Table 1



Malten and König BMCMedical Genomics           (2020) 13:65 Page 9 of 12

Notably, many results with incomplete submodels were
obtained in which one or more cells of the HLO-matrix
did not show evidence for association or did not contain
enough information for association testing. For exam-
ple, 41% of the relevant pairs led to HLO-matrices which
show association only in four out of nine possible cells.
However, ̂IGmod0 provides high power for all submod-
els, whereas the regression model has more difficulty
detecting interactions in incomplete submodels.

Real data
In the analysis of the real data set, we obtain 211 rele-
vant SNP pairs, of which 102 display a model similar to

the multiplicative model. Further 90 relevant SNP pairs
resemble the epistasis model, and 19 SNP pairs follow
more unconventional models. Compared to the regression
analysis, our estimator identifies 31 SNP pairs as rele-
vant that are not detected by the regression approach, and
these are shown in Tables 5 and 6.
Most of the interaction pairs essentially follow a

multiplicative model (multi) or an incomplete mul-
tiplicative model (multi incompl). There are seven
SNP pairs for which the model resembles the epistatic
model (epi), and the remaining are either simi-
lar to the XOR model or are difficult to classify
(other).

Table 5 Interactions detected by ̂IGmod0 but not logistic regression

SNP pair pos SNP 1 pos SNP 2 Submodel MAF 1 MAF 2 p SNP 1 p SNP 2 TS pair p value

rs1063355:rs7774434 32735692 32765556 Multi 0.37 0.44 9.68E-14 5.09E-19 0.018961 6.31E-09

rs1063355:rs9275374 32735692 32776504 Multi 0.37 0.35 9.68E-14 1.22E-56 0.020315 1.11E-09

rs1063355:rs9275388 32735692 32777062 Multi 0.37 0.34 9.68E-14 2.54E-53 0.018774 8.01E-09

rs1063355:rs9275390 32735692 32777134 Multi 0.37 0.35 9.68E-14 1.22E-56 0.020315 1.11E-09

rs1063355:rs9275393 32735692 32777417 Multi 0.37 0.35 9.68E-14 1.47E-56 0.020343 1.07E-09

rs1063355:rs9275406 32735692 32777933 Multi 0.37 0.34 9.68E-14 2.29E-56 0.020699 6.78E-10

rs1063355:rs9275407 32735692 32778015 Multi 0.37 0.34 9.68E-14 1.44E-53 0.021665 1.95E-10

rs1063355:rs9275418 32735692 32778222 Multi 0.37 0.35 9.68E-14 7.88E-57 0.020276 1.17E-09

rs1063355:rs9275424 32735692 32778554 Multi 0.37 0.35 9.68E-14 7.88E-57 0.020314 1.11E-09

rs1063355:rs9275425 32735692 32778852 Multi 0.37 0.34 9.68E-14 1.96E-52 0.019848 2.03E-09

rs1063355:rs9275427 32735692 32778893 Multi 0.37 0.35 9.68E-14 6.95E-57 0.020023 1.62E-09

rs1063355:rs9275428 32735692 32778956 Multi 0.37 0.35 9.68E-14 3.13E-56 0.019946 1.79E-09

rs1063355:rs9275439 32735692 32779499 Multi 0.37 0.34 9.68E-14 6.63E-54 0.020084 1.50E-09

rs2256175:rs9275224 31488428 32767856 Multi incompl 0.44 0.37 3.24E-15 6.52E-90 0.018158 1.76E-08

rs1055569:rs4424066 31548061 32462406 Multi incompl 0.32 0.45 3.23E-08 1.07E-66 0.018868 7.11E-09

rs1055569:rs3817973 31548061 32469089 Multi incompl 0.32 0.45 3.23E-08 1.91E-67 0.019307 4.06E-09

rs1055569:rs2076530 31548061 32471794 Multi incompl 0.32 0.45 3.23E-08 4.92E-64 0.018858 7.20E-09

rs9267911:rs3130320 32313088 32331236 Multi incompl 0.41 0.28 3.26E-36 2.10E-32 0.020101 1.46E-09

rs1055569:rs2395157 31548061 32456123 Epi 0.32 0.38 3.23E-08 2.27E-60 0.017474 4.18E-08

rs2844509:rs3817963 31618903 32476065 Epi 0.21 0.40 9.59E-19 7.20E-58 0.018005 2.13E-08

rs6941112:rs9275595 32054593 32789333 Epi 0.37 0.32 6.08E-16 9.50E-63 0.017436 4.38E-08

rs9268615:rs6903608 32510867 32536263 Epi 0.47 0.23 6.58E-44 8.39E-53 0.031001 8.87E-16

rs2395185:rs7745656 32541145 32788948 Epi 0.43 0.22 6.41E-71 1.71E-38 0.019093 5.33E-09

rs477515:rs7745656 32677669 32788948 Epi 0.42 0.22 6.18E-67 1.71E-38 0.026765 2.46E-13

rs2516049:rs7745656 32678378 32788948 Epi 0.42 0.22 1.83E-66 1.71E-38 0.026215 5.08E-13

rs382259:rs2647012 32317005 32772436 XOR 0.22 0.29 6.52E-28 2.26E-54 0.017355 4.86E-08

rs382259:rs2856717 32317005 32778286 XOR 0.22 0.29 6.52E-28 5.05E-56 0.017723 3.05E-08

rs382259:rs2858305 32317005 32778442 XOR 0.22 0.29 6.52E-28 5.05E-56 0.017723 3.05E-08

rs382259:rs9275572 32317005 32786977 XOR 0.22 0.31 6.52E-28 2.86E-59 0.018208 1.65E-08

rs412657:rs405875 32319063 32323166 Other 0.35 0.50 2.94E-42 5.21E-21 0.017883 2.49E-08

rs412657:rs3115573 32319063 32326821 Other 0.35 0.50 2.94E-42 2.44E-20 0.017684 3.20E-08

Position (pos) of SNPs as base pairs on chromosome 6, submodel of interaction as detailed in Table 6, minor allele frequencies (MAF), p SNP 1 and p SNP 2 as p-values from
1st order calculation, TS pair as value of the test statistic from 2nd order calculation, p-value as result from 2nd order calculation
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Table 6 Submodel categories for interactions detected by
̂IGmod0 but not logistic regression

Submodel HLO-matrix

Multi bb bB BB

aa H L L or O

aA L H H

AA L H or O H or O

Multi incompl bb bB BB

aa H L or O L or O

aA L or O O H or O

AA L or O H or O H or O

Epi bb bB BB

aa L H H or O

aA H or O L or O O

AA H or O L or O L or O

XOR bb bB BB

aa O O L

aA O O H

AA L H O

Other bb bB BB

aa L or O O H or O

aA O O H or O

AA H H L

HLO-matrices for the submodels of interaction in Table 6

Of note, 39 SNP pairs were detected by the regres-
sion approach at a significance level of 1 × 10−9 but not
by ̂IGmod0. All of these pairs belong to the categories
of multiplicative and epistatic models. They do achieve
a relatively high test statistic value of more than 0.01,
but do not meet our conservative significance criterion of
0.017331.

Comparing the SNP pairs identified by ̂IGmod0 with the
results by Liu et al. [2], we find that all eight SNP pairs
reported by Liu et al. [2] are also detected by our proposed
estimator (Table 7). Notably, all of these eight pairs belong
to either the multiplicative or the epistasis model and have
relatively high MAFs (> 32%).
Finally, we compared our results with those by

Chattopadhyay et al. [3]. Their 20 top ranked 2-way inter-
actions within the HLA region contain SNPs with a low
MAF, but they were excluded from our evaluation either
due to an LD of more than 0.01 or because they were not
contained in the set of 749 SNPs analyzed by Liu et al. [2].

Discussion
In this paper we proposed a modification of the IGENT
estimator for second order genetic interactions, which
exploits the advantages of the entropy methods, but con-
trols the type I error. It is a tool designed specifically to
detect various patterns conditional on a baseline model,
and foremost to detect interactions. The estimator asymp-
totically and approximately follows a gamma distribution
with a shape parameter that depends on the existence
of margin effects. The calculation can be made within
the IGENT software, which is simple to apply and very
fast.
Our simulations show that the power of our method

depends on marginal effects, and the lowest power was
observed for the multiplicative model. Instead, the advan-
tages of our modification lie in the possibility to detect
interactions for unconventional interaction models (like
two allele interaction-model and XOR model), and for
incomplete models (e.g. like last HLO-matrix in Table 4),
in which not all genotype combinations are observed with
sufficient frequency. Thus, ̂IGmod0 outperforms all other
approaches in the XOR and epistasis models especially at
low MAFs and is better than all approaches except the
LRT in the two allele model, where ̂IGmod0 and the LRT
are comparable.

Table 7 Results for interactions reported by Liu et al. [2]

SNP pair p SNP 1 Gene 1 p SNP 2 Gene 2 Submodel LD TS pair p value

rs9275595:rs10807113 9.50E-63 DQA2 (F5U) 1.30E-05 DQB2 (F3U) Multi 0.0026 0.03843 4.08E-20

rs9275390:rs10807113 1.22E-56 DQA2 (F5U) 1.30E-05 DQB2 (F3U) Multi 0.0001 0.039163 1.51E-20

rs9275390:rs2051549 1.22E-56 DQA2 (F5U) 4.96E-01 DQB2 (Intron) Multi 0.0074 0.029437 7.13E-15

rs2858332:rs10807113 2.90E-06 DQA2 (F5U) 1.30E-05 DQB2 (F3U) Epi 0.0082 0.043533 4.01E-23

rs7774434:rs10807113 5.09E-19 DQA1 (F3U) 1.30E-05 DQB2 (F3U) Multi 0.0035 0.029443 7.07E-15

rs7774434:rs2051549 5.09E-19 DQA1 (F3U) 4.96E-01 DQB2 (Intron) Multi 0.0011 0.042317 2.10E-22

rs9275390:rs6901084 1.22E-56 DQA2 (F5U) 1.39E-02 DQB2 (F5U) Epi 0.0088 0.025216 1.89E-12

rs2858332:rs6901084 2.90E-06 DQA2 (F5U) 1.39E-02 DQB2 (F5U) Multi 0.0091 0.043533 2.90E-21

Submodel of interaction as detailed in Table 6, p SNP 1 and p SNP 2 as p-values from 1st order calculation,
linkage disequilibrium (LD) between SNPs, TS pair as value of the test statistic from 2nd order calculation,
p-value as result from 2nd order calculation
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In the analysis of the real data on RA, we find the
results of the simulation confirmed. We observe a sim-
ilar number of SNP pairs detected by one but not the
other approach. Again, our modification is more likely to
uncover unconventional or incomplete models.
In general, our results confirm the conclusion of Zuo et

al. [20] that GenoCMI measures achieve a control of the
false positive error in the presence of main effects.

Conclusions
In conclusion, we proposed a modification of the IGENT
method, which is a fast and efficient entropy-based inter-
action analysis algorithm [22]. The modification reduces
the type I error, so it can easily identify second order gene-
gene interactions on a genome-wide scale. The analysis
of simulated and real data has shown that, in contrast
to classical regression approaches, more unconventional
interaction models can be detected with this approach,
which makes it an attractive complement to established
analysis methods.
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