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Abstract

Background: The established role miRNA-mRNA regulation of gene expression has in oncogenesis highlights the
importance of integrating miRNA with downstream mRNA targets. These findings call for investigations aimed at
identifying disease-associated miRNA-mRNA pairs. Hierarchical integrative models (HIM) offer the opportunity to
uncover the relationships between disease and the levels of different molecules measured in multiple omic studies.

Methods: The HIM model we formulated for analysis of mRNA-seq and miRNA-seq data can be specified with two
levels: (1) a mechanistic submodel relating mRNAs to miRNAs, and (2) a clinical submodel relating disease status to
mMRNA and miRNA, while accounting for the mechanistic relationships in the first level.

Results: mRNA-seq and miRNA-seq data were acquired by analysis of tumor and normal liver tissues from 30
patients with hepatocellular carcinoma (HCC). We analyzed the data using HIM and identified 157 significant
mMiRNA-MRNA pairs in HCC. The majority of these molecules have already been independently identified as being
either diagnostic, prognostic, or therapeutic biomarker candidates for HCC. These pairs appear to be involved in
processes contributing to the pathogenesis of HCC involving inflammation, regulation of cell cycle, apoptosis, and
metabolism. For further evaluation of our method, we analyzed miRNA-seq and mRNA-seq data from TCGA
network. While some of the miRNA-MRNA pairs we identified by analyzing both our and TCGA data are previously
reported in the literature and overlap in regulation and function, new pairs have been identified that may
contribute to the discovery of novel targets.

Conclusion: The results strongly support the hypothesis that miRNAs are important regulators of mRNAs in HCC.
Furthermore, these results emphasize the biological relevance of studying miRNA-mRNA pairs.
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Background

MicroRNAs (miRNAs) play vital roles in many biological
processes, including differentiation, cell signaling, and re-
sponse to infection. Overwhelming evidence indicates that
dysregulation of miRNA expression is a cause or indicator
of several disease processes, including many Cancers.
MicroRNA dysregulation has been linked to cancer
initiation and progression where miRNAs act as tumor sup-
pressors or oncogenes, regulating multiple pathways includ-
ing cell proliferation, differentiation, apoptosis, metastasis
and angiogenesis [1]. Recent studies have highlighted sev-
eral miRNAs that are differentially expressed in cancer
stem cells establishing the role of miRNAs in targeting
genes and pathways supporting cancer stemness [2]. Several
miRNAs and their targets are involved in known risks and
hallmarks of liver diseases and HCC, such as steatosis,
fibrosis, and cirrhosis [3]. For example, a series of experi-
ments conducted in hepatoma cells have found miR-93-5p
to be upregulated and act as a promoter of cell prolifera-
tion. Furthermore, the inverse correlation between miR-93-
5p and PPARGCI1A gene expression was validated in the
TCGA liver cancer data [4]. Mature miRNAs are highly
stable and have great utility as biomarkers of diagnosis/
prognosis and disease progression.

The importance of miRNA in carcinogenesis can be bet-
ter understood through linking miRNA with respective tar-
get genes. The impact that miRNA-mRNA pairs have in
carcinogenesis also highlights the potential of miRNAs to
become therapeutic targets [5]. Many studies demonstrate
that disruption of miRNA-mRNA paired regulation con-
tributes to tumorigenesis. For example, a study consisting
of African American participants suggests that miRNA-
mRNA pairs play a critical role in the activation of
oncogenic pathways in prostate cancer [6]. A co-
expression-based network approach has identified clustered
regulatory circuits of miRNA-mRNA modules in hepato-
cyte, inflammatory-stress and proliferative process-activated
subcategories of HCC [7]. Thus, the associations between
miRNAs and their target genes, ie., up or down regulated
genes, is currently an area of significant research interest.

MicroRNAs either suppress an mRNA through trans-
lational repression or accelerated degradation, or activate
an mRNA through stimulated stabilization or stimulated
translation. Oncogenic miRNAs (oncomiRs) act directly
on mRNAs from genes with pro-apoptotic or anti-
proliferative roles [8]. Conversely, mRNAs either sup-
press miRNA through accelerated degradation, or acti-
vate miRNA by sequestering it from degradation.
Typically, miRNA-mRNA associations exist as reciprocal
pairs whereby cells select either high/low level of
mRNA/miRNA or the opposite expression pattern [9].
However, dual-upregulation of paired miRNA-mRNA
has been experimentally validated as an existing relation-
ship observed in cancer [10]. Also, the action of miRNAs
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on their mRNA targets is difficult to characterize, be-
cause each miRNA has multiple mRNA targets and vice
versa. The correct identification of an interaction is still
a challenge and are typically addressed using prediction
methods followed by experimental validation of these
miRNA-mRNA interactions. As miRNA-mRNA regula-
tion generally exists in various biological systems, under-
standing the functionality of miRNA-mRNA association
is important for learning its underlying design principle.

Specific miRNA-mRNA interactions and high-throughput
analyses of the downstream effects of miRNAs on mRNAs
have been the focus of many research studies [11, 12]. In
typical experiments, miRNA target prediction tools like Tar-
getScan and MiRanda, are utilized to explore the targeted
mRNAs that are regulated by differentially expressed miR-
NAs. Then genes that closely correlate with the expression
profiles with activation and inhibition are selected [13]. A
recent study used the Pearson correlation coefficient be-
tween 84 key differentially expressed genes and differentially
expressed miRNAs and long non-coding RNAs (IncRNA).
The relationship of miRNA—IncRNA, miRNA-mRNA, and
mRNA-IncRNA with correlation coefficient greater than
0.5 was used to select the pair of molecules [14].

Hierarchical integrative models (HIMs) offer the oppor-
tunity to uncover the relationships between disease and
the levels of different molecules measured in multiple
omic studies. In the past, they have been successfully im-
plemented for integrating DNA methylation, copy number
variation (CNV), and gene expression data in relation with
survival outcomes [15]. Specifically, modeling approaches
based on penalized likelihood methods and expectation-
maximization algorithms were applied to various bio-
logical relationship scenarios between different molecular
features to determine their effects on clinical outcome. In
this paper, we formulated a HIM adapted for application
to identify miRNA-mRNA associations related to HCC.
We accomplished this through analysis of mRNA-seq and
miRNA-seq data generated in house from HCC patients
paired tumor and normal liver tissues. We demonstrate
that our model offers insights into the molecular mecha-
nisms of HCC. Through pathway and network analysis of
selected miRNA-mRNA associations we uncover the
biological relevance of these pairs in HCC.

Methods

Characteristics of participants

In this study, liver tissues from 30 adult patients re-
cruited at Medstar Georgetown University Hospital
(MGUH), Washington, DC were used. Table 1 presents
characteristics of these patients, who are a subset of 65
participants (40 HCC cases and 25 patients with liver
cirrhosis) whose liver tissues samples were analyzed by
mRNA-seq and miRNA-seq. In this study, we focused
on mRNA-seq and miRNA-seq data (GU dataset)
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Table 1 Characteristics of subjects whose liver tissues are
analyzed by mRNA-seq and miRNA-seq in GU dataset

Characteristics HCC (N = 30)
Age Mean (SD) 61.67 (12.2)
Gender Male 83.33%
Race AA 30%

EA 37%

Asian 33%
BMI Mean (SD) 26.17 (54)
Smoking Yes 66.67%

No 33.33%
Alcohol Yes 47%

No 53%
HCV Serology HCV Ab+ Reactive 37%

HCV Ab+ Non-Reactive 60%

HCV Ab+ Unavailable 3.33%

HCV RNA+ Reactive 16.67%

HCV RNA+ Non-Reactive 17%

HCV RNA+ Unavailable 63%
HBV Serology anti HBC+ Reactive 10%

anti HBC+ Non-Reactive 3.33%

anti HBC+ Unavailable 87%

HBs Ag+ Reactive 17%

HBs Ag+ Non-Reactive 70%

HBs Ag+ Unavailable 13%
MELD Mean (SD) 10.04 (4.5)

MELD < 10 56.67%
AFP (ng/mL) Median (IQR) 4.4 (14.05)
Child Pugh Score Mean (SD) 6.14 (1.5)

Median (IQR) 6(1)
Child Pugh Class A 73%

B 13.33%

C 333%
AST (IU/L) Median (IQR) 123 (158)
ALT (1U/L) Median (IQR) 117 (152)
HCC Stage Stage | 43%
(TNM Staging) Stage Il 24%

Stage Il & IV 33%

?Adjacent normal tissue for the HCC patients are available for this study

obtained by analysis of tumor and adjacent normal tis-
sues from 30 HCC cases. The patients were diagnosed
to have HCC based on well-established diagnostic im-
aging criteria and/or histology. Clinical stages for HCC
cases were determined based on the tumor-node-
metastasis (TNM) staging system. Tissues were donated
by patients scheduled for elective surgical procedures
due to the cancerous or potentially cancerous conditions
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and/or other related benign conditions. These provide a
source of both tumor and normal-control tissues. Prior
to enrollment in the study, the patients were consented
to participate using IRB-approved informed consent and
HIPAA authorization forms.

Furthermore, we analyzed miRNA-seq and mRNA-seq
data obtained from the TCGA Research Network (TCGA
dataset). The dataset we used in this study is a small sub-
set of the TCGA data obtained by analysis of tumor and
adjacent normal liver tissues from 49 patients (Table 2).
These patients were matched using the TCGA patient
identifiers to select their corresponding normal tissues.

RNA isolation and quality assessment

Total RNA was isolated from 20 mg frozen liver tissue
using the Zymo Direct-zol RNA Miniprep Plus Kit (Zymo
Research) according to the manufacturer’s instructions.
The RNA quality and quantity were analyzed with UV-
VIS using the NanoDrop spectrophotometer (Thermo
Fisher), and fluorometry using the Qubit 2.0 Fluorometer
(Thermo Fisher). RNA integrity was assessed using the
Agilent RNA 6000 Nano Kit on the Agilent 2100 Bioana-
lyzer. This work was performed in the Genomics and
Epigenomics Shared Resource (GESR) at GUMC.

mRNA expression profiling

RNA samples extracted from liver tissues were ana-
lyzed by mRNA-seq. Briefly, indexed paired-end se-
quencing libraries were prepared from 10ng total
RNA using the TruSeq RNA Access Library Prep Kit
(Ilumina). Paired-end sequencing was performed on
the HiSeq 4000 System (Illumina) using 150bp
paired-end (PE150) read mode.

The mRNA-seq data contained an average of 33M
reads per sample. The raw data recorded in FASTQ files
were imported into Partek® Flow* software, (Partek Inc.,
St. Louis, MO, USA) for quality assessment and mRNA-
seq data analysis. Quality assessment was performed at

Table 2 Characteristics of subjects from TCGA-LIHC cohort

Characteristics HCC 3N =49)
Age Mean (SD) 60.77 (16.2)
Gender Male 55.10%
Race AA 14%
EA 67%
Asian 12%
not report 6.12%
HCC Stage Stage | 34.69%
Stage Il 22.45%
Stage Il & IV 26.53%
Unknown 16.33%

2Adjacent normal tissue for 49 HCC patients are available for this study
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each step of the procedure including RNA isolation,
library preparation and sequencing. Reads containing the
adapters or low quality (Qscore <=5) bases were removed
prior to alignment. For the mRNA-seq data, the average
Q30 (base count of Phred value >30/ total base count)
was 93.99% and the average GC content was 52.1%.

Alignment to the hg38 reference genome was performed
using the spliced transcripts alignment to a reference
(STAR) algorithm, with 89.6% alignment. The aligned
reads were then filtered to remove duplicate reads and
then quantified to the transcriptome through an Expect-
ation Maximization (EM) method. To compare the gene
expression between two conditions and eliminate system-
atic effects that are not associated with the biological dif-
ferences of interest, we needed to normalize the samples.
TMM (Trimmed mean of M-values) method was applied
to estimate appropriate scaling factors for normalization.
The normalized count data were exported from the Partek
Flow software for further data analysis. After conducting
the TMM normalization, Principal Components Analysis
was used for outlier screening. One Adj-N tissue sample
was detected as an outlier. Therefore, we deleted this
Adj-N tissue sample and its corresponding HCC tissue
sample from the further analysis.

During the sample preparation of the mRNA-seq ex-
periment, four samples were randomly selected and were
included as blinded samples for subsequent quality assess-
ment. During data acquisition, these samples were marked
as unknowns. Using cluster analysis of the result mRNA-
seq data, we successfully clustered the ‘Unknown’ samples
into their correct groups. This confirms the quality of the
mRNA-seq data we acquired and preprocessed, prior to
analyzing the data using hierarchical integrative model to
identify mRNA-miRNA associations in HCC.

miRNA expression profiling

Aliquots of the same RNA samples used for the mRNA-
seq analysis described above were analyzed by miRNA-
seq. Indexed sequencing libraries were prepared from
200 ng total RNA using the QIAseq miRNA Library Kit
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(Qiagen) in the GESR according to the manufacturer’s
instructions. Sequencing was performed on the NextSeq
550 System (Illumina) using 1 x 75 bp paired-end (SE75)
read mode. The miRNA-seq data generated were then
analyzed using the QIAseq miRNA quantification data
analysis software. After quality assessment of the
samples, FASTQ files were uploaded to the data analysis
center at Qiagen for further analysis. In the first step,
the unique molecular index (UMI) counts were calcu-
lated and primary miRNA mapping was performed. In
the second step, the UMI counts were analyzed to calcu-
late the changes in miRNA expression. The quantified
data were then normalized using TMM method.

Evaluation of dependence between tumor and adjacent
normal tissues

We investigated the dependence between the tumor and
adjacent normal tissue pairs across all miRNA-seq and
mRNA-seq data. A correlation analysis between the
tumor and adjacent normal tissues revealed that 87% of
the correlations for the mRNAs and 70% of the correla-
tions for the miRNAs have magnitudes lower than 0.3.
In addition, a comparison of fixed effects and mixed ef-
fects models using AIC and BIC suggested that including
random effects for individuals to account for the match-
ing is not necessary. Thus, in our formulation of hier-
archical integrative model, we assumed that the sample
groups were independent.

Hierarchical integrative model (HIM)

Hierarchical integrative model offers the opportunity to
associate molecules measured in multiple omic studies
across several levels to uncover novel relationships per-
taining to disease status [15]. The HIM model we for-
mulated for analysis of mRNA-seq and miRNA-seq data
can be specified with two levels: (1) a mechanistic sub-
model relating mRNA to miRNA markers, and (2) a
clinical submodel relating disease status to mRNA and
miRNA, while accounting for the mechanistic relation-
ships in the first level (Fig. 1).

Mechanistic submodel miRNA

4

Clinical submodel miRNA

Fig. 1 A hierarchical integrative model consisting of a mechanistic submodel and a clinical submodel
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The mRNAs and miRNAs that go into the HIM
are pre-selected using paired t-test considering only
those mRNAs and miRNAs associated to the binary
disease status Y (tumor or normal liver tissue). The
mechanistic submodel fits multivariable models relat-
ing each mRNA to miRNAs. This is accomplished
via lasso-regularized linear models using the R pack-
age glmnet [16]. The clinical submodel uses a penal-
ized logistic regression model to relate the disease
status Y to the linear predictors from the mechanis-
tic submodel as well as mRNA and miRNA levels
that were not selected in the mechanistic submodel.
Figure 2 presents the steps involved in using HIM to
identify miRNA-mRNA pairs associated to HCC.

Mechanistic submodel

The mechanistic submodel is formulated as in Eq.
(1), in which #; corresponds to the linear predictor
from the penalized regression model, relating
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mRNA; to its associated miRNAs and e; is the
residual.

WIRNA] =ay + (leiRNAjl + dgmiRNAjz + o+ a,,miRNA,,, +e/

;

(1)

Clinical submodel

The clinical submodel is formulated as in Eq. (2), in
which mRNA corresponds to the set of mRNAs that
passed the t-test (FDR < 0.05) but were not picked in the
mechanistic submodel (i.e., mRNAs related to Y but that
do not have miRNAs associated with them); miRNA cor-
responds to the set of miRNAs that passed the t-test
(FDR <0.05) but were not picked in the mechanistic
submodel (i.e., miRNAs not related to mRNAs but that
could potentially affect the response Y). The logistic
regression model in the clinical submodel is fit using a
lasso penalty to identify relevant markers.

miRNA-seq Data

!

MmRNA-seq Data

}

Alignment, normalization, &
pre-selection

Alignment, normalization, &
pre-selection

|

Mechanistic model

|

Identification of associated
miRNA — mRNA pairs in HCC

Clinical model

lmiRNA — mRNA

Identification of significant miRNA — mRNA pairs
and mRNA/miRNA between HCC and Normal

Network & Pathway Analysis (IPA)

____Significant pairs,
MRNAs & miRNAs

Fig. 2 Overview of HIM to select miRNAs, mRNAs, and miRNA-mRNA pairs associated to disease
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logit P(Y =1) =By + > By, + D Byej

+>" BmRNA, + > BmiRNA,
(2)

The selection of 7; would imply that the effects of
mRNA; on the outcome are modulated by the miRNAs
associated to it, while the selection of e; would imply
that the effects of mRNA; on the outcome result from
factors other than those accounted for by its associated
miRNAs. With this formulation, if #; is selected, mRNA,;
and all its associated miRNAs would be picked, although
some of the miRNAs may not be relevant.

Results

Analysis of GU dataset by HIM

Prior to performing statistical analysis, the distribution
of the data was evaluated. The mRNA and miRNA ex-
pression levels were then log-transformed to render their
distributions fairly symmetric. We then used a paired t-
test to identify miRNAs and mRNAs that are differen-
tially expressed between the HCC and adjacent normal
tissues. Adjusted p-values were calculated using
Benjamini-Hochberg (BH) method. Fold changes were
calculated considering the median of raw intensity
values. Table 3 represents the number of features de-
tected and the number of miRNAs and mRNAs selected
with FDR < 0.05.

The miRNAs with FDR < 0.05 were matched to target
pairs from databases using the miRNA target filter func-
tion that provides biological effects of miRNAs based on
experimentally validated interactions from TarBase and
miRecords, as well as predicted miRNA-mRNA inter-
actions from TargetScan. The miRNA targets were then
overlapped with the list of significant mRNAs from the
mRNA-seq analysis to select reported targets of the
significant miRNAs. A pathway analysis of this filtered
set performed using IPA identified 469 pathways as sig-
nificantly enriched with p <0.05. FXR/RXR Activation,
LXR/RXR Activation, Acute Phase Response Signaling,
Hepatic Fibrosis / Hepatic Stellate Cell Activation,
Sirtuin Signaling Pathway, and Valine Degradation I were
selected as the top pathways enriched using the significant
mRNAs.
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The mechanistic submodel of HIM relating each of
the significant (FDR <0.05) 5751 mRNAs to 238 miR-
NAs using glmnet identified 26,080 miRNA-mRNA as-
sociations. All of the 238 miRNAs were involved in a
potential pair with 3632 mRNAs as a result of the mech-
anistic submodel. All of the pairs and significant inde-
pendent molecules that passed the univariate t-tests with
FDR control were included in the clinical submodel for
subsequent analysis. The clinical submodel selected 157
miRNA-mRNA pairs associated to HCC, which consist
of 19 mRNAs and their related 90 miRNAs. Figure 3 de-
picts the number of molecules that were selected at each
level of the analysis in the HIM. The selected 157
miRNA-mRNA pairs are included in the Supplementary
Figure 1.

MicroRNA target filter analysis was then performed in
IPA to match associated pairs that are reported or
already verified experimentally. Of the 157 significant
pairs selected by HIM, there are 40 experimentally veri-
fied pairs involving one of the molecules selected in the
pair. Of these, five of the miRNA-mRNA pairs are exact
matched pairs. Figure 4 presents these pairs with their
confidence of prediction from the database and the
dotplots of each pair.

The miRNA-mRNA associations identified by HIM
were analyzed in IPA to generate association networks
from the knowledge-base and to further select the path-
ways that are dysregulated in HCC involving these
miRNA-mRNA pairs. The significant pathways selected
by the molecules involved in these pairs can be found in
Fig. 5. A network generated using IPA showing the in-
teractions and biological relevance of these selected mol-
ecules is provided in Supplementary Figure 2. The top
biological processes depicted by this network are glom-
erular injury, inflammatory disease, and inflammatory
response. The molecules drawn into this network from
the database reflect the role of the selected molecules in
pathogenesis of HCC as relevant to changes initiating
inflammation, organismal injury, and connective tissue
abnormalities.

Analysis of TCGA dataset by HIM

We analyzed the TCGA dataset following the same ap-
proach as the GU dataset. Although miRNA-seq data
consisted of 2588 miRNAs, there were more that 90%
missing values for the 49 subjects considered and thus

Table 3 Number of mRNAs, miRNAs, and miRNA-mRNA pairs selected by HIM using the GU dataset

Statistical Analysis Mechanistic Model Clinical Model
# of detected features # of selected features total # of pairs selected pairs (#mRNA) selected pairs (#mRNA)
with FDR < 0.05 (#miRNA) (#mIRNA)
miRNA 2195 238 1,368,738 26,080 (3632) (238) 157 (19) (90)
mRNA 20,354 5751
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238-238 =0

26,080 pairs

238 miRNA
3632 mRNA

miRNA
238
(fdr < 0.05)

MRNA >

Fig. 3 Number of mRNAs, miRNAs, and miRNA-mRNA pairs in the HIM for the GU dataset

miRNA

5751 (fdr < 0.05)

\@-3632 = 2119

mRNA

only 740 miRNAs were analyzed in this study. As shown
in Table 4, there were 354 miRNAs and 11,033 mRNAs
with FDR < 0.05 related to tumor vs. normal tissue. Fig-
ure 6 depicts the number of molecules that were selected
at each level of the analysis in the HIM. A pathway ana-
lysis of significant miRNAs and mRNAs performed using
IPA identified 522 pathways as significantly enriched with
p <0.05. Of these, 85% of the pathways overlap with the
469 significantly enriched pathways from GU dataset.
Axonal Guidance Signaling, LXR/RXR Activation, LPS/IL-
1 Mediated Inhibition of RXR Function, Role of Macro-
phages, Fibroblasts and Endothelial Cells in Rheumatoid
Arthritis, Hepatic Fibrosis / Hepatic Stellate Cell Activa-
tion, FXR/RXR Activation, were selected as the top path-
ways enriched using the significant mRNAs.

Of the 263 significant miRNA-mRNA pairs selected by
the HIM, there are 61 experimentally verified pairs involv-
ing one of the molecules selected in the pair, of which six
pairs are exact match verified based on microRNA Target
Filter analysis in IPA. Similar to the GU dataset, the pairs
selected from the TCGA dataset overlap in regulation and
function. The 263 miRNA-mRNA pairs and IPA gener-
ated network of interactions of these selected molecules
are shown in Supplementary Figures 3 and 4, respectively.
Significant pathways with p-value < 0.05, analyzed by IPA
using the list of mRNAs and miRNAs from the hierarch-
ical integrative model can be found in Supplementary
Figure 5. The list and dot plots of the six verified miRNA-
mRNA pairs are shown in Supplementary Figure 6.

While the GU dataset consists of 2195 miRNAs, only
740 miRNAs (about 1/3 of the miRNAs in the GU data-
set) were considered in the TCGA dataset due to a large
number of missing values in the TCGA data. Of these,
706 miRNAs overlapped between the GU and TCGA
datasets. At the mechanistic submodel of the HIM, 1190
miRNA-mRNA pairs overlapped between the GU and
TCGA datasets. Of these, 13 pairs have been reported as
experimentally verified. Following this, the clinical model
selected 157 pairs in the GU dataset consisting of 19

mRNAs and 90 miRNAs. Similarly, 263 pairs were se-
lected in the TCGA dataset consisting of 14 mRNAs and
136 miRNAs. Although no overlapping exact pairs be-
tween the GU and TCGA datasets were found at this
level, 26 of the miRNAs selected in the pairs overlapped
between the two datasets, but each miRNA was paired
to a different mRNA. Also, pathway analysis based on
the selected mRNAs and the targets of the miRNAs
revealed an overlap of 85% of the significant pathways
between the two datasets. From this, we infer that the
mRNAs selected in a pair and the targets of the miRNAs
selected from each dataset may share the same pathway.

Correlation analysis of GU and TCGA datasets

To compare the performance of HIM in selecting
miRNA-mRNA pairs with more traditional approaches
such as correlation analysis, we used a regularized general-
ized canonical correlation analysis (rgCCA), a component-
based approach that aims to study the relationships be-
tween several sets of variables [17]. This analysis selected
36,963 miRNA-mRNA pairs (Jr|] >0.5 and FDR <0.05)
from GU dataset and 36,962 miRNA-mRNA pairs (|r| >
0.5 and FDR < 0.05) from the TCGA dataset. MicroRNA
target filter analysis in IPA revealed 983 and 258 verified
exact pairs in the GU and TCGA datasets, respectively.
Out of these, 20 and 65 miRNA-mRNA pairs in the GU
and TCGA dataset, respectively, overlap with the pairs
that were selected by HIM. Comparing the miRNA-
mRNAs selected by HIM at the mechanistic submodel
with the pairs selected by rgCCA, we found 104 experi-
mentally verified pairs overlapped in the GU dataset. Simi-
larly, 35 experimentally verified pairs overlapped between
sets of pairs selected by rgCCA and HIM in the TCGA
dataset. This shows that rgCCA and the mechanistic sub-
model of HIM tend to identify a large number of overlap-
ping verified pairs. However, HIM offers the ability to
discover miRNA-mRNA pairs related to the disease status,
thus providing a more focused set of disease-associated
pairs for further validation.
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Fig. 4 List and dotplots of the verified miRNA-mRNA pairs from the GU dataset
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Discussion

discover novel relationships pertaining to disease status.

Recently discovered significance of miRNAs in homeo-
stasis and disease have increased the importance of in-
corporating miRNAs into gene regulatory networks.
HIMs offer the opportunity to associate molecules mea-
sured in multiple omic studies across several levels to

There are

several

experimentally validated dual-
upregulated as well as dual down-regulated miRNA-
mRNA pairs found in IPA and in the literature. MiRNAs
are thought to post-transcriptionally repress gene ex-
pression; however, the full extent of the mechanisms by



Varghese et al. BMC Medical Genomics (2020) 13:56

Page 9 of 14

Flavin Biosynthesis IV (Mammalian)
Methylglyoxal Degradation Il
Tryptophan Degradation X (Mammalian, via...
The Visual Cycle
Retinoate Biosynthesis |
Retinol Biosynthesis
tRNA Charging
Estrogen-Dependent Breast Cancer Signaling
BMP signaling pathway
Telomerase Signaling
Phagosome Formation
Agranulocyte Adhesion and Diapedesis
RAR Activation

o

Fig. 5 Pathways selected by IPA using the list of mRNAs and miRNAs from HIM based on the TCGA dataset

(=}
n
-
o
n
N
N
n
w

-log(p-value)

which this occurs are not fully understood (i.e., repres-
sion of a repressor leading to dual upregulation, etc.)
[18-20]. Several studies have demonstrated the ability of
miRNAs to activate gene expression in response to
various conditions in specific cell-types [10, 21, 22]. The
purpose of this paper is to integrate miRNA-seq and
mRNA-seq data to select associated miRNA-mRNA
pairs that are of biological relevance to HCC.

Dysregulation of miRNA-mRNA pairs in HCC

A literature search was conducted to validate selected mol-
ecules, many of which were found to be extensively re-
ported in relation to HCC. Several of these selected
molecules are already identified as being either diagnostic
(VSP45, TERT, EBF2, hsa-miR-324-5p, hsa-miR-130a-3p,
hsa-miR-200a-3p, hsa-miR-106b-5p, hsa-21-5p, hsa-424-
5p), prognostic (CAP2, TRMT6, MT1JP, hsa-miR-10b-5p,
hsa-miR-139-3p, hsa-miR-101, hsa-miR-122-5p, hsa-miR-
1285-3p, hsa-miR-203a-3p), recurrence-related (CD34, hsa-
miR-183), or therapeutic (AKR1B10, SLC25A4, CYP2B7,
FBXL18, hsa-miR-146a-5p, hsa-miR-34a, hsa-miR-122, hsa-
miR-671-5p) biomarker candidates for HCC [23-27].
These molecules appear to be involved in molecular events

relating to inflammation, tumor microenvironment, cell
cycle, apoptosis, and metabolism. These events in combin-
ation with key oncocytic molecular events facilitate
pathogenesis, progression, and metastasis of HCC. This is
evident by literature search findings as well as our pathway
and network analysis results.

MARCO as a potential target gene of hsa-miR-10b-5p

Our hierarchical integrated model results indicate that,
macrophage scavenger receptor (MARCO) is associated
with hsa-miR-10b-5p in both our GU and the TCGA
datasets. Figure 7 shows the dot plots of the pairs
selected from both datasets. The hsa-miR-10b-5p to
MARCO pair is involved in HCC through increasing
cellular proliferation, differentiation, and migration in
HCC. According to miRecords, there are five experimen-
tally verified targets of hsa-miR-10b, and MARCO has
not been reported as a target. Decreased expression of
MARCO is associated with poor prognosis in HCC,
potentially due to its role in modulating inflammatory
signaling [28]. Recently, MARCO has been identified as
a marker of non-inflammatory macrophages in the liver
[29]. Expression of MARCO has been used to define a

Table 4 Number of molecules and miRNA-mRNA associations selected by HIM using the TCGA dataset

Mechanistic Model Clinical Model
# of detected features # of selected features total # of pairs selected pairs (#mRNA) selected pairs (#mRNA)
with FDR < 0.05 (#mMiIRNA) (#miIRNA)
miRNA 740 354 3,905,682 75,668 (8098) (354) 263 (14) (136)

mMRNA 18,407 11,033
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Fig. 6 Number of mRNAs, miRNAs, and miRNA-mRNA pairs in the HIM for the TCGA dataset
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11,033 (fdr<0.05)

1,033-8098 = 293

population of suppressive tumor-associated macro-
phages. Thus, upregulation of MARCO in HCC sug-
gests a phenotype of heightened immunosuppression.
Interestingly, hsa-miR-10b was also found to be
downregulated in macrophages and explored as a cir-
culating biomarker of HCC recurrence in bone mar-
row cells, suggesting a possible link between hsa-miR-
10b and MARCO [30]. Hsa-miR-10b has also been
identified as a prognostic biomarker of HCC in a
study that used 33 miRNA signatures to characterize
HCC using TCGA data [26]. Overexpression of miR-
10b in HCC has been reported to promote cell prolif-
eration, migration and invasion [31]. Thus, MARCO
can be a potential target of hsa-miR-10b that is worth
verifying. Further, additional miRNAs were identified
by our analysis as having an influence on MARCO
expression. These include hsa-miR-125b-2-3p, hsa-
miR-146a-5p, hsa-miR-200a-3p, and hsa-miR-221 that
are all known diagnostic biomarkers of HCC.

miRNA-mRNA pairs involved in tumor inflammation

Pairs involving regulation of MARCO, IFITMI10, and
CD34 appear to function in HCC through changes in-
volving tumor microenvironment and inflammation.
IFITM10 is an interferon-induced transmembrane pro-
tein known to play a role in anti-viral response in HCC
caused by virally-induced etiology [32]. IFITM10 was
found to be targeted by hsa-miR-106b-5p in our analysis,
a miRNA known to activate immunoregulatory T cells
and myeloid-derived suppressor cells [33]. Hsa-miR-
146a-5p is thought to be down-regulated in HCC lead-
ing to immune suppression and HCC-induced NK cell
dysfunction. MARCO is a target gene found to be regu-
lated by hsa-miR-146a-5p in our analysis suggesting
functional relevance [34]. Hsa-miR-122 and Has-miR-
146a-5p are both thought to be involved in regulating
STAT3 signaling, a key pathway involved in immune
suppression in tumor microenvironment [34]. Hsa-miR-
122 is the most abundant miRNA in healthy human liver
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and down-regulation in HCC is associated with poor
prognosis [25]. Further, restoration of miR-122 levels is
used to indicate therapeutic response and sensitivity
with several drugs used to treat HCC. Similarly, hsa-
miR-34a suppression in HCC has been linked to in-
creased CCL22 levels known to recruit regulatory T cells
involved in immune escape [35]. Lastly, CD34 expression
on liver sinusoidal endothelial cells is linked to chronic
liver inflammation and thought to play a role in the
pathogenesis of HCC from underlying cirrhosis [36].
The role of miRNA-mRNA regulation in HCC could
prove useful to assess the immune status of these tumors
and predict response to these novel therapeutics.

miRNA-mRNA pairs involving cell cycle and apoptosis

Pairs involving TRMT6, SLC25A40, MT1JP, and EBF2
are involved in HCC through regulation of cell cycle and
apoptosis contributing to disease progression and metas-
tasis [37, 38]. Hsa-miR-671-5p was associated with
CD34 and EBF2 in our analysis and is known to be asso-
ciated with metastasis, proliferation, and EMT in HCC
[39]. Dysregulated expression of hsa-miR-7 and hsa-
miR-532-3p in HCC leads to increased proliferation, in-
vasion, and metastasis through the PI3K/AKT signaling
pathway [40]. Further, hsa-miR-532-3p along with hsa-
miR-139 are associated with CHRD, FLAD1, MTI1JP,
and EBF2 in our analysis and have been identified as
tumor suppressors in HCC that inhibit cell proliferation,
migration, and invasion [41]. MT1JP is also thought to
act as a tumor suppressor through regulating a series of
pathways involving p53, such as the cell cycle, apoptosis
and proliferation [42]. Similarly, TRMT6 upregulation
correlates with poor prognosis in HCC and is a MYC
target gene involved in G2M checkpoint and cell-cycle
regulation [43]. Hsa-miR-101-5p is another molecule
regulated by MYC signaling that is repressed, leading to
progression and metastasis of HCC [44]. Hsa-miR-200a
is thought to suppress proliferation in HCC by induction
of G1 arrest through CDK6. Similarly, has-miR-125b-2-
3p is an upstream regulator of oncogenic sirtuin that
also causes GI arrest. Interestingly, Sirtuin signaling was
one of the top pathways identified from this analysis.

miRNA-mRNA pairs involved in metabolic regulation

Many miRNA-mRNA pairs identified contribute to aber-
rant metabolism in HCC and some of these are further as-
sociated with distinct etiology. For instance, target genes
(FLAD1, SLFNL1, GNS, FBXL18, CYP2B7P) are com-
monly upregulated genes in metabolic-induced HCC and
are associated with risk factors, such as diabetes, obesity,
and other metabolic syndromes. These genes are com-
monly upregulated in a subclass of malignant HCC tumors
under metabolic stress and associated with hypoxic behav-
ior, epithelial-to-mesenchymal transition, and increased
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fatty acid biosynthesis [45]. CYP2B7P was found to be a
target gene of hsa-miR-122 that is a diagnostic biomarker
of HCC as well as of non-alcoholic fatty liver disease
(NAFLD) [25]. MiR-122 is also known to affect metab-
olism of HCC cells through pyruvate kinase [46].
CYP2B7P was also found to be a gene target of hsa-
miR-183-5p that is a biomarker of HCC and diabetes.
Many of the top pathways identified from these
selected miRNA-mRNA pairs are involved in meta-
bolic regulation, including FXR/RXR activation, LPS-
IL-1 mediated inhibition of RXR function, LXR/RXR
activation, valine degradation, fatty acid B-oxidation,
hepatic cholestasis and tryptophan degradation. Tryp-
tophan degradation was one of the pathways found to
overlap between significant pairs identified by TCGA
and our datasets. In addition, we previously identified
several molecules from the FXR/RXR activation path-
way as being differentially expressed in HCC patients
involved in bile acid homeostasis, lipid and glucose
metabolism [47].

Upstream miRNA regulators of TERT

Telomerase plays an important role in maintaining
telomere length and chromosomal stability in hepato-
cytes that is often dysfunctional in cirrhotic liver and
HCC [25]. Early-stage and virally-induced tumors are
often associated with telomere dysfunction along with
p53 mutations. The relevance of TERT and TP53 in
these HCC cases can be visualized by the top network
depicting interaction amongst our selected miRNA-
mRNA pairs (Supplemental Figure 2). Over 68% of
HCC cases are thought to have TERT mutations in-
fluencing telomere maintenance and susceptibility for
viral-genome integration [48]. In addition, TERT is a
commonly amplified gene in HCC patients and its
presence has been used to characterize a subpopula-
tion of HCC cases [49]. For example, HCC patients
with HBV are more likely to have mutations in P53
than TERT because HBV often integrates at the loca-
tion of the TERT gene. In contrast, patients with
HCV and HCC patients of Black or African American
race are more likely to have TERT promoter muta-
tions than p53. A cluster of genes appears to be asso-
ciated with this subpopulation, including CAP2 and
CHRD, that are involved in BMP signaling [50]. BMP
signaling was another pathway found to overlap be-
tween the selected pairs identified by TCGA and our
datasets and is associated with this subpopulation.
TERT was found to be regulated by several miRNAs
including hsa-miR-21-5p, hsa-miR-130b-5p, hsa-miR-
675-3p, and hsa-miR-488-3p. All of these miRNAs are
thought to play a role in HCC [49]. This makes
miRNA pairs involved with regulating TERT a signifi-
cant focus worth additional validation.
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Hierarchical integrative model to identify miRNA-mRNA
pairs

Some of the miRNA-mRNA pairs identified in this study
are reported to have involvement in inflammation, cell
cycle regulation, apoptosis, and metabolism. In addition
to the functional categories that most pairs are involved
in, several pairs are involved in resistance mechanisms,
splicing alterations, and epigenetic dysregulation. Several
known pairs stemming from the selected 19 mRNAs and
associated 90 miRNAs have been experimentally vali-
dated in the database with different partners. For in-
stance, TRMT6 is a known target gene of both miR-21
and miR-146a-5p. From our analysis, miR-21 and miR-
221 were both selected as being involved in significant
pairs functioning in HCC. These two miRNAs are
known oncomiRs in HCC whose mRNA targets are
often found to act as tumor suppressors influencing
tumor proliferation and migration [25]. In addition to
TRMTS6, several other genes were identified as targets of
miR-21 that have not yet been validated, including
TERT and TPS45. However, we recognize that the actual
role the above mentioned pairs may have in the patho-
genesis of HCC is much more complex and not fully
known. The ability of HIMs to identify novel miRNA-
mRNA pairs that have not been validated in existing da-
tabases is a strength that can be used for discovery of
novel targets. For example, our analysis identified four
genes that are potential targets of miR-221 (MARCO,
AKR1B10, CD34, and LARS) that could have similar im-
portance in HCC. This shows the ability of HIMs to pre-
dict novel miRNA-mRNA pairs of biological significance
in relation to HCC that warrant additional validation in
the future.

Conclusion

In this study, we used hierarchical integrative model to
integrate miRNA-seq and mRNA-seq data acquired by
analysis of paired tumor and adjacent normal liver tis-
sues from the same set of patients with HCC. The model
led to identification of key miRNA-mRNA pairs and as-
sociated pathways that are potentially involved in HCC
pathogenesis. The results strongly support the hypoth-
esis that miRNAs are important regulators of mRNA ex-
pressions in HCC. Furthermore, these results emphasize
the biological relevance of studying miRNA-mRNA pairs
when analyzing miRNA-seq and mRNA-seq datasets. As
mRNA-miRNA regulation generally exists in various
biological systems, understanding the functionality of
mRNA-miRNA is critical for elucidating its underlying
role in disease pathology. Combining regulators of dis-
ease across multiple -omics levels can aid in providing a
more synergistic view of disease progression in general
and a roadmap to addressing the imbalance between sta-
tistically and biologically relevant information.
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Additional file 1: Figure S1. miRNA-mRNA pairs identified using HIM
for GU dataset. An upward arrow denotes a positive fold change and a
downward arrow denotes a negative fold change when comparing HCC
vs normal.

Additional file 2: Figure S2. miRNA-mMRNA interaction network for GU
dataset. The network was constructed based on mRNAs and miRNAs se-
lected by the HIM from the GU dataset. The molecules drawn into this
network reflect the role of the selected molecules in pathogenesis of
HCC. The molecules highlighted in red are up-regulated and those in
blue are down-regulated in HCC. The network was generated through
the use of IPA (QIAGEN Inc,, https//www.giagenbioinformatics.com/prod-
ucts/ingenuity-pathway-analysis).

Additional file 3: Figure S3. miRNA-mRNA pairs identified using HIM
for TCGA dataset. An upward arrow denotes a positive fold change and a
downward arrow denotes a negative fold change when comparing HCC
vs normal.

Additional file 4: Figure S4. miRNA-mMRNA interaction network for
TCGA dataset. The network was constructed based on mRNAs and miR-
NAs selected by the HIM from the TCGA dataset. The molecules
highlighted in red are up-regulated and those in blue are down-
regulated in HCC. The network was generated through the use of IPA
(QIAGEN Inc,, https//www.qgiagenbioinformatics.com/products/ingenuity-
pathway-analysis).

Additional file 5: Figure S5. Top canonical pathways enriched in TCGA
dataset. The significant pathways were selected with p-value < 0.05
analyzed by IPA using the list of mRNAs and miRNAs selected from the
hierarchical integrative model based on the TCGA dataset.

Additional file 6: Figure S6. Verified miRNA-mRNA pairs from the
TCGA dataset. The list shown consists of verified miRNA-MRNA pairs with
their confidence in target prediction from IPA target filter analysis. The
expression of the miRNA and their predicted target is shown as dotplot.
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