
Gürsoy et al. BMC Medical Genomics 2020, 13(Suppl 7):78
https://doi.org/10.1186/s12920-020-0716-z

RESEARCH Open Access

Using blockchain to log genome
dataset access: efficient storage and query
Gamze Gürsoy1,2, Robert Bjornson3,4, Molly E. Green1,2 and Mark Gerstein1,2,4*

From 7th iDASH Privacy and Security Workshop 2018
San Diego, CA, USA. 15 October 2018

Abstract

Background: Genomic variants are considered sensitive information, revealing potentially private facts about
individuals. Therefore, it is important to control access to such data. A key aspect of controlled access is secure storage
and efficient query of access logs, for potential misuse. However, there are challenges to securing logs, such as
designing against the consequences of “single points of failure”. A potential approach to circumvent these challenges
is blockchain technology, which is currently popular in cryptocurrency due to its properties of security, immutability,
and decentralization. One of the tasks of the iDASH (Integrating Data for Analysis, Anonymization, and Sharing) Secure
Genome Analysis Competition in 2018 was to develop time- and space-efficient blockchain-based ledgering solutions
to log and query user activity accessing genomic datasets across multiple sites, using MultiChain.
Methods: MultiChain is a specific blockchain platform that offers “data streams” embedded in the chain for rapid and
secure data storage. We devised a storage protocol taking advantage of the keys in the MultiChain data streams and
created a data frame from the chain allowing efficient query. Our solution to the iDASH competition was selected as
the winner at a workshop held in San Diego, CA in October 2018. Although our solution worked well in the challenge,
it has the drawback that it requires downloading all the data from the chain and keeping it locally in memory for fast
query. To address this, we provide an alternate “bigmem” solution that uses indices rather than local storage for rapid
queries.
Results: We profiled the performance of both of our solutions using logs with 100,000 to 600,000 entries, both for
querying the chain and inserting data into it. The challenge solution requires 12 seconds time and 120 Mb of memory
for querying from 100,000 entries. The memory requirement increases linearly and reaches 470 MB for a chain with
600,000 entries. Although our alternate bigmem solution is slower and requires more memory (408 seconds and 250
MB, respectively, for 100,000 entries), the memory requirement increases at a slower rate and reaches only 360 MB for
600,000 entries.
Conclusion: Overall, we demonstrate that genomic access log files can be stored and queried efficiently with
blockchain. Beyond this, our protocol potentially could be applied to other types of health data such as electronic
health records.

Keywords: Blockchain, Secure storage, Genomic data access log

*Correspondence: mark@gersteinlab.org
1Program in Computational Biology and Bioinformatics, Yale University, 06520
New Haven, CT, USA
2Department of Molecular Biochemistry & Biophysics, Yale University, 06520
New Haven, CT, USA
Full list of author information is available at the end of the article

© The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons
Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in
this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-020-0716-z&domain=pdf
mailto: mark@gersteinlab.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Gürsoy et al. BMC Medical Genomics 2020, 13(Suppl 7):78 Page 2 of 9

Background
Genomic data collected from patients should be protected
as it identifies the individual and is private informa-
tion. With the decreasing cost of sequencing the amount
and type of human-derived genomics and related data is
increasing exponentially [1]. Private information leakages
based on genomic data have been extensively studied for
decades [2–7]; hence, sensitive genomic data is protected
through controlled access, and access logs are stored
for auditing potential malicious activities [8, 9]. Securely
maintaining accurate usage logs of data access is impera-
tive, because if usage logs are corrupted, changed, or lost,
then auditing the access to extremely sensitive data is not
possible.

Security and integrity of data can be achieved by focus-
ing on two key requirements. The first is that the usage
logs must not be lost, whether due to a software attack,
a hardware or structural failure, or some other disaster.
The second is that the usage logs cannot be manipulated.
One method to ensure that usage logs are not lost involves
storing multiple copies of the data, either within the same
organization or across multiple parties. If the copies are
stored at the same site, a structural failure could result in
loss of the data; however, storing copies of data with mul-
tiple parties requires trust, and there is no guarantee that
each copy of the log data is identical. Furthermore, even
if data logs are stored within the same organization (per-
haps across multiple sites), there is no guarantee that the
logs have not been manipulated by an individual within
the organization, whether by accident or intentionally. An
ideal implementation would protect from both loss and
manipulation. To guarantee that redundancies are identi-
cal and to protect against manipulation, we recommend
moving away from relying on trusted parties or authority
figures (individuals or organizations) and instead placing
that trust in an algorithm. Such a tool could be employed
by the implementation to provide clear outputs alert-
ing users of changes in the logs. Blockchain technology
employs an ideal implementation due to three key prop-
erties: decentralization, immutability, and security [10].
Decentralization prevents a single entity from controlling
the data; immutability guarantees that past records cannot
be altered; and security is ensured by protecting accounts
with enhanced cryptographic methods [10].

A network blockchain, or chain, can be broadly thought
of as a transparent, append-only list, which anyone within
the chain network can see and append to with proper per-
mission. Every node within the network locally stores a
copy of the list, making it a decentralized system. When a
node in the network appends an item to the list, an out-
put ID is generated. This ID is dependent on properties of
the appended item as well as previous blocks in the chain
[11]. MultiChain is a platform that allows users to build
and deploy private blockchain applications. It comes with

a data stream feature with potential for data storage and
sharing. Data streams allow users to create multiple key
values, time series, or identity databases that can be used
for data sharing, time stamping, and encrypted archiving
[12]. Each data stream on a MultiChain blockchain con-
sists of a list of items. These items contain information
about the block, the data to be stored, and the index for
the data. To store data using the streams, one needs two
inputs: the data and a key as an identifier for the data.

In this paper, we focus on efficient storage and querying
of genomic data access logs using blockchain technology.
One of the biggest caveats of blockchain technology is
the inefficiency of storing and querying data due to the
potential for chains to reach large sizes. The required
storage space and computational power of blockchains
is greater than a centralized database application due to
the blocks needing to contain information of the rest of
the chain before them. The decentralized system also cre-
ates a higher latency during storage and retrieval of data.
Moreover, blockchains with “proof-of-stakes” or “zero-
knowledge” technologies require cryptographic verifica-
tion of all transactions, which makes them extremely slow
[13]. Therefore, it is challenging to use this technology for
answering real-life problems. Here, we used blockchain
technology for storing and querying genomic data access
logs by taking advantage of the data stream feature of
MultiChain. We developed a heuristic trick, in which we
swapped the information that goes into the key and the
data fields, making our solution efficient in both insertion
and query of the data. Specifically, we stored the genomic
dataset usage logs in the key field of a stream item, while
indexing this data in the data field. We used minimal
indexing to allow for rapid storage of the data. For query-
ing information on the blockchain, we created data frames
from the chain instances that allow for efficient querying
within the instance. We also provide an alternative solu-
tion to overcome the scalability problem of the linearly
increasing memory with the increasing amount of data.
In this alternative solution, we indexed the data with the
transaction ids and queried based on these indices.

Methods
In this study, we aimed to design a time/space efficient
data structure and mechanisms to store and retrieve the
logs based on a blockchain by using the MultiChain-1.0.4
platform. The logs were stored on a small blockchain net-
work consisting of four nodes. Each line in the data access
log needed to be saved individually as one transaction
and all log data and intermediate data had to be saved
on-chain. No off-chain data storage was allowed.

Blockchain in a nutshell
As described earlier, a blockchain is a collection of blocks
that can be analogous to an append-only list. To ensure the



Gürsoy et al. BMC Medical Genomics 2020, 13(Suppl 7):78 Page 3 of 9

immutability of the blockchain, every time a transaction
is added to the system a group of miners needs to validate
it. Blocks hold batches of valid transactions. A transaction
moves a piece of value from a wallet address to a new wal-
let address. A wallet address is an alphanumeric identifier
for a possible destination on the chain. Unique addresses
are used for transactions; however, a user can have mul-
tiple addresses. The transaction is considered to be valid
and added to a block when every party in the network (i.e.,
miners) validates that the sender has a sufficient amount
of value and the address of the sender and the initiater of
the transaction are the same. The addition of the block to
the chain generates a transaction ID using a cryptographic
hash function. This ID depends on various features of the
chain such as the content of the block, time, and previous
transaction IDs; therefore, mining blocks (i.e., approval
of transaction IDs) requires time and resources. To add
complexity to the transaction hashes, some blockchain
platforms utilize concepts like proof-of-work. The pro-
cess of proof-of-work is to search for a piece of data that
is extremely difficult to produce, which is called “nonce”
(i.e., number only used once). Nonce becomes the part
of the transaction ID that the miners look for, and thus
increases the difficulty of the mining process.

Data streams in multiChain
MultiChain data streams allow a blockchain to be used
as a general purpose database. Blockchain provides time
stamping, notarization, and immutability to the stored
data. A MultiChain blockchain can contain any number of
streams. The data published in every stream is stored by
every node in the network. Each data stream on a Multi-
Chain blockchain consists of a list of items. Each item in
the stream contains the following information, as a JSON
object [12]:

• A publisher (string)
• A key (between 1-256 ASCII character, excluding

whitespace and single/double quotes) (string)
• Data (hex string)
• A transaction ID (string)
• Blocktime (integer)
• Confirmations (integer)

When a server connects to an existing chain through
the MultiChain platform, it is assigned a wallet address
for that chain. Multichain addresses differ from Bitcoin
addresses, such that addresses created on one MultiChain
blockchain cannot be valid on a second chain. This pre-
vents an accidental operation from being performed on
one chain that was intended for another [12]. When a data
stream is created on a chain, servers with a wallet address
for the chain may be granted permission to subscribe and
publish to the data stream. Their wallet address for the

chain is their publisher ID on the stream. To publish an
item to a stream, the publisher must provide a key in the
form of a string, and some data in the form of a hex as an
input. An example stream item is shown in Fig. 1. Another
property of MultiChain data streams is that requirement
of miners can be turned off. This is because the stream
items are added to a block based on the time the item is
published [12].

Chain creation
This step is common to both solutions we propose. Users
on a primary node (server) provide a chain name and a
stream name, and optionally, a second node address for
which they have secure-shell (SSH) credentials. If no sec-
ondary server is supplied, the application calls MultiChain
commands on the primary node to create a chain, initial-
ize the chain, create a stream, and then subscribe the node
to the stream. If a secondary server address is supplied,
the application creates and initializes the chain, and then
prompts the user for their password for SSH access to the
second server and requests access to connect to the chain.
The application then grants access to the second server
from the first server. From there, it provides SSH access
into the second server, and connects to the chain. On the
first server, a stream is created and the first and second
servers are subscribed to the stream. A flowchart of this
process and the representation of the log file in the data
stream are depicted in Fig. 2.

Algorithm 1 Create Chain
1: procedure CREATECHAIN(STRING cname,

STRING sname, STRING node-address, STRING
ssh-credentials)

2: call multichain-util create cname
3: if node-address is false then
4: call multichain -daemon cname
5: else
6: call ssh to node
7: call multichain -daemon cname
8: pass ssh credential to multichain
9: call multichain-cli create cname sname

10: call multichain-cli subscribe cname sname
11: if node-address is true then
12: pass ssh credential to multichain-cli

Challenge solution: storing data in data streams
We stored the genomic access logs as the keys of the
stream items of a block. This can be done due to the short
string lengths of each line in the log files, as a key can be
a maximum of 256 characters in length. However, we note
that if data that is larger than 256 characters needs to be
stored, this solution can still be effective by using string



Gürsoy et al. BMC Medical Genomics 2020, 13(Suppl 7):78 Page 4 of 9

Fig. 1 Blockchain and data streams. A blockchain is represented as the collection of blocks. Each block contains information about the transactions,
which contain the data streams and the hash of the previous blocks

compression techniques with a time and memory over-
head. For querying, we first used the MultiChain API call
liststreamitems to retrieve all of the stream items from a
blockchain. We then parsed the returned JSON object to
grab the keys from the stream items. The novelty of this
solution is that we stored the data in the key field of the
stream item, instead of the data field. As data field stores
the data in a hex format, converting the pulled hex into
plain text takes another operation and increases the query
time. After parsing all of the keys in the stream, we stored
the data locally in a Python Pandas data frame for further
querying, after which we discarded the data frame (see
Additional file 1).

Insertion MultiChain data streams allow for keys of up
to 256 characters in length, excluding white space and sin-
gle/double quotes. Each row of the genomic access logs is
no more than 94 characters in length, so our solution was
to first convert each tab-separated row into a single string,
using the literal characters, and then publish each row to
the stream as its own key, followed by the row number as
the data-hex. The algorithm for inserting usage logs from
text files into an existing MultiChain data stream consists
of the following steps: (1) convert each row in the file to be
compatible with the MultiChain key feature and (2) pub-
lish each row as a separate transaction to the key of a data
stream on a chain.



Gürsoy et al. BMC Medical Genomics 2020, 13(Suppl 7):78 Page 5 of 9

Fig. 2 Data insertion to data streams. a Flowchart of the data insertion using multiple nodes in the server. b Example of how entries in the log files
are represented in data streams in the challenge solution. Entires are appended to the blocks based on the timestamp, therefore, for example, some
entries will be in block i, while other go into block j. c Example of how entries in the log files are represented in data streams in the bigmem solution

Challenge solution: querying data from data streams
The querying options in the MultiChain-1.0.4 API are lim-
ited. Stream items could be queried on transaction IDs,
timestamps, or stream keys. Additionally, while the soft-
ware allows for querying on streams using keys, it could
not query partial keys or keys containing wildcards. Our
solution, therefore, was to list all stream items, grab the
keys, and create a data frame of all of the keys, which could
then be queried on. The algorithm for querying usage logs
from a data stream on a MultiChain consists of the fol-
lowing steps, as shown in the flowchart in Fig. 3. We first
download the stream items locally to the memory. This
creates a JSON object per stream items. After parsing the
keys, we create a data frame from the stream item keys.
We then perform queries on the data frame by creating a
dictionary from the user query. If the user requests sorted
results, then the results are returned after sorting them
(see Additional file 1).

Alternate bigmem solution: storing data in data streams
In this solution, instead of keeping the data in the key field
of the streams, we used the data-hex field to keep the data,
while using the timestamps as the key.

Algorithm 2 Insertion - Challenge Solution
1: procedure INSERT(STRING ARRAY logs, STRING

cname, STRING sname)
2: len ← length of logs
3: while i <len do
4: key ← transformLog(logs[i])
5: call multichain-cli cname publish sname key

hex(i)
6: i ← i + 1

Insertion In our insertion process, we store a main and
several auxillary records per log entry. We first store the
entire entry to the stream as the main record and get a
unique transaction id. For each field in a entry, we insert
an auxiliary record, using field:value as key, and times-
tamp:txid of main record as value (hex encoded). For
example, if our record contained user 6, we would store an
auxilary record mapping user:6 to the transaction id of the
main record. We do this for all columns of the data, in this
case 7. This increases the insertion time and storage, but
comes in handy when we do the queries with less memory
requirement.

Alternate bigmem solution: querying data from data streams
In this solution, we take advantage of indexing we cre-
ated with the transaction ids. For each query element,
we first find all auxiliary records that match, and save
their values as a set for each element. We then take the
set intersection. This will give us timestamp:txid of all
main records that matched all the query elements, apart
from the start and end time criteria (if any). We fil-
ter the resulting set by start and end time, if necessary.
For each surviving element of the filtered set, we extract

Algorithm 3 Query - Challenge Solution
1: procedure QUERY(STRING query, STRING cname,

STRING sname)
2: data.json ← call multichain-cli cname

liststreamitems sname
3: keys ← parse.JSON(data.json)

4: database ← pandas.dataframe(keys)
5: results ← pandas.Query(query, database)



Gürsoy et al. BMC Medical Genomics 2020, 13(Suppl 7):78 Page 6 of 9

Fig. 3 Querying. a Flowchart of the data query process in the challenge solution. b Flowchart of the data query process in the bigmem solution

the transaction ids from timestamp:txid, and query for
main record. The set of records returned is our query
result.

Results
The limitations of blockchain-based data storage meth-
ods are time and space efficiency and the scalability of
the solution. Here, we present two proof-of-concept solu-
tions for genomic access logs up to 1,000,000 entries.
Although our challenge solution scales linearly for most of
the variables we evaluated, the required storage and mem-
ory cost may not scale up for solving real-life problems
with billions of entries. Therefore, we provided a memory
efficient alternative solution that can be used when the
log sizes reaches large numbers at the expense of run time
overhead.

Accuracy
We generated a random 100 queries that are a combina-
tion of different columns in the data to test the accuracy
of our solution. We also tested these queries in chains that
have different amount of data. We found that in a chain

Algorithm 4 Insertion - Alternate bigmem Solution
1: procedure INSERT(STRING ARRAY logs, STRING

cname, STRING sname)
2: len ← length of logs
3: while i <len do
4: val ← hex(log[i])
5: ts ← get timestamp(log[i])
6: txid ← multichain-cli cname publish sname ts

val
7: fields ← parse(val)
8: for j ≤ 7 do
9: call multichain-cli cname publish sname

fields[j] hex(ts:txid)
10: j ← j + 1
11: i ← i + 1

with increasing amounts of data, our solution showed
100% accuracy for every query in the set. Figure 4c shows
that the expected number of returned rows that are calcu-
lated based on plain-text logs and using “awk” commands
and the returned rows for example queries are identical
for both solutions.

Algorithm 5 Query - Alternate bigmem Solution
1: procedure QUERY(STRING query, STRING cname,

STRING sname)
2: len ← number of elements of query
3: els ← parse(query)
4: for i ≤ len do
5: s[i] ← multichain-cli cname

liststreamkeyitems sname els[i]
6: s ← intersection(s[1],s[2],..,s[len])
7: for el ∈ s do
8: timestamp,txid ← el
9: if timestamp ≥ starttime and timestamp ≤

endtime then
10: Rec ← multichain-cli cname

getstreamitem sname txid

Speed, storage and scalability
Insertion We measured the performance of our insertion
protocol by testing (1) the time required, (2) the maxi-
mum memory required, and (3) the disk storage required
to store increasing amounts of data for both solutions.
We found that it takes around 24.5 minutes and 214 min-
utes to insert 100,000 entries of a genomic data usage
log into a chain with challenge and bigmem solutions,
respectively. This scales up to around 410 minutes for
a log with 1,000,000 entries with an estimated complex-
ity of O(nlog(n)) with the challenge solution. It scales up
to 243 minutes for a log with 600,000 entries with the
bigmem solution (Fig. 4a). We found that the memory
requirement for inserting 100,000 genomic data usage log



Gürsoy et al. BMC Medical Genomics 2020, 13(Suppl 7):78 Page 7 of 9

Fig. 4 Results. a Time, memory and storage complexity of data storage in a blockchain. b Time and memory complexity of querying. The curve is
fitted using the average times of querying 100 random queries and standard deviations are depicted as error bars. c Accuracy of example queries

into a chain is around 22 MB and 9.4 MB and linearly
scales up to 137 MB for a log with 1,000,000 entries with
the challenge solution and scales up to 56 MB for a log
with 600,000 entries with the bigmem solution (Fig. 4a).
We then found that a chain with 100,000 entries takes up
around 0.2 GB of space, which linearly scales up to 1.7 GB
for a log with 1,000,000 entries with the challenge solu-
tion. A chain with 100,000 entries takes up around 0.3 GB
of space and this requirement scales up to around 16 GB
for a log with 600,000 entries with the bigmem solution
(Fig. 4a).

Querying We measured the performance of our query
protocol by testing (1) the time and (2) the maximum
memory required to make a query from chains with an
increasing amount of data. To measure this empirically,
we used the generated 100 random queries that were a
combination of different columns of the data. We cal-
culated the running time for each query and found an
average of 12.8 seconds and 140 seconds when we used a
chain with 100,000 entries with the challenge and the big-
mem solutions, respectively. The average time scales up
to 177.5 seconds for a chain with 1,000,000 entries with
the challenge solution, while it scales up to 500 seconds
for a chain with 600,000 entries with the bigmem solution
(Fig. 4b). We calculated that the memory requirement for
querying from a chain with 100,000 entries is around 123

MB linearly scales up to 749 MB for data with 1,000,000
entries with the challenge solution. On the other hand,
while the memory requirement of the bigmem solution for
a chain with 100,000 entries is still larger than those with
challenge solution (251 MB), it scales only up to 359 MB
for a chain with 600,000 entries (Fig. 4b).

Overhead from queries with “AND” and “time ranges”:
We also investigated whether the required time for a query
is based on the type of query for both solutions (Fig. 5). For
that, we divided our randomly generated queries in three
categories: (1) single: queries with a single field, (2) AND:
queries with multiple fields, (3) queries with time ranges.
We found that our challenge solution uses similar amount
of times to do the queries in these three categories, while
alternative solution requires different amount of time to
query for these three categories. This is largely because of
the overhead from pulling the data from the blockchain.
If the query is performed after pulling the data from
blockchain in the memory locally, then the query takes
a smaller amount of time. If the query requires multiple
operations within the MultiChain API, then it adds an
overhead to the required time.

Discussion
Auditing access to sensitive genomic data is essential
to protect private information from potential malicious



Gürsoy et al. BMC Medical Genomics 2020, 13(Suppl 7):78 Page 8 of 9

Fig. 5 Results. a Comparison of different query times in the challenge solution. b Comparison of different query times in the bigmem solution

activities. Such auditing is made possible by careful log-
ging and mining of user access; hence, the security and
integrity of the logs are essential. The iDASH Secure
Genome Analysis Competition in 2018 proposed a chal-
lenge to develop blockchain-based ledgering solutions to
log and query the user activities of accessing genomic
datasets across multiple sites [14]. Such a solution would
protect data from the consequences of a single point of
failure by providing a decentralized infrastructure. This
challenge also showcased the underlying technology of
blockchain for applications in genomics beyond its repu-
tation as being a cryptocurrency.

Decentralization is the delegation of an authority from
a central entity such as a bank to a larger group. Decen-
tralized storage is the storage of data in multiple nodes.
Increasing attention has been focused on decentralized
data storage options after recent data leaks at companies
such as Equifax and Facebook Cambridge Analytica. Cur-
rent blockchain applications provide numerous options
for decentralized data storage. The simplest option is to
store data in blockchain itself, which MultiChain data
streams also offer. However, storing data in the streams
is different than traditional blockchain-based data stor-
age, where data is embedded in the raw transactions.
Another feature of MultiChain API that is different from
other applications is that miners are not necessary. That
is, if a user is creating a private blockchain they can
store data rapidly without needing to wait for min-
ing. This allows MultiChain data streams to be much
faster than other applications. Overall, the biggest advan-
tage of storing the data in a blockchain, whether in
a data stream or through validated transactions, is the
immutability of the system, which provides robustness.
However, in some cases immutability could be a disad-
vantage for data storage. This is because data is stored
in the chain forever and can be seen by anyone in the
network. This also creates problems regarding storage
size because no data can be deleted; thus, the blockchain

will grow rapidly and require publicly available hard
drive space.

In this study, we focused on the security aspect of data
storage by taking advantage of the time stamping, nota-
rization, and immutability aspects of blockchain. How-
ever, the stored data can be seen by anyone in the network.
This creates a privacy bottleneck, particularly if the data to
be stored contains sensitive information such as genomic
variants of a patient or electronic health records. Multi-
Chain also provides stream confidentiality, which allows
users to selectively reveal data on a blockchain when sen-
sitive information is stored. This is solved by encrypting
the data before storing and timestamping the chain. The
key for the encrypted data can be available to a sub-
set of the users in the network. This is done by using a
combination of symmetric and asymmetric cryptographic
techniques and making use of being able to create multiple
streams for public keys, private data, and public data. This
property allows users to create different access groups by
creating multiple streams.

Although storing data in MultiChain data streams is a
convenient solution, the computation on the data such as
querying is not well developed yet. The first version of
MultiChain (iDASH requirement) does not have a module
that can search for multiple keys in the data stream. This
creates inefficiency when the data is searched for multi-
ple fields. To overcome this problem, we stored the data
in the key field of the stream items. This allowed us to
list all of the keys in the stream and store the list locally
as a data frame. Our challenge solution works excellent
for the question posed in the challenge, such that the data
need to be stored is shorter than 256 characters so that
it can be stored as key and the total amount of data can
be locally kept in the memory for efficient querying. Such
approach cuts from the query time tremendously. How-
ever, one might imagine that holding the keys of the entire
chain becomes memory inefficient when large datasets are
stored. We addressed this problem by creating a solution



Gürsoy et al. BMC Medical Genomics 2020, 13(Suppl 7):78 Page 9 of 9

with indexing the data with transaction IDs. We found
that, although the required memory still increases with
increasing amount of data, the rate of increase is much
smaller than our challenge solution and scales to smaller
memory requirement when large sizes of data is stored
with an overhead to the query time and chain size.

In sum, we demonstrated two proof-of-concept appli-
cations in solving problems related to storing genomic
access logs (also see Additional file 1). We emphasize that
our solution is not limited to genomic access logs, and
other biomedical data such as electronic health records
or genomic variant files can be stored using the con-
cepts in this study. Indeed, several early projects are
using blockchain technology for genomics applications;
however, their success remains to be seen [10]. How
blockchain technology can solve problems in genomics
and biomedical informatics and how it relates to scien-
tific computing, distributed data systems, and privacy and
security will likely be important questions as the technol-
ogy develops.

Conclusions
In conclusion, we showed that genomic access log files
can be stored and queried efficiently using a blockchain
platform.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12920-020-0716-z.

Additional file 1: Supplementary information. A pdf file including four
additional figures describing how MultiChain blockchain work and how we
insert and query data from blockchain.

Abbreviations
iDASH: Integrating data for analysis, anonymization, and sharing; bigmem: Big
memory; SSH: Secure shell; API: Application programming interface; JSON:
JavaScriptoObject notation;

Acknowledgements
We thank iDASH organizers for providing an avenue to develop secure
genome analysis applications.

About this supplement
This article has been published as part of BMC Medical Genomics Volume 13
Supplement 7, 2020: Proceedings of the 7th iDASH Privacy and Security Workshop
2018. The full contents of the supplement are available online at https://
bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-
supplement-7.

Authors’ contributions
G.G. and M.G designed the project and led the overall analysis. G.G, R.B and
M.E.G designed the solutions and wrote the code. G.G and M.G. analyzed the
results. G.G, R.B, M.E.G and M.G. wrote the manuscript. All authors read and
approved of the final manuscript.

Funding
This work is supported by US National Institutes of Health U01 EB023686 grant
and by AL Williams Professorship funds. Publication costs were funded by US
National Institutes of Health U01 EB023686 grant and by AL Williams
Professorship funds.

Availability of data and materials
Source codes for insertion and querying, example input file, queries used in
this study and the results for insertion and querying can be accessed at
https://github.com/gersteinlab/iDASH-blockchain under GPL v3.0 license.

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Program in Computational Biology and Bioinformatics, Yale University, 06520
New Haven, CT, USA. 2Department of Molecular Biochemistry & Biophysics,
Yale University, 06520 New Haven, CT, USA. 3Yale Center for Research
Computing, 06520 New Haven, CT, USA. 4Department of Computer Science,
Yale University, 06520 New Haven, CT, USA.

Published: 21 July 2020

References
1. Sboner A, Mu X, Greenbaum D Auerbach, Gerstein MB. The real cost of

sequencing: higher than you think! Genome Biol. 2011;12(8):125.
2. Erlich Y, Narayanan A. Routes for breaching and protecting genetic

privacy. Nat Rev Genet. 2014;15(6):409–21.
3. Homer N, Szelinger S, Redman M, Duggan D, Tembe W, Muehling J,

Pearson JV, Stephan DA, Nelson SF, Craig DW. Resolving individuals
contributing trace amounts of DNA to highly complex mixtures using
high-density SNP genotyping microarrays. PLoS Genet. 2008;4(8):
e1000167.

4. Im HK, Gamazon ER, Nicolae DL, Cox NJ. On sharing quantitative trait
GWAS results in an era of multiple-omics data and the limits of genomic
privacy. Am J Hum Genet. 2012;90(4):591–8.

5. Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying
personal genomes by surname inference. Science. 2013;339(6117):321–4.

6. Harmanci A, Gerstein M. Quantification of private information leakage
from phenotype-genotype data: linking attacks. Nat Methods. 2016;13(3):
251–6.

7. Harmanci A, Gerstein M. Analysis of sensitive information leakage in
functional genomics signal profiles through genomic deletions. Nat
Commun. 2018;9(1):2453.

8. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, Hao L,
Kiang A, Paschall J, Phan L, Popova N, Pretel S, Ziyabari L, Lee M, Shao
Y, Wang ZY, Sirotkin K, Ward M, Kholodov M, Zbicz K, Beck J, Kimelman
M, Shevelev S, Preuss D, Yaschenko E, Graeff A, Ostell J, Sherry ST. The
NCBI dbGaP database of genotypes and phenotypes. Nat Genet.
2007;39(10):1181–6.

9. Tryka KA, Hao L, Sturcke A, Jin Y, Wang ZY, Ziyabari L, Lee M, Popova N,
Sharopova N, Kimura M, Feolo M. NCBI’s Database of Genotypes and
Phenotypes: dbGaP. Nucleic Acids Res. 2014;42(Database issue):
D975–D979.

10. Ozercan HA, Ileri AM, Ayday E, Alkan C. Realizing the potential of
blockchain technologies in genomics. Genome Res. 2018;28(9):1255–63.

11. Tapscott D, Tapscott A. Blockchain revolution: how the technology
behind Bitcoin is changing money, business, and the world. Portfolio.
2016.

12. Greenspan G. MultiChain white paper. https://www.multichain.com/
download/MultiChain-White-Paper.pdf. Accessed April 2019.

13. Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System; 2008. https://
bitcoin.org/bitcoin.pdf.

14. iDASH secure genome analysis competition 2018. BMC Med Genomics.
2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1186/s12920-020-0716-z
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7
https://github.com/gersteinlab/iDASH-blockchain
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Methods
	Blockchain in a nutshell
	Data streams in multiChain
	Chain creation
	Challenge solution: storing data in data streams
	Insertion

	Challenge solution: querying data from data streams
	Alternate bigmem solution: storing data in data streams
	Insertion

	Alternate bigmem solution: querying data from data streams


	Results
	Accuracy
	Speed, storage and scalability
	Insertion
	Querying
	Overhead from queries with ``AND'' and ``time ranges'':



	Discussion
	Conclusions
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12920-020-0716-z.
	Additional file 1

	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

