
Sotiraki et al. BMC Medical Genomics 2020, 13(Suppl 7):72
https://doi.org/10.1186/s12920-020-0718-x

RESEARCH Open Access

Privately computing set-maximal
matches in genomic data
Katerina Sotiraki1*, Esha Ghosh2 and Hao Chen2

From 7th iDASH Privacy and Security Workshop 2018
San Diego, CA, USA. 15 October 2018

Abstract

Background: Finding long matches in deoxyribonucleic acid (DNA) sequences in large aligned genetic sequences is
a problem of great interest. A paradigmatic application is the identification of distant relatives via large common
subsequences in DNA data. However, because of the sensitive nature of genomic data such computations without
security consideration might compromise the privacy of the individuals involved.

Methods: The secret sharing technique enables the computation of matches while respecting the privacy of the
inputs of the parties involved. This method requires interaction that depends on the circuit depth needed for the
computation.

Results: We design a new depth-optimized algorithm for computing set-maximal matches between a database of
aligned genetic sequences and the DNA of an individual while respecting the privacy of both the database owner and
the individual. We then implement and evaluate our protocol.

Conclusions: Using modern cryptographic techniques, difficult genomic computations are performed in a
privacy-preserving way. We enrich this research area by proposing a privacy-preserving protocol for set-maximal
matches.

Keywords: Set-maximal match, Privacy, Secret sharing

Background
The abundance of human genomic data in recent years
paves the path towards answering very important ques-
tions for human nature, such as identifying the genomes
responsible for particular illnesses. Simultaneously, the
extremely sensitive nature of this data imposes strict
restrictions on its use. Fortunately, there is a variety of
cryptographic techniques that allow us to create useful yet
privacy-preserving systems for computation in genomic
data (see [1] for a summary of various techniques). Even
though theoretically it is possible to perform every com-
putation in a private way, the generic techniques do not

*Correspondence: katesot@mit.edu
1MIT, CSAIL, 32 Vassar street, 02139 Cambridge, MA, USA
Full list of author information is available at the end of the article

necessarily preserve the efficiency and the accuracy of the
original algorithm. Thus, constructing practical privacy-
preserving protocols has become a very active area of
research.

Quantifying the similarity of genomic sequences is a
fundamental problem in genome informatics and there
exists numerous proposals for tackling this problem. In
this work, we focus on privately computing set-maximal
matches on genomic data as a way to identify similarity.
Initially, research on genomic matching focused on find-
ing efficient and accurate algorithms (e.g. [2–9]). More
recently, the issue of privacy has emerged and hence
new approaches have been proposed. Freedman et. al.
[10] consider the problem of secure keyword-search in
a database by relying on a connection to oblivious eval-

© The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons
Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in
this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-020-0718-x&domain=pdf
mailto: katesot@mit.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Sotiraki et al. BMC Medical Genomics 2020, 13(Suppl 7):72 Page 2 of 8

uation of pseudorandom functions. Various other works
focus on problems more specific to genomic data. For
instance, Jha et al. [11] develop a protocol for securely
computing edit distance of DNA sequences, Blanton et
al. [12] propose a protocol for outsourcing DNA search
via finite automata to multiple computational servers.
Baldi et al. [13] focus on similar applications, such as
Paternity Testing, and use techniques on private set oper-
ations. He et al. [14] construct a protocol that identifies
whether two individuals are relatives without revealing
any other information about their genomes. More closely
related to our work, Shimizu et al. [15] propose a protocol
for privately computing set-maximal matches between a
database and an individual starting from a genomic posi-
tion known only to the individual. Even though we also
focus on computing set-maximal matches, our problem is
more general since our schemes outputs all set-maximal
matches without leaking their locations for the client.

The efforts to construct secure but yet efficient and
practical protocols for genome analysis have also been
reinforced by the establishment of the Integrating Data
for Analysis, Anonymization and SHaring (iDASH) pri-
vacy and security workshop [16]. Each year, the workshop
poses a set of tasks to evaluate the employment of cryp-
tographic techniques for real-world challenges in genome
analysis.

In this work, we propose a novel protocol for measur-
ing similarity between a database of DNA sequences and
a query DNA sequence privately by identifying the set-
maximal matches between the database and the query.
This problem was also the competition task on the secure
multiparty computation track in the iDASH workshop for
2018 [16].

Methods
Our goal is to design a protocol for computing the set-
maximal matches between a database and a query. We
assume that all variable sites are bi-allelic; namely each
site has a value in {0, 1}. Before reviewing the main cryp-
tographic tools used in this work, we explain our notation
and give the formal definition of set-maximal matches.

Notation If M is a matrix, then Mj,i denotes the ele-
ment of the j-th row and i-th column. We denote by a
bold lowercase letter (e.g. x, y) a sequence of bi-allelic
sites; the i-th site of x is denoted by x[i]. Namely, x =
(x[1] , x[2] , . . . , x[n]). For simplicity, we use the nota-
tion x[i1, i2] to denote the substring (x[i1] , . . . , x[i2]). A
bold uppercase letter (e.g. yY) represents a database of
genomic sequences; the j-th tuple of the database Y (i.e.
the genomic data of the j-th individual in the database)
is denoted using a bold lowercase letter as yj. We call n
the number of sites in our genomic sequences and m the
number of sequences in the database.

We use the Big O notation for describing the limiting
behavior of the running time of an algorithm. We say that
f (x) = O(g(x)) if and only if there exists a constant c such
that for large enough x, f (x) ≤ cg(x).

Definition Let Y be a database and x be a query
sequence, then a substring x[i1, i2] with i1 ≤ i2 is a set-
maximal match between x and Y if there exists a j such
that:

1 x[i1, i2] = yj[i1, i2]
2 x[i1 − 1] �= yj[i1 − 1] and x[i2 + 1] �= yj[i2 + 1]

and for any j′ �= j, there exists no interval
[
i′1, i′2

]
such that

x
[
i′1, i′2

] = yj
[
i′1, i′2

]
and [i1, i2] is a strict subset of

[
i′1, i′2

]
.

The first two properties assure that the match is a
locally maximal match, namely that the match cannot be
extended in either side and the last property is satisfied
when the match is not strictly contained in another match
with a different database entry. Sometimes, it is useful to
keep only long enough matches; in this case, the definition
has an extra parameter called threshold.

Definition A match is a set-maximal match between x
and Y with threshold t if it is a set-maximal match between
x and Y and additionally its length is more than or equal
to t.

Cryptographic tools
Secure computation allows multiple parties to compute a
joint function while preserving the privacy of their indi-
vidual inputs. There are feasibility results [17, 18] that
allow us to compile any computation into a secure one.
Unfortunately, these methods do not preserve the effi-
ciency of the original algorithm. Hence, it is often essential
to design novel algorithms that take into account the
special nature of secure computation protocols.

Security model. Let P0 and P1 be two parties hold-
ing inputs x1 and x2 respectively. They are interested in
jointly computing a function f (x1, x2). A protocol between
the two parties A and B, is called secure (or privacy-
preserving) if it leaks nothing about the inputs x1 (to
P1) and x2 (to P0) apart from the output value f (x1, x2)
(and the length of the inputs). There are two well-studied
adversarial models, the semi-honest and the malicious.
A semi-honest adversary observes all communication
between the computing parties (and tries to learn infor-
mation about the inputs), but is not allowed to deviate
from the protocol. On the contrary, a malicious adver-
sary is allowed to arbitrarily deviate from the protocol in
order to try to learn extra information about the inputs. In
both case, the adversary is assumed to be computationally
bounded. In this work, the two involved parties P0 and P1

Sotiraki et al. BMC Medical Genomics 2020, 13(Suppl 7):72 Page 3 of 8

are the client and the server and our protocol is secure in
the semi-honest model.

In this work, we focus on the Goldreich-Micali-
Wigderson (GMW) method [17] for secure computation
with boolean secret shares. This method gives a way to pri-
vately compute XOR (⊕), AND (∧) and NOT (¬) gates
in the semi-honest model. Since all computations can be
expressed by a circuit containing only these three types
of gates, boolean sharing allows to perform every com-
putation in a private fashion. We briefly describe how
operations are performed in boolean sharing and some of
the available optimizations and implementations.

Intuitively, secret sharing of a value x is a split of x in
many parts such that each part does not reveal any infor-
mation about x, but the knowledge of all the parts allows
the recovery of x. The GMW framework suggests a spe-
cific way to share values such that it is possible to perform
any operation on them. Namely, let us assume that there
are two parties and each party knows a share of x, then
using GMW they can end up with shares of any function
of x.

Sharing of a bit b. The boolean shares of a bit b are two
bits 〈b〉0 and 〈b〉1 such that 〈b〉0 ⊕ 〈b〉1 = b.

Reconstruction of a bit b. If parties P0 and P1 have the
shares 〈b〉0 and 〈b〉1 respectively, then they reconstruct the
bit b by exchanging shares and computing 〈b〉0 ⊕ 〈b〉1.

Computing XOR privately. Assume that party Pi knows
the secret shares 〈x〉i and 〈y〉i of the bits x and y respec-
tively. Then, party Pi computes a share of x ⊕ y by locally
computing 〈x〉i ⊕ 〈y〉i.

Computing AND privately. Assume that party Pi knows
the secret shares 〈x〉i and 〈y〉i of the bits x and y respec-
tively. The shares of x ∧ y are evaluated using a precom-
puted multiplication triple (〈a〉i, 〈b〉i, 〈c〉i) of the bits a, b, c
such that a ∧ b = c. Initially, Pi computes the shares
〈e〉i = 〈a〉i ⊕ 〈x〉i and 〈f 〉i = 〈b〉i ⊕ 〈y〉i. Then, both parties
P0 and P1 reconstruct the values e and f. Finally, Pi’s new
share is equal to (i ∧ e ∧ f) ⊕ (f ∧ 〈a〉i) ⊕ (e ∧ 〈b〉i) ⊕ 〈c〉i.

Computing NOT privately. Assume that party Pi knows
the secret share 〈x〉i of the bits x. Then, party Pi computes
a share of ¬x by locally computing 〈x〉i ⊕ i.

We remark that the computation of the multiplication
triples does not depend on the actual computation or
input, so it can be done in advance during a precom-
putation phase which requires interaction between the
parties. The multiplication triples can be computed using
the cryptographic primitive of random oblivious transfer
[19]. Additionally, we note that computing XOR and NOT
gates is done locally and does not require any interaction.

On the other hand, an AND operation requires one flow
of interaction in order to reconstruct the values e and f.
Therefore, since we can compute many AND operations
in parallel, the number of rounds required for computing a
function f is proportional to the AND-depth of its circuit
representation.

Since the introduction of GMW, various optimiza-
tions have been proposed [19–21]. Our implementation is
based on the ABY framework [22], which provides semi-
honest security. Apart from GMW on boolean shares, this
framework provides implementations of two other well-
studied methods for secure computation, secure compu-
tation using arithmetic shares and Yao’s Garbled Circuits.
The ABY framework is suitable for mixed-protocols, since
it allows for very efficient conversion between the differ-
ent secure computation methods. Even though our solu-
tion is not a mixed-protocol, we use ABY since it includes
all known optimizations of GMW and it allows the com-
position of our protocol with others that are potentially
more efficient if implemented using another method of
secure computation.

Two-party secure protocols using the GMW frame-
work. If party P0 has input x0 and party P1 has input
x1, then they can privately compute a function f, which is
given in the form of a circuit containing XOR, AND and
NOT gates, as follows:

1 Party Pi secret shares xi by sending a uniformly
random binary string ri with length equal to its input
to P1−i and setting its shares equal to xi ⊕ ri, where
⊕ denotes the bitwise XOR operation.

2 The two parties compute the function f gate-by-gate
as described above and end up with boolean shares of
the output.

3 The two parties exchange shares and reconstruct the
output of the function by computing the XOR of their
shares with the shares received by the other party.

By slightly modifying the above protocol, it is possible
to achieve selective reconstruction of the output, in which
case only one of the parties learns the output. For instance,
if only the client should learn the output, then at the
third step the server sends its shares and the client sends
nothing. In this case, the client has enough information to
recover the output, whereas the server does not learn the
output.

Results
The GMW framework allows us to transform any compu-
tation in a form of a circuit into a privacy-preserving one
against semi-honest adversaries. Therefore, we focus on
designing a depth-optimized circuit with XOR, AND and
NOT gates to compute set-maximal matches. Then, using

Sotiraki et al. BMC Medical Genomics 2020, 13(Suppl 7):72 Page 4 of 8

the generic protocol described in the previous section,
we have a secure protocol for set-maximal matches that
requires at most as many rounds of interaction as the
depth of the circuit.

Problem definition
We give an efficient and depth-optimized algorithm for
computing set-maximal matches. More specifically, the
problem specification is as follows:

Input: A genomic database Y containing m sequences,
each of size n, a query genomic sequence x of size n, and a
threshold value t.
Output: A matrix M of size m × n such that the element
Mj,i is equal to the length of the match between x and
yj ending at position i if the match is set-maximal with
threshold t and 0 otherwise.

We note that the output as described above leaks the
position of set-maximal matches. Because of the very sen-
sitive nature of genomic sequences, it is beneficial to hide
even this information. Therefore, we slightly modify the
above problem so that the list of set-maximal matches is
revealed after applying a random permutation to each row
of the output.

Input: A genomic database Y containing m sequences,
each of size n, a query genomic sequence x of size n, a
threshold value t and m permutations (πk)k∈{1,...,m}.
Output: Let M be a matrix of size m × n such that
the element Mj,i is equal to the length of the match
between x and yj ending at position i if the match is

set-maximal with threshold t and 0 otherwise. The out-
put is the permutation of each row k of M according
to πk .

We observe that the output still reveals the lengths of
set-maximal matches for each index. This information
could be hidden by applying a random permutation on all
the entries of M, instead of each row. However, it seems
that this would reduce the applicability of the compu-
tation, since this information seems central for certain
application.

In the secure protocol, the database Y and the permuta-
tions (πk)k∈{1,...,m} are the input of the server, the query x
is the input of the client and the threshold t is known to
both parties. To avoid leakage to the server, the protocol
has selective reconstruction to the client.

Algorithm description
We describe our algorithm. We include a sample execu-
tion in Fig. 1.

1 We compute a matrix M of size m × n such that Mj,i
is equal to the length of the match between the query
x and the database entry yj ending at position i
(Fig. 1b).

2 We set Mj,i to 0 if the match of x and yj ending at
position i is below the threshold t (Fig. 1c).

3 We compute a matrix L of size m × n such that Lj,i is
0 if there is a j′ �= j such that Mj′,i > Mj,i and 1
otherwise (Fig. 1d).

Fig. 1 Example execution with threshold t = 2

Sotiraki et al. BMC Medical Genomics 2020, 13(Suppl 7):72 Page 5 of 8

4 We compute K such that Kj,i is 0 if there is a j′ (may
be equal j) such that Lj′,i = yLj′,i+1 = 1. Namely,
there exists a match that is extended to position i + 1
(Fig. 1e).

5 We set Mj,i ← Mj,iKj,iLj,i and we permute the row
Mk according to permutation πk (Fig. 1f).

After the steps described above, the matrix M contains
the correct output:

• The output M contains the correct length of matches
computed in step 1.

• The output M contains no matches of length less
than t, since all such matching have been removed in
step 2.

• The output M does not output matches strictly
contained in another match. If a match is contained
in another larger match, then either there is a match
with a preceding starting point or a match with a
succeeding ending point or both. In the first and third
case, this match is excluded in step 3, since there is
another database entry with larger value in the
corresponding positions of M. In the second case, the
match is excluded in step 4, since there is another
extendable match in the corresponding positions.

• The output M contains only locally maximal matches.
After step 1, M contains the length of matches from
their starting position, so it is not possible for a match
to be extendable toward a previous position.
Additionally, from step 4, M does not contain
matches extendable towards the next position.

We now describe how to implement each of these steps
using boolean circuits with AND, XOR and NOT gates in
a depth-optimized way.

Compute the length of matches: First, we compute an
auxiliary matrix B(0) such that B(0)

j,i = 1 if x[i] = yj[i].
Namely, B(0)

j,i = ¬(x[i] ⊕yj[i]). We observe that B(0)

indicates whether a match has length greater than
or equal to one. Using B(0), we compute whether a
match has length greater than or equal to two by
setting B(1)

j,i ← B(0)
j,i ∧ B(0)

j,i−1. More generally, if B(k)

indicates whether a match has length more than 2k

or not, then it can be updated to indicate if the length
of a match is more than 2k+1 by setting B(k+1)

j,i ←
B(k)

j,i ∧ B(k)

j,i−(2k−1)
.

Concurrently, in each iteration we compute a
bound on the length of each match by setting M(0) =
B(0) and M(k+1)

j,i ← B(k)

j,i−(2k−1)
M(k)

j,i−(2k−1)
+ M(k)

j,i .
We observe that this computation gives the actual
length of a match if it is less than or equal to 2k

and returns the lower bound of 2k otherwise. Hence,
after �log(n)� iterations, we set M = M(�log(n)�).

The addition is computed using a depth-
optimized adder, which has AND-depth
proportional to the logarithm of the bit length of the
numbers returned [23]. Namely, the AND-depth of
the adder is O(log(log n)). Overall, the AND-depth
of the length computation is O(log(n) log(log n)).

Remove matches with length below the threshold:
Let tk ≡ t (mod 2k) for k ∈ {

1, . . . , �log(n)�}
and (b�log(n)�, . . . , b1) be the bit decomposition of
t, where b�log(n)� is the most significant bit and
b1 is the least significant bit. Let T(k) be m × n
matrices that indicate candidate matches; initially
T(0)

j,i = 1 for all i and j. Similarly to the length
computation, we define the auxiliary matrix B(0)

that initially indicates whether a database and query
position match or not. In each iteration, we update
B(k) as in the length computation; namely, we set
B(k)

j,i ← B(k−1)
j,i ∧ B(k−1)

j,i−(2k−1)
. In the k-th iteration if

bk = 1, we update T(k)
j,i ← B(k)

j,i−(tk−1)Tj,i, otherwise
T(k) = T(k−1). Finally, we set Mj,i ← Mj,iT

(�log(n)�)
j,i .

This computation intuitively splits the t positions
preceding a specific position i into parts of increas-
ing powers of two, then it iteratively checks whether
each of these parts is a match. Splitting a number into
increasing powers of two is equivalent to computing
its bit decomposition. Even though the AND-depth
of this step is O(log(n)), it can be performed in par-
allel to the length computation where we also use
the same auxiliary matrix B. So, this step does not
increase the depth of the circuit.

Remove matches contained in other matches: We first
compute the maximum length of a match for each
position i across all the database entries and then
perform an equality check between Mj,i and the
maximum for position i to compute each Lj,i. Each
such maximum is computed using the D&C compar-
ison circuit [24] in AND-depth O(log(log n) log(m)).
The equality check can be implemented with a
depth-optimized circuit in O(log(log n) log m) depth
in which the comparison of the bits across the
database entries is performed in parallel.

Remove extendable matches: A match between x and
yj is extendable at position i if Bj,i+1 = 1. So,
in order to remove the extendable matches, we
compute Kj,i = ¬ maxj′

{
Lj′,i ∧ Lj′,i+1

}
that indi-

cates whether an extendable match exists. Finally, we
update Mj,i ← Kj,i ∧ Lj,i ∧ Mj,i. Using the D&C com-
parison, this operation requires O(log(log n) log m)

AND-depth.

Sotiraki et al. BMC Medical Genomics 2020, 13(Suppl 7):72 Page 6 of 8

Permute matches: Finally, to remove the information
regarding the position of matches, we permute each
row k of the matrix M according to a permutation πk ,
which is given as an input. All permutations are per-
formed in parallel and require AND-depth O(log(n))

using the Waksman permutation network [25].

The total AND-depth of the above circuit is O(log(n) +
log(log n) log(m)). Since in practice n >> m, the depth
can be assumed to be proportional to O(log(n)).

We now present an optimization that reduces the output
size and the computational cost of the permutations. Even
though this does not offer an asymptotic optimization, it
is definitely helpful in the experimental efficiency of the
protocol.

Output size reduction and efficient permutations:
Before the permutation step, the above circuit outputs
a matrix M that contains all set-maximal matches with
threshold t. We note that the threshold t guarantees that
there exists no set-maximal matches ending at positions
with distance less than t. In other words, in each row of the
matrix M there is at most one none zero element for every
t positions. By combining every t columns of M into one
equal to their XOR, we reduce the size of the output by
a factor of t without losing the desired information about
set-maximal matches.

After the output reduction, we need to permute each
row of a matrix of size m × n/t. Therefore, the Waksman
permutation network has depth only O(log(n/t)).

Experimental evaluation
We have implemented our protocol for secure computa-
tion of set-maximal matches using the ABY framework to
evaluate its efficiency. We use the network configuration
included in ABY for the communication between the two
parties and the default method for precomputing mul-
tiplication triplets via oblivious transfer. Then, we build
the computation circuit gate-by-gate and let ABY han-
dle the sharing procedures and secure computation. The
problem has three parameters: n, the size of the genomic
sequences, m, the size of the database and t, the threshold
of set-maximal matches. We run a series of simulations in
a single machine of 16GB RAM and Quad-core 2.8 GHz
CPU that simulates both the server and the client to eval-
uate the efficiency of the protocol with respect to these
parameters.

In our implementation, the server has as input the
database, which defines the parameters n and m, and the
threshold value t. Similarly, the client’s input is a query
of size n, the database size m and the threshold value t.
We note that because of the nature of the GMW protocol
both parties need to know the values of all three parame-
ters n, m and t. We evaluate how our protocol scales as n

increases for database size m = 10, 100, 1000 and thresh-
old t = 1 and t = 2k , where k is the bit length of n.
Even though the threshold value is an input to the proto-
col, we plot only two values for clarity of exposition. The
two values represent the best and worst values in terms
of efficiency. The threshold value 2k maximizes the effi-
ciency gain form the output reduction optimization. On
the contrary, when the threshold value t = 1, this opti-
mization is not in use, and hence this value corresponds to
the worst case running time. In Fig. 2, we observe that for
larger enough values of n indeed there is an improvement
of both the running time and the depth due to the output
reduction technique.

Figure 2a, c, and e show the running time of the pro-
tocol for three different values of m. For small n and m,
the running time essentially depends on the precompu-
tation phase, but when m and n are large enough the
running time for a given m depends almost linearly in n.
We observe that for small values of n, there is almost no
difference on the running time for the two threshold val-
ues. In this case, the output is reduced by a small factor
when t = 2k , whereas the precomputation time increases,
since the computation circuit needs to include the out-
put reduction. Hence, for small values of n, there is no
improvement in the efficiency from the output reduction
optimization.

In Fig. 2b, d, and f, we notice that the depth depends
mainly on log(n), which is what was expected by the
analysis in the previous section.

Discussion
Because of the developments on efficiently acquiring
DNA data, computing on genomic data has gained a lot of
attention in the recent years. At the same time, progress
on cryptographic techniques has allowed us to design
numerous protocols for private computation that work
well in practice. The connection of these two areas of
research has led to fascinating directions and applications.

We make progress in an important problem lying in the
intersection of these areas concerning the similarity of
genomic data. Our motivating application is that of iden-
tifying relatives without compromising the privacy of the
genomic data of the individuals involved.

Conclusions
We construct an efficient algorithm for computing set-
maximal matches, which is compatible with secure com-
putation approaches. More specifically, our algorithm is
designed carefully so that it remains efficient when com-
piled in the GMW framework, which offers a generic way
to perform secure computation in the semi-honest model
of security.

We implement and evaluate our algorithm using the
ABY framework. Our algorithm runs for relatively large

Sotiraki et al. BMC Medical Genomics 2020, 13(Suppl 7):72 Page 7 of 8

Fig. 2 Timings and circuit depths for various values of n, m and t

datasets and the behavior of the running time and the
rounds of interaction is compatible with our theoretical
analysis. The ABY framework is a very general framework
that offers many capabilities. Unfortunately, this gener-
ality hurts the efficiency of our protocol, so it would be
beneficial for the practical efficiency of our scheme to
implement it using a tailored secure computation proto-
col, which is more lightweight and contains only the parts
necessary for our protocol.

This work extends an exciting line of research that
combines cryptographic techniques for secure computa-
tion with efficient and accurate algorithms for genomic

analysis. Our main contribution is on securely finding
set-maximal matches between a database and a query
sequence.

Acknowledgements
The authors would like to thank the iDASH workshop organizers and the
reviewers for the helpful comments.

About this supplement
This article has been published as part of BMC Medical Genomics Volume 13
Supplement 7, 2020: Proceedings of the 7th iDASH Privacy and Security Workshop
2018. The full contents of the supplement are available online at https://
bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-
supplement-7.

https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7

Sotiraki et al. BMC Medical Genomics 2020, 13(Suppl 7):72 Page 8 of 8

Authors’ contributions
KS was a major contributor in designing the algorithm, implementing the
protocol and writing the manuscript. EG contributed in the protocol
implementation and in examining the correctness of the algorithm. HC
suggested using the Waksman permutation networks in the last step of the
protocol and the optimization for the output size reduction All author(s) read
and approved the final manuscript.

Funding
Publication costs were funded by Microsoft Research.

Availability of data and materials
The code used during the current study is available from the corresponding
author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
This work was conducted when KS was an intern at Microsoft Research and EG
and HC were employed by Microsoft Research.

Author details
1MIT, CSAIL, 32 Vassar street, 02139 Cambridge, MA, USA. 2Microsoft Research,
14820 NE 36th Street, Building 99, 98052 Redmond, WA, USA.

Published: 21 July 2020

References
1. Aziz MMA, Sadat MN, Alhadidi D, Wang S, Jiang X, Brown CL,

Mohammed N. Privacy-preserving techniques of genomic data–a survey.
Brief Bioinform. 2017;20(3):1–9.

2. Lipman D, Pearson W. Rapid and sensitive protein similarity searches.
Science. 1985;227(4693):1435–41.

3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol. 1990;215(3):403–10.

4. James Kent W. Blat - the blast-like alignment tool. Genome Res. 2002;12:
656–64.

5. Ma B, Tromp J, Li M. Patternhunter: faster and more sensitive homology
search. Bioinformatics. 2002;18(3):440–5.

6. Li H, Durbin R. Fast and accurate short read alignment with
burrows–wheeler transform. Bioinformatics. 2009;25(14):1754–60.

7. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and
memory-efficient alignment of short dna sequences to the human
genome. Genome Biol. 2009;10(3):25.

8. Li H, Homer N. A survey of sequence alignment algorithms for
next-generation sequencing. Brief Bioinform. 2010;11(5):473–83.

9. Durbin R. Efficient haplotype matching and storage using the positional
burrows–wheeler transform (pbwt). Bioinformatics. 2014;30(9):1266–72.

10. Freedman MJ, Ishai Y, Pinkas B, Reingold O. Keyword search and oblivious
pseudorandom functions. In: Proceedings Theory of Cryptography,
Second Theory of Cryptography Conference, TCC 2005, February 10-12,
2005,. Cambridge: Springer Berlin Heidelberg; 2005. p. 303–24.

11. Jha S, Kruger L, Shmatikov V. Towards practical privacy for genomic
computation. In: 2008 IEEE Symposium on Security and Privacy (sp 2008).
IEEE; 2008. p. 216–30.

12. Blanton M, Aliasgari M. Secure outsourcing of dna searching via finite
automata. In: In Conference on Data and Applications Security (DBSec).
Berlin: Springer; 2010. p. 49–64.

13. Baldi P, Baronio R, De Cristofaro E, Gasti P, Tsudik G. Countering gattaca:
Efficient and secure testing of fully-sequenced human genomes. In:
Proceedings of the 18th ACM Conference on Computer and
Communications Security. CCS ’11. New York: ACM; 2011. p. 691–702.

14. He D, Furlotte NA, Hormozdiari F, Joo JWJ, Wadia A, Ostrovsky R, Sahai
A, Eskin E. Identifying genetic relatives without compromising privacy.
Genome Res. 2014;24(4):664–72.

15. Shimizu K, Nuida K, Rätsch G. Efficient privacy-preserving string search
and an application in genomics. Bioinformatics. 2016;32:1652–61.

16. iDASH. 2018. http://www.humangenomeprivacy.org/2018/. Accessed 17
June 2019.

17. Goldreich O, Micali S, Wigderson A. How to play any mental game. In:
Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing. STOC ’87. New York: ACM; 1987. p. 218–29.

18. Yao AC. Protocols for secure computations. In: Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science. SFCS ’82.
Washington: IEEE Computer Society; 1982. p. 160–4.

19. Asharov G, Lindell Y, Schneider T, Zohner M. More efficient oblivious
transfer extensions. J Cryptol. 2017;30(3):805–58.

20. Ishai Y, Kilian J, Nissim K, Petrank E. Extending oblivious transfers
efficiently. In: Boneh D, editor. Advances in Cryptology - CRYPTO 2003.
Berlin, Heidelberg: Springer; 2003. p. 145–61.

21. Schneider T, Zohner M. Gmw vs. yao? efficient secure two-party
computation with low depth circuits. In: Sadeghi A-R, editor. Financial
Cryptography and Data Security. Berlin: Springer; 2013. p. 275–92.

22. Demmler D, Schneider T, Zohner M. ABY - A framework for efficient
mixed-protocol secure two-party computation, February 8-11. In: 22nd
Annual Network and Distributed System Security Symposium, NDSS
2015. San Diego: Internet Society; 2015.

23. Ladner RE, Fischer MJ. Parallel prefix computation. J ACM. 1980;27(4):
831–8.

24. Garay J, Schoenmakers B, Villegas J. Practical and secure solutions for
integer comparison. In: Public Key Cryptography. Berlin: Springer; 2007. p.
330–42.

25. Waksman A. A permutation network. J ACM. 1968;15(1):159–63.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://www.humangenomeprivacy.org/2018/

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Notation
	Definition
	Definition

	Cryptographic tools
	Security model.
	Sharing of a bit b.
	Reconstruction of a bit b.
	Computing XOR privately.
	Computing AND privately.
	Computing NOT privately.
	Two-party secure protocols using the GMW framework.

	Results
	Problem definition
	Algorithm description
	Output size reduction and efficient permutations:

	Experimental evaluation

	Discussion
	Conclusions
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

