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Abstract

Background: Genome-Wide Association Studies (GWAS) refer to observational studies of a genome-wide set of
genetic variants across many individuals to see if any genetic variants are associated with a certain trait. A typical
GWAS analysis of a disease phenotype involves iterative logistic regression of a case/control phenotype on a
single-neuclotide polymorphism (SNP) with quantitative covariates. GWAS have been a highly successful approach for
identifying genetic-variant associations with many poorly-understood diseases. However, a major limitation of GWAS
is the dependence on individual-level genotype/phenotype data and the corresponding privacy concerns.

Methods: We present a solution for secure GWAS using homomorphic encryption (HE) that keeps all individual data
encrypted throughout the association study. Our solution is based on an optimized semi-parallel GWAS compute
model, a new Residue-Number-System (RNS) variant of the Cheon-Kim-Kim-Song (CKKS) HE scheme, novel
techniques to switch between data encodings, and more than a dozen crypto-engineering optimizations.

Results: Our prototype can perform the full GWAS computation for 1,000 individuals, 131,071 SNPs, and 3 covariates
in about 10 minutes on a modern server computing node (with 28 cores). Our solution for a smaller dataset was
awarded co-first place in iDASH’18 Track 2: “Secure Parallel Genome Wide Association Studies using HE”.

Conclusions: Many of the HE optimizations presented in our paper are general-purpose, and can be used in solving
challenging problems with large datasets in other application domains.
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Background
Genome-Wide Association Studies (GWAS) refer to
observational studies of a genome-wide set of genetic
variants across many individuals to see if any genetic vari-
ants are associated with a certain trait. When applied
to human data, GWAS typically focus on associations
between single-nucleotide polymorhisms (SNPs) and a
quantitative or dichotomous disease outcome, as well as a
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number of quantitative covariates. However, the reliance
on full genotype and phenotype data across thousands of
samples raises major privacy concerns for GWAS, and has
limited their applicability.

Recent work has focused on secure multi-party compu-
tation algorithms to facilitate privacy-preserving GWAS,
but this approach requires resource-heavy, continuous
interactions between users which is impractical for GWAS
studies that are aggregated over months or years. To moti-
vate the cryptographic community, the iDASH’18 Orga-
nizing Committee ran a special competition track “Secure

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-020-0719-9&domain=pdf
mailto: ypolyakov@duality.cloud
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Blatt et al. BMC Medical Genomics 2020, 13(Suppl 7):83 Page 2 of 13

Parallel Genome Wide Association Studies using Homo-
morphic Encryption (HE)” to advance the state of the art
in GWAS using HE, which is a non-interactive approach
to secure computing.

This paper presents our HE-based solution to GWAS.
Our solution is based on an optimized GWAS com-
pute model, a new Residue-Number-System (RNS) variant
of the Cheon-Kim-Kim-Song (CKKS) HE scheme, novel
techniques to switch between data encodings, and more
than a dozen crypto-engineering optimizations. The solu-
tion can perform the full GWAS computation for 1000
individuals, 131,071 SNPs, and 3 covariates in about 10
minutes on a modern server computing node (with 28
cores).

Related work
Several other RNS variants of the CKKS HE scheme were
independently proposed in 2018. These include the work
by Cheon et al. [1], the implementation in Microsoft SEAL
3.0 (released in October 2018), and the variants developed
by other teams who submitted their GWAS solutions to
the iDASH’18 competition, including UCSD [2] and IBM
Research.

Methods
Semi-parallel approach of Sikorska et al. [3]
Logistic regression is widely used to model binary
response data in GWAS. For instance, it can be used to
examine the relationship between disease status (control
versus real cases) with respect to phenotypes (age, weight,
height, etc.) and genotypes (such as SNP variations). Let
yi denote the disease status for the ith individual in a sam-
ple of size N (yi = 1 if the individual is a disease case,
and yi = 0 otherwise), and

(�x′
i,�si
)

be the corresponding
predictor, where �x′

i ∈ R
K corresponds to the phenotypes

and �si ∈ {0, 1, 2}M to the genotypes of individual i for a
set of K phenotypes and M SNPs. The logistic regression
model expresses the relationship between yi and the pre-
dictor set

(�x′
i,�si
)

in terms of the conditional probability
Pr
(
Y = yi|�x′

i,�si
)

of disease, as:

Pr
(
yi|�x′

i,�si
) = σ

(
(2yi − 1)

(
θ ′

0 + �x′
i · θ ′ + �si · β

))
,

where σ is the logistic function, σ(x) = 1
1+exp (−x)

; θ ′
0 ∈ R,

θ ′ ∈ R
K and β ∈ R

M are the K + M + 1 parameters
to be determined. For the sake of simplicity, we adopt the
canonical notation, that is, θ ≡ (

θ ′
0, θ ′) ∈ R

K+1 and �xi ≡(
1, �x′

i
) ∈ R

K+1 for i = 1, . . . , N .
Assuming that the effect of each SNP is independent

of each other, it is possible to formulate it as a set of
M independent equations, i.e., decompose the compu-
tation into M independent logistic regression cases for
K + 1 parameters. Sikorska et al. [3] proposed a “semi-
parallel” approach to speed up the logistic regression in

the above scenario. The goal is to avoid looping over each
SNP by using a vectorized formulation, which includes
optimized vector and matrix operations, that allows per-
forming multiple identical actions over different data in a
single operation.

The method relies on the assumption that the covari-
ant parameters θ are nearly the same for all SNPs. This
assumption allows the reformulation of fitting N vec-
tors in R

K+1, followed by a one-step calculation for M
SNPs at once. Therefore Sikorska’s semi-parallel logistic
regression consists of 2 stages:

1 Estimate the coefficients of the clinical covariates,
θ ∈ R

K+1;
2 For each of the M SNPs, estimate the corresponding

coefficients β̂ and p-value �p ∈ R
M .

The first stage, the estimation of θ , θ̂ , was widely
addressed in the literature, in particular in the iDASH’17
secure genome analysis competition [4–8].

The second stage, the estimation of the SNP-coefficients
β̂ , approximates the optimization problem by a single
Newton-Raphson iteration, leading to

β̂ = H−1 X� W ζ ,

where X is a matrix in R
N×(K+1) whose rows are the vec-

tors �xi, i = 1, . . . , N ; W ∈ R
N×N is a diagonal matrix with

ωii = ρi(1 − ρi) and ρi = σ
(
�xi · θ̂ (t)

)
for i = 1, . . . , N ;

H = X� W X in R
(K+1)×(K+1); ζi = log

(
ρi

1−ρi

)
+ yi−ρi

ωii
,

i = 1, . . . , N .
Finally, the z-value for each parameter βj, for

j = 1, . . . , M, is given by zj = β̂ j
εj

, where εj =
√(

C−1)
jj

is the error associated to β̂ j and C =
S�W

(
S − XH−1 (X�WS

))
. A more compact expression

of it is

zj = 1
det H

∑n
i wiiζ

∗
i s∗ij√∑n

i wiis∗ij
2

j = 1, . . . , m,

with
ζ ∗ = det H ζ − XH†X�W ζ ,
S∗ = det H S − XH†X�W S.

where H† denotes the adjoint of H.

Our approximations
To optimize the efficiency of our HE solution, we intro-
duced several approximations to the semi-parallel method
of Sikorska et al. [3].

Logistic regression
We found that the gradient descent method is adequate
for estimating θ . Starting from an initial θ (0), the gradient
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descent method at each iteration t updates the estimation
of the regression parameters

θ̂
(t+1) ← θ̂

(t) + αtX(y + ρ),

where αt is the learning rate at the t-th iteration. Our
numerical experiments suggest that a single iteration of
the gradient descent procedure with α0 = 0.015 and
θ (0) = 0 provides adequate accuracy. For simplicity, we
denote α0 as α in the rest of the paper.

Logistic function approximation
We used Chebyshev polynomials to approximate the
logistic function [9]. From the analysis we performed,
we found that a degree-1 approximation σ(x) = 0.5 +
0.15625x provides results with sufficient accuracy. Please
refer to “Analysis of our approximations” section for fur-
ther details.

Approximation of ζ

In order to approximate ζ , we considered a Talyor series
expansion around p = 1

2 :

ζ (p, y) ≈(−2 + 4y)+

(−8 + 16y)
(

p − 1
2

)2
− 32

3

(
p − 1

2

)3
+

(−32 + 64y)
(

p − 1
2

)4
− 256

5

(
p − 1

2

)5
+

(−128 + 256y)
(

p − 1
2

)6
− 1536

7

(
p − 1

2

)7
+

(−512 + 1024y)
(

p − 1
2

)8
.

Matrix inversion and division
Instead of calculating the inverse of the matrix H,
Cramer’s rule was used: H−1 = adj(H)

det(H)
, where adj(H) is

the adjoint of matrix H and det(H) is its determinant. As
the division is an expensive operation, it was deferred to a
later stage (after decryption).

p-value calculation
After computing the z-values on the server, the p-value
computation is performed on the client as depicted in
Algorithm 2.

Full procedure
The approximations described above were used to cre-
ate an optimized procedure for the server computation
(Algorithm 1). Note that line 2 of Algorithm 1 is the closed
form for ρ that incorporates the parameter estimation
of the logistic regression. Therefore θ̂ does not appear
explicitly in Algorithm 1.

The annotated encrypted procedure is presented in
Algorithm 3. It will be referenced throughout the rest of
this section.

CKKS scheme
Our solution is based an optimized variant of the
Cheon-Kim-Kim-Song scheme [10]. We have developed
a Double-Chinese Remainder Theorem (CRT), a.k.a,
Residue Number System (RNS), variant of the origi-
nal scheme. Our variant is based on the same security
assumptions as the original scheme, but relies on native
64-bit integer arithmetic instead of multiprecision integer
arithmetic for better performance and parallelization.

The original CKKS scheme is formulated for cyclo-
tomic polynomial rings R = Z[ x] / 〈xn + 1〉, where n
is a ring dimension that is a power of two (CKKS also
supports general cyclotomic rings but they are typically
less efficient). The current ciphertext modulus is typically
defined as Q
 = 2
, i.e., the scheme works with residue
rings R
 = R/Q
R = Z2
 [ x] / 〈xn + 1〉. The algorithms
are [10]:

• SETUP(1λ). For an integer L that coresponds to the
largest ciphertext modulus level, given the security
parameter λ, output the ring dimension n. Set the
small distributions χkey, χerr , and χenc over R for
secret, error, and encryption, respectively.

• KEYGEN. Sample a secret s ← χkey, a random
a → RL, and error e ← χerr . Set the secret key
sk ← (1, s) and public key pk ← (b, a) ∈ R2

L, where
b ← −as + e (modQL).

• KSGENsk(s′). For s′ ∈ R, sample a random a′ ← R2·L
and error e′ ← χerr . Output the switching key as
swk ← (

b′, a′) ∈ R2
2L, where

b′ ← −a′s′ + e′ + QLs′ (modQ2L). Set
evk ← KSGENsk

(
s2). Set rk(κ) ← KSGENsk

(
s(κ)
)
.

Algorithm 1 Approximated Semi-Parallel Procedure:
Server Computations

1: α ← 0.015
2: ρ ← 0.15625α · X(X� (y − 0.5)) + 0.5
3: �W ← ρ � (1 − y)
4: ζ ← ZEXPAND (ρ, �y)
5: H ← (

X�W
)

X
6: B ← ADJOINT (H)

7: d ← DETERMINANT (H)

8: ζ ∗ ← d · ζ − (XH)
((

X�W
)
ζ
)

9: S∗ ← d · S − X
((

B
(
X�W

))
S
)

10: �z2
den ← (d · d · W) (S∗ � S∗)

11: �znum ← (Wζ ∗)� S∗

� denotes element-wide multiplication
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Algorithm 2 Approximated Semi-Parallel Procedure:
Client Post-Processing

1: �z ← �znum �/

√
�z2

den
2: �p ← 2 PNORM

(−ABS
(�z)))

�/ denotes element-wise division

• ENCpk(m). For m ∈ R, sample v ← χenc and
e0, e1 ← χerr . Output
ct ← v · pk + (m + e0, e1) (modQL).

• DECsk(ct). For ct = (c0, c1) ∈ R2

 , output

m̃ = c0 + c1 · s (modQ
).
• CADD(ct, c). For ct = (b, a) ∈ R2


 and c ∈ R, output
ctcadd ← (b + c, a) (modQ
).

• ADD (ct1, ct2). For ct1, ct2 ∈ R2

 , output

ctadd ← ct1 + ct2 (modQ
).
• CMULT(ct, c). For ct ∈ R2


 and c ∈ R, output
ctcmult ← c · ct (modQ
).

• MULTevk(ct1, ct2). For cti = (bi, ai) ∈ R2

 , let

(d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) (modQ
).
Output ctmult ← (d0, d1)+
Q−1

L ·d2 ·evk� (modQ
).
• ROTATErk(κ) (ct, κ). For ct = (b, a) ∈ R2


 and
rotation index κ , output
ctrotate ← (

b(κ), 0
)+ 
Q−1

L · a(κ) · rk(κ)� (modQ
).
• RESCALE (ct, p). For a ciphertext ct ∈ R2


 and an
integer p, output ct′ ← 
2−p · ct� (mod (Q
/2p)).

The CKKS scheme supports an efficient packing of r
(up to n/2) real numbers into a single ciphertext. The
encoding and decoding operations are defined as follows:

• ENCODE (w, p). For w ∈ R
r , output the polynomial

m ← 
φ(2p · w)� ∈ R.
• DECODE (m, p). For a plaintext m ∈ R, output the

polynomial w ← φ−1 (m/2p) ∈ R
r .

Here, φ(x) is a certain complex canonical embedding
map, which is similar conceptually to inverse Fourier
transform.

Our RNS variant of the CKKS scheme
Our CKKS variant performs all operations in RNS. In
other words, the power-of-two modulus Q
 = 2
 is
replaced with

∏

i=1 qi, where qi are same-size prime

moduli satisfying qi ≡ 1 mod 2n (for efficient number
theoretic transforms (NTT) that convert native-integer
polynomials w.r.t. each CRT modulus from coefficient
representation to the evaluation one, and vice versa). The
primes are chosen to be as close to 2p as possible to
minimize the error introduced by rescaling.

The two major changes in our variant compared to the
original CKKS scheme deal with rescaling and key switch-
ing. We also made two other minor changes. First, we use

the ternary random discrete distribution for χkey and χenc
instead of the sparse distributions as the lattice attacks
for this case are better studied, and the ternary distribu-
tion is included in the HE standard [11]. Second, we do
additional scaling of plaintexts and ciphertexts to support
the use of RNS (only native integer arithmetic) during
encoding/decoding.

Rescaling in RNS
To efficiently perform rescaling in RNS from Q
 to Q
−1,
we replace the scaling down by 2p with scaling down by
q
. We choose all qi, where i ∈[ L], such that 2p/qi is in
the range (1 − 2−ε , 1 + 2−ε), where ε is kept as small as
possible. To minimize the cumulative approximation error
growth in deeper computations, we also alternate qi w.r.t.
2p. For instance, if q1 < 2p, then q2 > 2p and q3 < 2p, etc.

The new rescaling operation to scale down by one level
is defined as

• RESCALERNS (ct). For a ciphertext ct ∈ R2

 , output

ct′ ← 
q−1

 · ct� (modQ
−1).

We derive the procedure for computing 
q−1

 ·

ct� (modQ
−1) using the CRT scaling technique proposed
in [12]. Consider the following CRT representation of a
multiprecision integer x ∈ ZQ


:

x =

∑

i=1
xi · q̃i · q∗

i − υ ′ · Q
 for some υ ′ ∈ Z, (1)

where

q∗
i = Q
/qi ∈ Z and q̃i = q∗

i
−1

(mod qi) ∈ Zqi .

Then we can write

x
q


= 1
q


(

−1∑

i=1
xiq̃iq∗

i + x
q̃
q∗

 − υ ′Q


)

.

After rounding and applying the modulo reduction, the
last term is removed yielding

⌊
x
q


⌉
≡


−1∑

i=1
xi · q̃iq∗

i
q


+
⌊

x
 · q̃
q∗



q


⌉
(modQ
−1) . (2)

The first term can be directly computed in RNS by sum-
ming up the products of xi and q−1


 (modqi). For the
second term, we precompute the residues of

⌊ q̃
q∗



q


⌋
and

multiply them by the corresponding residues of x
 during
rescaling. Then we add the fractional part, which has the
residue of 
x
/q
�, i.e., 0 or 1, for each CRT modulus qi.
Note that the fractional part is negligibly small and hence
can be excluded from the implementation.

The computational complexity of rescaling is deter-
mined by the computation in the second term of (2). We
first need to run one native inverse NTT for residues
w.r.t. q
 and then 
 − 1 native NTTs to go back to the
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evaluation representation. All the computations in the
first term of (2) are done directly in evaluation repre-
sentation. Therefore, each rescaling operation requires 


native-integer NTTs.
The maximum approximation error introduced by

rescaling from 
 to 
 − 1 is
∣∣
∣q−1


 · m − 2−p · m
∣∣
∣ ≤ 2−ε ·

∣
∣2−p · m

∣
∣.

This procedure can be easily generalized to support
scaling down by multiple CRT moduli. This case is similar
to the first stage of complex scaling in CRT representation
described in Section 2.4 of [12].

Key switching
For key switching, we use the CRT decomposition key
switching algorithm that was originally proposed in [13]
and improved in [12] for the Brakerski/Fan-Vercauteren
(BFV) scheme. The advantages of this technique vs. the
one used in the original CKKS scheme (initially proposed
for the Brakerski-Gentry-Vaikuntanathan scheme in [14])
are that this technique has lower computational complex-
ity for relatively small numbers of levels (up to 8 or so),
and does not require an approximately two-fold increase
in the ring dimension to support the appropriate lattice
security level. Both of these benefits were important for
our solution.

The operations of the CKKS scheme that are modified
by the key switching procedure are rewritten as:

• KSGENRNSsk(s′). For s′ ∈ R, sample a random
a′

i ← RL and error e′
i ← χerr . Output the switching

key as swk ← {(
b′

i, a′
i
)}

i∈[L] ∈ R2×L
L , where

b′
i ← −a′

is′ + e′
i + q̃i · q∗

i · s′ (modQL). Set
evk ← KSGENRNSsk

(
s2). Set

rk(κ) ← KSGENRNSsk
(
s(κ)
)
.

• MULTRNSevk(ct1, ct2). For cti = (bi, ai) ∈ R2

 , let

(d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) (modQ
).
Decompose d2 into its CRT components [ d2]qi and
output

ctmult ← (d0, d1) +

∑

i=1
[ d2]qi ·evki (modQ
) .

• ROTATERNSrk(κ) (ct, κ). For ct = (b, a) ∈ R2

 , output

ctrotate ←
(

b(κ), 0
)
+


∑

i=1

[
a(κ)

]

qi
·rk(κ)

i (modQ
) ,

where
[
a(κ)

]
qi

are CRT components of a(κ).

Each key-switching operation requires one inverse NTT
(
 native-integer NTTs) to switch d2 (or a(κ) for rotation)
from evaluation to coefficient representation and then 


NTTs (
2−
 native-integer NTTs) to go back to evaluation

representation for each CRT component. Hence, the total
complexity in terms of native-integer NTTs is 
2.

This key switching procedure also supports a second
level of decomposition by extracting base-w digits in each
residue using the procedure described in Appendix B.1
of [13].

Noise estimates
We present here heuristic noise estimates for the RNS
variant of CKKS using the canonical embedding norm,
which corresponds to the infinity norm for the evalua-
tion of a polynomial R at 2n complex roots of unity. For
more details on the canonical embedding mapping and
norm, the reader is referred to [10]. The main differences
between our expressions and those in [10] are due to the
use of ternary uniform distribution and a different key
switching technique.

• Encoding and Encryption. The bound for fresh
encryption Bclean = 6σ

(
4
√

3n + √
n
)

, where σ is
the standard deviation for error distribution. The
decoding is correct as long as 2p > n + 2Bclean.

• Addition. The bound for homomorphic addition
Badd = B1 + B2, where Bi is the noise bound for i -th
ciphertext.

• Rescaling. The noise bound for rescaling is
Brescale = q−1


 · B + Bscale, where B is the input noise
and Bscale = √

3
(
12n + √

n
)
.

• Rotation. The noise bound for rotation (key
switching) is Bksw = 8√

3 · nσw
⌈

logw q


⌉
.

• Multiplication. If we have two ciphertexts ct1 and
ct2 with ‖m1‖can∞ < ν1, noise bound B1 and
‖m2‖can∞ < ν2, noise bound B2, respectively, the noise
bound Bmult = ν1B2 + ν2B1 + B1B2 + Bksw.

In most cases, the parameter selection is determined
by the multiplicative depth and the approximation error
in rescaling. The approximation error (with about ε bits
being “erased” by rescaling) dominates the noise growth
of other operations and should be done last (after a multi-
plication). The only practical exception is when rotations
are performed before any multiplications. In this case, the
key switching noise may be high if the w-base is large,
e.g., comparable to 2p as in the case of CRT decom-
position without further digit decomposition of each
residue.

Comparison to the RNS variant by Cheon et al. [1]
Both our RNS variant of CKKS and the variant proposed
by Cheon et al. [1] work with an RNS basis consisting of
native-integer primes qi that are close to 2p (with ε bits of
precision). In other words, scaling down by 2p is replaced
with approximate scaling down by q
. Hence the rescaling
approach in both variants is similar. The techniques for
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the scaling operation itself are different, but the computa-
tional complexity of both scaling techniques appears to be
the same (requiring 
 native-integer NTTs).

The key switching-procedure developed in [1] is based
on the approach originally proposed for the Brakerski-
Gentry-Vaikuntanathan scheme [14], which requires dou-
bling the ciphertext modulus (and roughly doubling the
ring dimension). We use the residue/digit decomposition
approach originally proposed in [13] and improved in [12].
Our key-switching technique requires more NTTs but
provides better overall performance for relatively “shal-
low” circuits (our estimates suggest this approach should
be faster up to 8 levels or so).

Plaintext encoding
Our solution uses two kinds of plaintext encoding. Ini-
tially, X and y are packed in single ciphertexts similar
to how it was done in [8]. We denote this as packed-
matrix encoding. All matrix products in steps 2 through 8
of Algorithm 3 use the rotation-based SUMROWVEC and
SUMCOLVEC procedures from [5]. Later in the algorithm
(starting from step 9), the solution switches to single-
integer ciphertexts for X and the vectors and matrices
derived from X and y. We call the latter encoding as
packed-integer encoding. As a result of this, our matrix
operations with the SNPs data (first appearing in step 9)
involve only cheap SIMD multiplications and additions
of packed-integer and packed-row-vector ciphertexts, and
do not involve any expensive rotations. All operations
before computing on the SNPs data are performed using
packed-matrix (single) ciphertexts.

Packed-matrix encoding
The packed-matrix encoding packs a full matrix or vector
into a single ciphertext, cloning as many entries as needed
to support matrix-matrix and matrix-vector products.
The cloning makes it possible to minimize the number
of computationally expensive rotations in matrix-matrix
(vector) products.

We encode/encrypt both X and X� to avoid calling
transposition in the encrypted domain. We pack X ∈
R

N×k in a row-wise order, cloning each row k − 1 times
before going to the next row. Here, we introduce k = K +1
for brevity.

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

X11 X12 . . . X1k
X11 X12 . . . X1k

...
...

...
...

X21 X22 . . . X2k
X21 X22 . . . X2k

...
...

...
...

XN1 XN2 . . . XNk
XN1 XN2 . . . XNk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

We pack X� ∈ R
k×N by taking each element of matrix

X (marshalling it in the row-wise order) and cloning it to
form a complete row.

X� =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

X11 X11 . . . X11
X12 X12 . . . X12

...
...

...
...

X1k X1k . . . X1k
...

...
...

...
XN1 XN1 . . . XN1
XN2 XN2 . . . XN2

...
...

...
...

XNk XNk . . . XNk

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

Both matrices require N · k2 slots.
We pack y ∈ R

N column-wise by cloning y k2 − 1 times
to the right. That is, we have

y =

⎡

⎢
⎢
⎢
⎣

y1 y1 . . . y1
y2 y2 . . . y2
...

...
...

...
yN yN . . . yN

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
k2 cloned values

The resulting vector ρ is represented the same way as y.
Both use N · k2 slots.

The diagonal matrix W is represented as a vector by
extracting the diagonal, and the resulting vector is packed
in the same format as ρ.

The SNPs matrix S is encoded either as an array of
ciphertexts (when M > n/2) or a single ciphertext (when
M ≤ n/2) without any cloning, i.e., the classical SIMD
packing of vectors is used.

Matrices and vectors, such as X and y, can be encoded
in a single ciphertext as long as N · k2 ≤ n/2. If this con-
dition does not hold, the packing can be trivially extended
to multiple ciphertexts per matrix/vector.

Packed-integer encoding
To support efficient matrix multiplication without rota-
tions, we also encode X as N · k single-integer ciphertexts.
In this case, each entry of X is cloned to all slots of a single
ciphertext. We denote such packing of X as X1.

Conversion from packed-matrix to packed-integer
encoding
The main bottleneck of our solution is the conversion
of vectors from a packed-matrix ciphertext to multi-
ple packed-integer ciphertexts. We have developed and
implemented three different methods for performing this
conversion. Based on the requirements for performance
and scalability, we chose one of these methods for our
prototype.
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Algorithm 3 Annotated HE Computation (all scalars, vectors, and matrices are encrypted except for α and constants)
ENCRYPTED INPUTS: X, X�, X1, y, S
ENCRYPTED OUTPUTS: �z2

den, �znum

1: α ← 0.015 � plaintext constant
2: ρ ← 0.15625α · X

(
X� (y − 0.5)

)+ 0.5 ∈ R
N � adds 3 levels (taking into account the summation depth increase);

we use the packed X here instead of X�; D=3.
3: W ← ρ � (1 − ρ) ∈ R

N � � denotes SIMD multiplication; adds 1 level; D=4.
4: ζ ← ZEXPAND (ρ, y) ∈ R

N � Polynomial evaluation; 8-in-series product; depth 4 w.r.t. ρ; D=7.
5: H ← (

X�W
)

X ∈ R
k×k � depth 2 w.r.t. W; first product is a SIMD multiplication. D=6.

6: B ← ADJOINT (H) ∈ R
k×k � 2-in-series products; depth-2 HM + depth 1 for bit mask multiplication; adds 2

levels; 2k2 rotations; convert B into k2 packed-integer ciphertexts, denoted as B1; D=9 for B; D=10 for B1.
7: d1 ← DETERMINANT (H) ∈ R � 3-in-series products; depth-2 HMs + depth 1 for bit mask multiplication; no

depth increase; D=9.
8: ζ ∗ ← d1 · ζ − (XB)

((
X�W

)
ζ
) ∈ R

N � Adds 2 HMs + 2 bit mask multiplications to depth = 4 levels; D=13.
9: S∗ ← d1 · S − X1(B1(X�

1 (W1S))) ∈ R
N×m � Adds 1 to depth; most expensive matrix multiplication costing

roughly 2Nk ciphertext multiplications; need to convert 1 ciphertext W into N W1 ciphertexts; D=14.
10: �z2

den ← (
(d1 · d1) · W�

1
)
(S∗ � S∗) ∈ R

1×m � SIMD squaring in computing S∗ � S∗; adds 2 levels; D=16.
11: �znum ← (Wζ ∗)1

�S∗ ∈ R
1×m � first product is SIMD multiplication; we use the index 1 here to denote the

conversion of the packed-matrix ciphertext into N packed-integer ciphertexts; D=16.
NOTE: HM is homomorphic multiplication; D is current depth; subscript 1 denotes packed-integer encoding.

To illustrate the problem and its solutions, we consider
the task of converting the packed-matrix single-ciphertext
encryption of y into N packed-integer ciphertexts. A sim-
ilar task has to be executed twice in our algorithm for
secure GWAS.

Method 1: N�log n� rotations
Our first solution can be summarized as follows:

1 Fill all n/2 slots of y by cloning existing N · k2 slots.
This requires log

(
n/
(
2N̄ · k2)) rotations and

additions. The cloning procedure is described in [8].
Here, N̄ = 2�log N�.

2 Run N bit mask multiplications to form N
ciphertexts each containing n/

(
2N̄
)

cloned values for
each component of y. All other slots are zeroed out.

3 Clone existing n/
(
2N̄
)

non-zero values to all slots in
each of the N ciphertexts. This operation requires
N�log N� rotations and additions, and is the main
bottleneck of the computation.

Method 2: N̄ rotations and �log N� depth increase
The idea of our second solution is to represent the con-
version as a binary tree. At each level i of the tree
we perform i rotations, 4 · i bit mask multiplications,
and 2 · i additions, getting two output ciphertexts from
each input ciphertext. Although this recursive method
requires only N̄ rotations, 4N̄ bit mask multiplications,
and 2N̄ additions, there is a �log N� depth increase due
to bit mask multiplications at each level of the binary
tree.

To illustrate this approach, consider a simpler case (the
logic would stay the same when we clone yi any number of
times):

[
y1y2y3 · · · yN−2yN−1yN

]
.

First rotate by -1 and get

Rot1(y) = [
yN y1y2 · · · yN−3yN−2yN−1

]
.

Then multiply both y and Rot1(y) by M1 =
[ 101010 · · · 10] and M2 =[ 010101 · · · 01], and sum up two
possible combinations, yielding

y1,1 = y�M1+Rot1(y)�M2 = [
y1y1y3y3 · · · yN−1yN−1

]
,

y1,2 = y�M2+Rot1(y)�M1 = [
yN y2y2 · · · yN−2yN−2yN

]
.

Next compute Rot2(y1,1) and Rot2(y1,2), multiply y1,1
and y1,2 and their rotations by [ 110011 · · · 1100] and
[ 001100 · · · 0011] for each pair, and sum up four possible
combinations. Now there are 4 y2,i items.

We recursively execute this procedure until the end.

Method 3: N̄2 bit mask multiplications and N̄ rotations
Another approach achieving N rotations can be summa-
rized as follows:

1 Fill all n/2 slots of y by cloning existing N · k2 slots.
2 Compute N̄ − 1 cheap rotations of the original

ciphertext using the hoisting procedure from [15].
3 For each component of y, do N̄ bit mask

multiplications (one per rotation) that would extract
the component and zero out all other slots.
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4 For each component of y, do N̄ − 1 additions of
masked ciphertexts.

Although this procedure requires only roughly N̄ cheap
rotations, it involves N̄2 bit mask multiplications and
additions, which now become the main bottleneck for
relatively large values of N.

Comparison of the methods
We implemented all three methods, and carried out both
complexity and practical performance comparison.

As N is relatively large (at least 245), N̄2 bit mask multi-
plications in Method 3 resulted in computation runtimes
that are at least 2x-3x larger than Method 1 with N�log N�
rotations. However, Method 3 would be faster for smaller
N, e.g., less than 100.

Method 2 is a good option only when the depth
increase can be incorporated in the existing circuit with-
out increasing the overall circuit depth. But the scalabil-
ity of this approach is questionable. The depth increase
of �log N� = 8 could not be integrated in the circuit
of our solution, and thus we chose Method 1 for our
implementation.

Note that in our implementation the depth cost of bit
mask multiplication is the same as for homomorphic mul-
tiplication, which implies there is room for improvement.
Therefore, a more depth-efficient bit mask multiplication
procedure may result in a significantly better performance
for Method 2, possibly superior to that of Method 1.

Minimizing the number of key switching operations
One of the optimization goals for our solution is to reduce
the number of key switching operations, which are used
both for rotation and relinearization (after homomorphic
multiplication). Each such operation has a high compu-
tational complexity, i.e., requires 
2 native-integer NTTs.
We have optimized our algorithm to minimize the num-
ber of key switching operations. For instance, all com-
putations involving encrypted SNPs data require only 16
(k2) key switching operations in total. A great major-
ity of the computations involving encrypted SNPs data
use only “cheap” SIMD multiplications and additions, and
sparingly rescaling operations.

Multiplications with lazy or no relinearization
In steps 9 through 11 of Algorithm 3, our procedure
calls only 16 (k2) relinearizations. In other words, all
large-dimension SIMD products are performed without
relinearization (the ciphertext size is allowed to grow).
The procedure calls the relinearization procedure only
when multiplying by B1 in step 9, which works with the
smallest dimension (k) in the chained matrix product.
We refer to this deferred relinearization as “lazy” relin-
earization. Any homomorphic multiplications after this
product are performed without a single relinearization,
which significantly reduces the runtime of computation.

Use of additions instead of rotations
The packed-integer encoding is introduced in steps 9
through 11 of Algorithm 3 to replace any rotation-based
summations over rows/columns with SIMD homomor-
phic additions. The only places where the rotations are
used are to homomorphically convert B, W, and (Wζ ∗)
from packed-matrix encoding to the packed-integer one.
The use of rotation-based summation in the chained
product of step 9 would require a substantially larger
number of rotations as compared to the conversion of two
vectors of size N and one matrix of size k × k.

Minimizing the number of NTTs
Besides key switching, NTTs are used for rescaling. In
some cases, expensive rotations can be replaced with
hoisted automorphisms from [15], reducing the number
of NTTs for multiple rotations of the same ciphertext to
the NTT cost of a single rotation. Our solution mini-
mizes the number of rescaling operations and uses hoisted
automorphisms where applicable.

Use rescaling sparingly
We use the following techniques to minimize the number
of rescaling operations:

• When there are homomorphic multiplications
followed by aggregation of ciphertexts, such as
addition of multiple ciphertexts, we apply rescaling
after the aggregation, i.e., we call it once rather than
for every homomorphic multiplication.

• If there is a benefit in lazy rescaling, e.g., when the
number of ciphertexts at the following level is much
smaller, we defer rescaling until later. In this case, we
have to make sure the depth requirement is not
increased, which is true when one of the
multiplicands is scaled w.r.t. 2p rather a power of it.• The rescaling operations are not called at the end of
computation if skipping them does not increase the
multiplicative depth of the circuit.

Hoisted automorphisms
Hoisted automorphisms are useful when multiple rota-
tions of the same ciphertext need to be computed [15].
Our solution encounters this scenario when computing
the matrix inversion of H in steps 6 and 7 of Algorithm 3,
and hence the hoisted automorphisms are used there in
favor of regular rotations.

Minimizing the noise growth and ciphertext modulus
We minimized the noise growth/ciphertext modulus of
the computation circuit using the following techniques:

• Binary tree multiplication was employed for any
chained products of ciphertexts.

• Closed-form expressions (such as in step 2 of
Algorithm 3) were derived to get the maximum
benefit from binary tree multiplication.
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• Binary tree addition for any summation of a large
number of ciphertexts was employed to achieve a
O(log N) noise growth.

• To guarantee that the end result of the computation
requires only one native-integer polynomials, we
multiplied both numerator and denominator by
estimated scaling factors (different from 2p). These
factors were introduced during bit mask
multiplications to avoid any extra depth increase due
to this additional scaling.

• The maintenance operations of HE, such as key
switching and rescaling, were properly ordered to
minimize the noise growth. For instance, rescaling
was done after the rotations following a
multiplication (not before).

Harnessing the CRT ladder
As the circuit evaluation progresses, the number of CRT
limbs, i.e., native polynomials in the Double-CRT struc-
ture, gets reduced due to rescaling. For instance, at level 


the number of CRT limbs is reduced by L−
 as compared
to fresh ciphertexts. This provides a speedup in CKKS
compared to scale-invariant schemes, such as BFV. We
can further take advantage of the decreasing CRT “lad-
der” by encrypting plaintexts at the level they are first used
and by compressing evaluation keys as the computation
progresses. This reduces storage requirements. We also
minimize the number of CRT limbs by finding the mini-
mum number of limbs needed for correct result (starting
from the end of the computation circuit). Below we pro-
vide some examples of how these techniques are applied
in our solution.

Encrypt ciphertexts at the level first used
As the SNPs matrix S is first used in step 9 of Algorithm 3
(after 10 levels of computation), we encrypt it using 7 CRT
limbs rather than 17 corresponding to the initial cipher-
text modulus. This reduces the storage requirements for
the SNPs matrix by a factor of 2.4x.

Compress evaluation keys as needed
Same rotation keys are used multiple times throughout
the computation. Whenever they are no longer required
below a certain level, we compress them to the current
level, thus reducing the number of CRT limbs. Note that
the rotation keys consume most of the space utilized by
public keys in our solution.

Use the lowest number of CRT limbs for ciphertexts
Once the lowest multiplicative depth for the circuit is
determined, we choose the actual level for ciphertexts
by counting from the end of the circuit (not from the
beginning) up to the specific computation. This mini-
mizes the number of CRT limbs used, thus reducing both
runtime and storage requirements.

Consider the example of S. If we were to count the level
from the beginning of the circuit, we would choose level
8 (to match the level of B1). But we choose 10 instead
because the maximum depth of computations from S in
step 9 to the end of the circuit is 6. This gives more than
1.5x runtime improvement for the rotations in the con-
version from W to W1, which is done immediately before
computing W1S. The storage requirement for S is also
reduced by roughly a factor of 1.3x.

Matrix inversion
As pointed out earlier, we use Cramer’s rule to compute
the matrix inverse of H. The numerator is the adjoint of H
while the denominator is the determinant of H. To extract
specific components of H, we use cheap rotations (hoisted
automorphisms) followed by bit mask multiplications to
clear out the values that are not used. As both numera-
tor and denominator contain a lot of common products of
the rotations for H, we wrote both of them down in the
closed form and compute common products only once.
The closed form for the determinant also allows the direct
application of binary tree multiplication (3-in-series prod-
ucts require a binary depth of 2). The depth cost of these
steps is 3 (2 for homomorphic multiplications and 1 for bit
mask multiplication).

When computing the determinant and k2 components
in the adjoint, all homomorphic multiplications are per-
formed without relinearization, and the relinearization is
applied at the very end (for each component) after all addi-
tions and subtractions are done. This significantly reduces
the number of expensive key switching operations when
computing the matrix adjoint and determinant.

The procedure for computing the adjoint and deter-
minat also prepares the packed-matrix variant of B for
computing ζ ∗ in step 8 and the packed-integer variant B,
i.e., B1, for computing S∗ in step 9 by performing appro-
priate rotations and additions. The final rescaling for the
components in the adjoint and determinant is done after
all rotations are computed. Otherwise the noise growth in
rotations would lead to incorrect results after decryption.

Order of products in matrix chain multiplication
The order of matrix products in matrix chain multipli-
cations has a major effect on the performance of our
solution. The two most complex and costly chained matrix
products in Algorithm 3 are step 8 (computation of ζ ∗)
and step 9 (computation of S∗). Typically the matrix chain
multiplication problem is an optimization problem that
can be solved using dynamic programming. In the case
of regular plaintext computations, the goal is usually to
minimize the number of element multiplications. In the
encrypted solution, additional constraints are introduced,
and these constraints can be different depending on the
plaintext encoding used, as illustrated below.
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In step 8, we work with a chain of single ciphertexts
(packed matrix encoding). The constraints for this case
can be summarized as follows:

• Make sure the outcome of each intermediate product
is a single ciphertext. For instance, we cannot have a
product where outer dimensions are both N.

• The costs of SUMROWVEC and SUMCOLVEC are
different. The latter requires a bit mask
multiplication, and the number of rotations
corresponds either to row or column size. The
possible constraints are to minimize the number of
rotations and/or minimize the depth of bit mask
multiplications.

• Minimize the depth of the overall circuit. In other
words, the term at highest level should be given
special attention. The binary tree multiplication
technique should also be properly applied.

In step 9, we work with products of many packed-
integer ciphertexts and N SIMD-packed ciphertexts (for
each row of matrix S). The guidelines for optimization in
this case can be summarized as follows:

• Minimize the total number of SIMD multiplications.
• Minimize the depth of the overall circuit. In other

words, the term at highest level should be given
special attention. The binary tree multiplication
technique should also be properly applied.

In our solution, the decisions regarding the order of
matrix chain multiplication were done by hand. But in
a more general case, where the computation circuit is
built automatically, one would have to include algorithms
for finding the optimal order by solving the appropriate
dynamic optimization problem.

Loop parallelization
To benefit from multi-core CPU environments, our solu-
tion applies loop parallelization at various levels.

At the encryption stage, the parallelization is done for
the loop iterating over all individuals (size N, which is
at least 245). This implies the encryption runtime should
decrease almost linearly with the number of physical
cores.

In the computation stage, the following loop paralleliza-
tions are applied:

• All matrix products in X1
(
B1
(
X�

1 (W1S)
))

at step 9
of Algorithm 3 are parallelized over inner dimensions
(N or k, depending on the product).

• All SIMD products in steps 10 and 11 of Algorithm 3
are parallelized over N.

• In matrix inversion, the extraction of k2 components
of H is parallelized over k2.

• In the homomorphic encoding conversion routine of
Method 1, the parallelization is applied to the main
loop over N.

• Loop parallelization is also applied in many places at
the level of CKKS and lower-lever ring operations. In
the case of NTTs for polynomials in Double-CRT
representation, the parallelization is done over 
. In
the case of RNS subroutines, the parallelization is
applied at the level of polynomial coefficients
(dimension n).

Results
Dataset
Our experiments were performed using the train-
ing dataset provided by the iDASH 2018 organizers.
The training data were extracted from the Personal
Genome Project (https://www.personalgenomes.org/us).
The dataset includes 245 individuals, 10,643 SNPs, and 3
covariates. We also generated larger datasets for scalabil-
ity analysis by re-sampling the original dataset.

Software implementation
We implemented our solution in PALISADE v1.2 [16]. We
added our own implementation for the RNS variant of the
CKKS scheme to PALISADE. For loop parallelization, we
used OpenMP.

Parameter selection
The parameters used are summarized below. According
to [11], our parameters correspond to at least 128 bits of
security for classical computers.

• The size of ciphertext modulus QL for fresh
ciphertexts is 850 bits.

• The ring dimension n is 215 = 32, 768.
• The number of CRT limbs in the fresh ciphertext

modulus is 17 (L = 17), which corresponds to 16
levels in the computation circuit. Each CRT modulus
is 50 bits long.

• Number of bits p in the plaintext scaling factor of
CKKS scheme is 50. For this value of p, the
approximation error introduced by each rescaling
typically affected up to 25 least significant bits of the
encrypted data.

• The key switching window matches the size of CRT
moduli, i.e., 50 bits.

• We use the ternary secret key distribution, i.e.,
random integers between -1 and 1, as commonly
done for BFV.

• The error distribution parameter σ is 3.19.

https://www.personalgenomes.org/us
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Table 1 Maximum storage requirements for N = 245;
M = 10, 643; K = 3

Ciphertexts [GB] Evaluation Keys [GB]

X X� y S X1 Rotation Relinearization

0.0085 0.0085 0.0085 0.84 2.87 3.65 0.42

Performance results
Storage requirements
The maximum (initial) storage requirements for the case
of N = 245; M = 10, 643; K = 3 are summarized in
Table 1. The storage requirements take into account that S
and X1 are first used at 
 = 7 and 
 = 6, respectively. The
rotation key size is computed as a sum of space require-
ments for 16 keys at 
 = 17, 13 at 
 = 12, and 12 at

 = 9. The relinearization keys are used from the start of
the computation (
 = 17). The sizes of public and secret
keys are relatively small: 4.7 and 8.5 MB, respectively.

The encryption storage requirements in practical set-
tings can be reduced by converting homomorphically
the encrypted packed-matrix ciphertext X to N packed-
integer ciphertexts, i.e., X1, on demand. This can be done
as an offline operation, resulting in an approximately 4x
reduction in fresh ciphertext size.

Execution time and peak memory utilization
Table 2 reports the runtimes and peak RAM utilization
observed for the official iDASH evaluation environment
and a 28-core server node. The results suggest that it
takes about 3.5 minutes and about 10 GB of RAM (all
ciphertexts and keys are stored in memory) to evaluate
homomorphically the GWAS procedure for 245 individ-
uals, 14,841 SNPs, and 3 covariates on a 4-core Amazon
instance. The runtime and storage requirements for the
case of 1,000 individuals, 131,071 SNPs, and 3 covariates
for a modern server computing node (2 x 14 cores) are
about 10 minutes and 116 GB, respectively.

Accuracy analysis
We compared the accuracy of the p-values computed
using our HE prototype with a plaintext reference imple-
mentation of the semi-parallel method proposed by
Sikorska et al. [3]. The results for the case of N = 245 and

M = 10, 643 are summarized in Fig. 1. The graphs visual-
ize the confusion table when choosing 0.01 as a threshold
to classify SNPs as significant or not (depicted as the red
lines). It is a log-log plot of the p-values obtained by the
two different approaches. The vertical axes correspond to
the semi-parallel logistic regression and horizontal axes to
the p-values obtained by the HE computation. The diag-
onal blue line depicts the case when the two classifiers
provide exactly the same p-value for each input data.

Each quadrant corresponds to one of possible outcomes:
true positive (both classify a SNP as significant), false pos-
itive (the semi-parallel model as not significant and the HE
computation as significant), true negative (both classify a
SNP as significant) and false negative (the semi-parallel
model as significant and the HE computation as not sig-
nificant). The graph shows the true positive rate (TPR),
false positive rate (FPR), true negative rate (TPR) and false
negative rate (FNR). We use F1 score as a single index to
summarize the performance. The graph suggests that the
error introduced by our approximation is negligibly small
(F1 score of 0.991).

Analysis of our approximations
As described in “Our approximations” section, there are 3
compute-model parameters that affect the approximation
error: the highest degree of the Chebyshev polynomials
used to approximate the logit-function, dl; the degree the
Taylor expansion of ζ , dz; and the number of iterations,
t, for the gradient descent procedure. Clearly, there is a
trade-off between the accuracy of the approximation and
the depth of the computation circuit, which determines
the computational complexity.

In order to avoid over-fitting, we also used other data
sets from the Harvard Personal Genome Project [17]. We
ran experiments for different conditions reported in the
PGP Participant Survey and found that the approxima-
tion of ζ has a significant impact on the quality of the
results, and is highly sensitive to the choice of cases and
disease populations. Therefore, we selected a relatively
high degree for the Taylor expansion, dz = 8, that pro-
vides adequate accuracy for unbalanced populations of
up to 10%/90%. Note that the data used for the iDASH
competition was relatively balanced.

Table 2 Runtimes and peak RAM utilization on a UTHealth ITS VM (4 cores, 16 GB RAM, 200 GB hard drive, AWS T2 Xlarge equivalent,
official iDASH’18 evaluation environment) and a server node with 2 x 14 cores of Intel(R) Xeon(R) CPU E5-2680 v4 at 2.40GHz (500 GB
RAM and 2 TB hard drive)

System N M KeyGen Enc Eval Dec Peak RAM

[min] [min] [min] [s] [GB]

UTHealth ITS VM (iDASH) 245 14,841 0.35 0.34 3.46 0.06 9.99

28-core server node 245 10,643 0.12 0.059 1.45 0.06 12.2

28-core server node 300 20,000 0.12 0.088 1.88 0.11 16.2

28-core server node 1,000 131,071 0.12 0.72 10.44 0.4 116
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Fig. 1 Accuracy of our encrypted computing prototype w.r.t the plaintext reference implementation [3]

We found that increasing the number of iterations, t,
and the degree dl of the Chebyshev polynomials used
to approximate the logit-function has a relatively minor
effect on the accuracy of our solution. As an example,
Table 3 shows that the F1 score for the p-value with thresh-
old 0.01 does not significantly change with increase in dl,
while the expected computational cost of using a higher
depth would be substantial.

Profiling
Table 4 reports the breakdown of runtimes for three dif-
ferent cases. The results for N = 245, M = 10, 643
suggest that the conversion of vectors from the packed-
matrix to packed-integer encoding is the bottleneck for
the single-threaded case. However, the conversion pro-
cedure parallelizes better (improving by a factor of 15.3x
on a 28-core machine) than most of the other opera-
tions, effectively reducing its contribution from 77% in the
single-threaded experiment to 38% for the 28-threaded

Table 3 F1 score as a function of the degree dl of the Chebyshev
polynomials used to approximate the logit-function at dz = 8
and t = 1

dl 1 3 5 7 9 11 13 15

F1 0.9914 0.9924 0.9927 0.9931 0.9932 0.9933 0.9933 0.9933

experiment. The experiments for larger numbers of SNPs
imply that the contribution of the conversion procedure
further declines as its computational complexity does not
depend on M.

As the maximum size of individuals did not exceed 1,024
in our experiments, all operations in Steps 1–8 of Algo-
rithm 3 worked with single ciphertexts, and the runtime
of these steps stayed approximately the same for all exper-
iments. At the same time, the contribution of the matrix
products involving S (steps 9 through 11) significantly
increased (from 15% for N = 245, M = 10, 643 to 68% for
N = 1, 000, M = 131,071).

Discussion
The solution presented in this work was awarded first
place (along with another solution from UCSD) in the
iDASH’18 competition (Track 2: Secure Parallel Genome
Wide Association Studies using Homomorphic Encryp-
tion). Hence it represents the state of the art in secure
GWAS using homomorphic encryption.

The main limitations of our solution are (1) the need
to know the computation and parameters of the semi-
parallel procedure in advance and (2) the hand-tuned
nature of many optimizations applied to our solution. The
first problem can be solved once the bootstrapping for
the CKKS scheme becomes more practical. The second
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Table 4 Runtime profiling on the 28-core node; time in seconds; numbers in header row denote step #’s in Algorithm 3; numbers in
parentheses are for the single-threaded experiment; → denotes the conversion from packed-matrix to packed-integer encoding

N M 1–5 6–7 + B → B1 8 W → W1 9 10 Wζ ∗ → (Wζ ∗)1 11

245 10,643 13.3 23.4 4.6 27.4 10.4 1.8 5.5 0.62

(27.4) (40.2) (6.5) (419) (59.3) (12.0) (84.1) (1.64)

300 20,000 13.1 23.5 4.6 33.2 25.7 3.8 7.3 1.5

1,000 131,071 12.7 22.9 4.2 132.8 360.6 47.2 25.0 21.0

challenge can be tackled once automated compilers for
homomorphic encryption are developed. Both are open
research problems.

Conclusions
The results demonstrate that our solution is able to
perform the full GWAS computation homomorphically
for 1000 individuals, 131,071 SNPs, and 3 covariates in
about 10 minutes on a modern server computing node.
Many of the optimizations presented in our paper are
general-purpose and can be applied to solving challenging
problems dealing with large datasets in other applica-
tion domains. The major general-purpose optimizations
include a new RNS variant of the CKKS scheme and mul-
tiple methods of homomorphic switching between data
encodings.
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