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Abstract

which natively supports multiple indices.

github.com/sandialabs/idash2018task1/.

Background: One of the tasks in the iDASH Secure Genome Analysis Competition in 2018 was to develop
blockchain-based immutable logging and querying for a cross-site genomic dataset access audit trail. The specific
challenge was to design a time/space efficient structure and mechanism of storing/retrieving genomic data access
logs, based on MultiChain version 1.0.4 (https://www.multichain.com/).

Methods: Our technique uses the MultiChain stream application programming interface (which affords treating
MultiChain as a key value store) and employs a two-level index, which naturally supports efficient queries of the data
for single clause constraints. The scheme also supports heuristic and binary search techniques for queries containing
conjunctions of clause constraints, and timestamp range queries. Of note, all of our techniques have complexity
independent of inserted data set size, other than the timestamp ranges, which logarithmically scale with input size.

Results: We implemented our insertion and querying technigues in Python, using the MultiChain library Savoir
(https://github.com/dxmarkets/savoir), and comprehensively tested our implementation across a benchmark of
datasets of varying sizes. We also tested a port of our challenge submission to a newer version of MultiChain (2.0 beta),

Conclusions: We presented creative and efficient techniques for storing and querying log file data in MultiChain
1.04 and 2.0 beta. We demonstrated that it is feasible to use a permissioned blockchain ledger for genomic query log
data when data volume is on the order of hundreds of megabytes and query times of dozens of minutes is
acceptable. We demonstrated that evolution in the ledger platform (MultiChain 1 to 2) yielded a 30%-40% increase in
insertion efficiency. All source code for this challenge has been made available under a BSD-3 license from https://

Keywords: Blockchain, Decentralized ledger, Genomics, Algorithms, Blockchain based querying

Background

The development and proliferation of high-throughput
genomic technologies has resulted in the fantastic expo-
nential growth of sequenced human genomes. This
growth has resulted in a doubling of the amount of
genomic data every seven months [1]. It is likely that
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future growth in this area will primarily result from the
increased amount of genomics data coming from health-
care. The Global Alliance for Genomics and Health,
a standards setting body for genomics in healthcare,
has estimated that as many as 60 million patients may
have their genomes sequenced by 2025 [2]. Providing
privacy assurances that are appropriate for protecting
human health and identity information requires trade-
offs between duties to share potentially lifesaving data,
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duties to protect privacy, and compliance with national
and international electronic health information laws [3].

Work on advanced data structures and algorithms like
blockchain in genomics has been put forward in order to
maintain increased privacy, heighten logging and audit,
and reduce the risks of centralized data storage and deliv-
ery. This work has led to developments in industry (e.g.,
Nebula Genomics, Gene-chain, Shivom) and distributed
national healthcare [4]. One powerful characteristic of
blockchain is the ability to maintain an immutable data-
access audit trail [5]. In genomics, especially as applied
to patient medical data, access audit trails for logs pro-
vide guarantees that as multiple parties (e.g., researchers,
hospitals, insurance companies) access this data they cre-
ate an immutable record for all queries. Since blockchains
are distributed, this means that no individual party can
change or manipulate logs [6]. For instance, in Institu-
tional Review Boards, the “Final Rule” specifies the need
to maintain informed consent over the like of the data,
and to allow subjects to withdraw consent. Maintaining
this in light of data sharing is difficult and an immutable
data transaction log may help guarantee these rights are
protected [7].

The National Institute of Standards and Technologies
(NIST) has provided a flowchart (originally provided by
Department of Homeland Security) on where blockchain
technologies are expected to outperform conventional
data structures. Blockchain on genomic access logs meets
the standard set by NIST, in that 1) the data need to be
consistently shared, 2) more than one entity contributes
data, 3) data records need to be immutable, 4) sensi-
tive identifier are not stored, 5) entities do not need to
decide on control of the data, and 6) there needs to be a
tamperproof log of all writes to the data [8].

In their 2018 international competition, iDASH (inte-
grating Data for Analysis, Anonymization, and Shar-
ing) posed a challenge to develop a blockchain-based
immutable logging and querying for cross-site genomic
dataset access audit trail. The specific challenge was to
design a time/space efficient structure and mechanism for
storing and retrieving genomic data access logs, based on
MultiChain version 1.0.4 (https://www.multichain.com/).
The details of the challenge can be found at the competi-
tion website [9].

In this paper, we describe our technique for a
blockchain-based immutable logging and querying audit
trail. This technique uses a straightforward two-level
index. Specifically a stream (which can be thought of as
a key-value store) called logdata maps unique keys to
jsonified full log line data records, and then a stream
per logdata column maps specific column values to log-
data keys. This scheme supports very efficient retrieval
of all records containing a particular column value, i.e.
single clause queries. To generalize to the conjunction of
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column values (AND operations), the naive approach
would be to collect sets of IDs that match each individ-
ual column and determine the set intersection. However,
MultiChain does not provide a set intersection primi-
tive, and so the naive approach requires fetching a large
amount of data from the chain that is never returned to
the user, as it is discarded during set intersection. We
detail a technique for overcoming this effect via a set car-
dinality based heuristic, since MultiChain is able to effi-
ciently return stream-item counts. To handle timestamp
range queries, we employ a binary search filtering strat-
egy that leverages the challenge guarantee that records are
pushed to the ledger monotonically increasing by times-
tamp, as MultiChain otherwise does not contain a notion
of sorting or ordering. Two-level indices are a standard
approach to the data retrieval problem. Given that this is
the first year of the iDASH log-chain track, it is there-
fore not surprising that standard approaches performed
as well as they have. Future efforts will likely result in
the growth and development of sophisticated retrieval
algorithms. Furthermore, because of MultiChain’s lack of
ordering, our range query was able to achieve complexity
based on binary search, which is a major improvement to
its out-of-box capabilities.

Related work

The spread of blockchain technology to increasingly novel
domains has led to a rapidly increasing body of related
work in recent years. One particularly interesting applica-
tion, which is directly relevant to the work presented in
this paper is the development of secure and transparent
audit logs [10]. Another related work is the development
of forkable applications for blocks - which will invariable
become increasingly relevant as challenges and audits to
the chain become routine [11]. As the MultiChain White
Paper reports, blockchain is typically not optimized for
handling queries [12]. Sutton and Samavi found that audit
query of a log-chain was extremely inefficient due to
data structures designed for verifiability, rather than query
[13]. One area that researchers are still wrestling with is,
how to deal with access anonymity. This is of particular
interest when access needs to be audited [14]. Our imple-
mentation focuses specifically on performance of query
in audit logs, using an approach that nonetheless guaran-
tees logs will not be overlooked or missed during query.
A similar application to the one provided is the use of
blockchain in the securing, standardization and simplifi-
cation of electronic health records. Ledgers are currently
being studied as a tool for tracking and providing guaran-
tees that Personal Health Information logged by Internet
of Things devices have trackable and auditable records
[15]. Others have advocated using blockchain ledgers to
guarantee secure and compliant sharing of data across
clinical settings, these settings may differ in security,
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privacy protections and interoperability - but a ledger
can potentially be used to validate and facilitate that data
sharing [16].

With genomic insertion and query events a log of the
creation, deletion, viewing and modification of records is
essential to protect the integrity of data that have been
stored - whether in blockchain or a more conventional
database [17]. Electronic health records are a rich, but
relatively small dataset. The unique domain where we
specifically address genomic issues, using blockchain, is in
the auditing of access logs. This application is essential to
determining efficient access controls of sensitive genomic
data. The iDASH competition provided us with the oppor-
tunity to identify and provide an efficient solution in this
under-studied application of blockchain.

Our contributions

While our implementation strategy is relatively straight-
forward, it was a very competitive iDASH submis-
sion performance-wise, indicating a dearth of work in
data structures and algorithms promoting ease of query.
Regarding novelty, 1) our multiple column constraint
heuristic was unique (across iDASH submissions), non-
obvious, and very well-performing in practice, and 2) as
MultiChain 1.0.4 streams have no notion of sorting, our
binary search method for timestamp range queries was
highly creative, and asymptotically superior to all iDASH
submissions of which we are aware.

Methods
The techniques described in this paper were developed in
order to submit to the blockchain-based immutable log-
ging and querying track of the 2018 international compe-
tition iDASH (integrating Data for Analysis, Anonymiza-
tion, and Sharing). The specific challenge was to design
a time/space efficient structure and mechanism for stor-
ing and retrieving genomic data access logs for cross-
site genomic auditing, based on MultiChain version 1.0.4
(https://www.multichain.com/). The details of the chal-
lenge can be found at the competition website [9].
Submissions were evaluated according to speed, stor-
age/memory cost, and scalability. We independently char-
acterize our submission according to these same criteria
in “Empirical evaluation” section.

Implementation

All source code for this challenge has been made avail-
able under a BSD-3 license from https://github.com/
sandialabs/idash2018task1/. Insertion and query code was
written in Python, and interacts with MultiChain via the
Savoir Python bindings (https://github.com/dxmarkets/
savoir). Our implementation uses the MultiChain stream
application programming interface (API). This API
affords treating MultiChain as an append-only key-value
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data store (conceptually much like Redis or Amazon
DynamoDB). For each log line we insert the stream items
as shown in Table 1 (e.g. {1522000126703 2 28 17
3 FILE ACCESS GTEx}). Let us assume, without loss
of generality, that these insertions originate from node
2. Insertion is performed via the createrawsendfrom
API, which affords inserting into multiple streams in a
single API call. This data structure is sufficient to record
access to a genomic record - including the time, user
id, resource and activity. This specifically logs data that
is critical in tracking and auditing activity on shared
genomic resources.

Performance and underlying algorithm

This insertion scheme has constant time and space com-
plexity, and was chosen to afford efficiency in the various
queries required by the problem statement. Specifically,
the complexity of queries, depending upon mode of query
are (where 7 refers to the number of log lines inserted, and
m refers to the number of log lines returned by a query):

e Queries that contain a single constraint (i.e. column
value) and no timestamp range, have complexity
O(m)

e Queries that contain multiple constraints and no
timestamp range, have complexity O(|S;| > m) (S;
detailed in “Multiple column constraints” section)

e Queries that contain timestamp ranges have
complexity O(max(m, S;) + logn)

Querying is also required to support sorting by any col-
umn value. Our implementation builds a Python list of all
records to return and then sorts using Python’s sorted
built-in.

Our insertion scheme indexes each log line by each of
its column values, and requires a stream per index. Mul-
tiChain 2, which was out of bounds for the challenge,
introduced a feature allowing indexing via multiple keys.
After the competition, we ported our implementation to
use MultiChain 2, and compared its performance to our
challenge submission.

Single constraint query

The insertion scheme intentionally affords a trivial
method to retrieve all records containing a column with
a particular value. For example, to retrieve all records
with the ACTIVITY FILE_ACCESS, it would be nec-
essary to query the activity stream (index) as follows:
liststreamkeyitems activity FILE_ ACCESS,
which returns a collection of the identifiers, e.g.
[UID 3 45, UID 2 22, UID 2 87, ...,
UID 2 101], which in turn are used to retrieve the
records themselves (also via 1iststreamkeyitems).
The complexity of this class of queries is O(m), where
m denotes the number of records returned. When
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Table 1 Key/values inserted for one log line
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stream key value

logdata uiD_2_28 {timestamp:1522000126703,
node:2,
id:28,
ref-id:17,
user:3,
activity:FILE_ACCESS,
resource:GTEXx}

timestamp TIMESTAMP_1522b000126703 uUiD_2_28

node NODE_2 uiD_2_28

id ID_28 UiD_2_28

ref-id REF-ID_17 UiD_2_28

user USER_3 uiD_2_28

activity ACTIVITY_FILE_ACCESS UiD_2_28

resource RESOURCE_GTEx uliD_2_28

node2timestamps 1522000126703

retrieving the actual records (e.g. liststream
keyitems logdata UID 3 45), we employ a
thread-pool approach via Python’s multiprocessing
library, as the challenge specs indicated that Virtual
Machines would have 2 cores. This does not change
the complexity of the scheme, but yields noticeable
performance improvements (a multiplier, roughly equal
to the number of cores) in practice. As this process is
trivial, we do not include pseudocode (as compared to
“Multiple column constraints” and “Timestamp range
constraints” sections).

Multiple column constraints

In order to support queries with multiple column con-
straints, the naive approach would be to gather all of the
subsets of UIDs per the method described in “Single con-
straint query” section, and then perform a set intersection.
In practice, this is a poor approach due to retrieving but
ultimately discarding (via the set intersection operation)
large numbers of UIDs. Instead, we employ a heuristic to
avoid as many unnecessary retrievals from the blockchain
as possible. We observe that the result set is necessar-
ily a subset of the smallest cardinality set over each of
the column constraints. More formally, if S = S N
Sy N ... NS, for column constraints 1,2,...,k, then it
follows (by the properties of set intersection) that S C
S; s.t. |S;| is smallest. We use the MultiChain API call
liststreamkeys to retrieve set counts (constant time,
as MultiChain caches stream size, and makes it available
via constant time) instead of sets themselves (linear in the
size of the returned set). Once S; has been identified (by its
minimum size), the actual records for S; are retrieved via
liststreamkeyitems. Unfortunately, this may result

in records being retrieved that do not match all of the con-
straints (i.e. S C §;), and so constraints are validated, and
records that do not meet all constraints are discarded. The
complexity of this class of queries is O(|S;|). Pseudocode
for this case is shown in Algorthm 1.

Algorithm 1: Retrieve all log lines with multiple fixed
column values
Data: more than one column constraint, e.g.
ACTIVITY=FILE_ACCESS and USER=83
Result: all log lines satisfying all constraints
. x9 = count of liststreamkeys columnO value0
. x1 = count of liststreamkeys columnl valuel

. pick smallest count, x;

. §; = liststreamkeyitems columnl valuel

. return filterBasedOnConstraits(
liststreamkeyitems logdata uid] forj € S;)

1

2

3. ...

4. x. = count of liststreamkeys columnC valueC
5

6

7

Timestamp range constraints

Other than the streams (indexes) we have per col-
umn, we have an additional four streams called
nodeXtimestamps for X = 1,2,3,4. The streams
exist to support the requirement for timestamp range
constraints in queries. The challenge rules stated that
insertions would be monotonically increasing by times-
tamp, per node, and that records with NODE=X would
only ever be inserted from node X. As such, we can use
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the MultiChain API option for 1iststreamkeyitems
called 1local-ordering, which guarantees that keys
can be iterated (and looked up via position) in sorted
order. We wrap this with a binary search strategy, which
affords finding the UID_X_min and UID_X_max in
O(logn) time, where # is the number of inserted records.
This is the only query constraint that brings into play
complexity proportional to the number of inserted
records. Pseudocode for this case is shown in Algorithm 2.

Algorithm 2: Retrieve all results in a timestamp range.
This needs to be done for each node, as we can only
control insertion order per node

Data: a timestamp range, e.g. t;, = 152240 -
tp = 180217

Result: all log lines with timestamp in range

1. for each node

(a) binary search for ¢7, uid; in nodeXtimestamps
stream via liststreamkeyitems

(b) binary search for ¢y, uidy in nodeXtimestamps
stream via 1iststreamkeyitems

(c) retrieve actual records via
liststreamkeyitems logdata uid] for
j €l uidy, uidg)

2. return all retrieved records

Software overview

Using these three approaches, depending upon the con-
straints expressed in any particular query, leads to this
high level breakdown of our implementation (Fig. 1) and
(Algorithm 3).

Algorithm 3: Overall query strategy

Data: a query consisting of (optionally) column
constraints and (optionally) timestamp range

Result: all log lines matching constraints

1. Gather subset sizes for AND constraints using
liststreamkeys (only in multiple clauses exist in query)

2. Gather subset size upper bound for timestamp

constraint via binary search (only if there are

timestamp constraints)

Retrieve smallest subset via liststreamkeyitems

4. Filter based on constraints (only if multiple column

constraints are specified)

Sort (only if sorting is requested)

6. Return data structure

»

o
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Results

Challenge results

The iDASH organizers evaluated our implementation by
running it across three datasets. The ‘small’ dataset had
50,000 log lines per node (with a total of four nodes). The
‘medium’ and ‘large’ datasets had 100,000 and 200,000 log
lines per node, respectively. Successful submissions were
required to return complete and accurate responses for all
test queries. Submission scores were then assigned based
on a formula that took into account insertion (35% of
score) and (average) query times (35% of score), as well
as disk utilization (15% of score), and maximum memory
consumption (15% of score).

Our iDASH submission proved highly competitive, indi-
cating that our approach should be considered as one of
the best performing implementations for this problem at
the time of submission and judging. The iDASH reported
performance of our implementation is as follows. Per-
formance for each dataset was measured for insertion,
average query time, disk usage, and max memory usage.
For the small dataset, insertion, query, disk, memory, was
43:09, 00:00:26, 1.438GB, 22MB. For the medium dataset,
1:23:51, 00:00:47, 2.695GB, 28MB. For the large dataset,
4:07:17, 00:01:48, 5.438GB, 41MB. Given that (for exam-
ple) the medium dataset contained 20MB worth of log
lines, the overall on-chain storage used by our approach
(28MB) is quite reasonable given that we built multiple
indices for the data.

There was an inconsistency in the reported iDASH
results for insertion time of the large dataset versus all
of the performance that we ever observed in our lab for
the insertion step. To elaborate, we intentionally rate lim-
ited insertion to 20 records per second per node (due
to observed uncertainty in MultiChain transaction bot-
tlenecks). In our testing infrastructure we were able to
achieve 50 insertions per second per node without any
observed difficulty, but on the contest submission cloud
virtual machines we observed occasional synchronization
issues with 30 records per seconds, and we opted for a
conservative approach (as submissions would be disqual-
ified if they did not synchronize). The iDASH reported
time for insertion of the large dataset is a mistranscrip-
tion, as the time should have been 2h46m and not 4h07m
as reported, and the testers relayed that our submission
was notable in that MultiChain never had to ‘catch up’
regarding node synchronization (private conversation).

Empirical evaluation

Our testing results validate the performance reported by
the conference organizers. However, to get more compre-
hensive understanding of the performance of our imple-
mentation, we performed further testing over a vari-
ety of dataset sizes (including throughout development).
This served to both 1) empirically evaluate how our
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Multiple clauses?

Gather subset sizes
for AND constraints
using liststreamkeys

Gather subset size

upper bound for
timestamp constraint via

Retrieve smallest subset
using liststreamkeyitems

binary search

4

[Multiple column constraints?

\/ \\'

[Filter on constraintsH Sort? J

Y N

Perform sorted
Data structure
on column value

Fig. 1 Control flow of query processing. Complex queries follow logical parsing steps indicated in this decision tree. Based on the presence of
multiple clauses, timestamps, multiple column constraints and sorting, the 1iststreamkeys, a binary search of timestamps, filtering of
constraints and the sorted functions are used to prepare queries before the data structure is delivered

implementation scales as a function of dataset size, and
2) serve as regression tests to ensure that bugs were not
introduced into the implementation as it was refined. The
latter ensured that the implementation respected rules
(or clarifications of the rules) that didn’t occur in the
single test data set, for example the existence of repeat
timestamps.

In this section we detail the performance of insertion
and querying, across datasets of size 50,000, 100,000,
200,000, and 500,000 log lines for each of the four nodes
per the criteria laid out in the evaluation criteria: storage,
memory, total insertion time, and average query time.

As mentioned in “Multiple column constraints” section,
our heuristic for supporting multiple column constraints
potentially retrieves records which are ultimately dis-
carded. We took an ad hoc approach to measure the
penalty of this effect. On our 100,000 line test dataset,
the predominant behavior was for 0 records to be dis-
carded (which is a significant improvement over the naive
method), but as many as 30,000 erroneous records were
retrieved for some queries, which have a very detrimen-
tal performance penalty. Further studying the tradeoffs

in this false-positive/false-negative space will undoubtedly
lead to more performance efficient queries.

The performance of our implementation is displayed in
Figs. 2,3, and 4. The memory usage and disk usage show
scaling linearly proportional to log file size, which was
expected. After the iDASH workshop we rapidly proto-
typed a port of our implementation to MultiChain version
2.0 beta, which had added native support for multiple
indices (which obviated the need for our two level index).
The performance of this port is only notable in the disk
usage plot (Fig. 3), and did not significantly affect memory
usage or query performance. The non-monotonic perfor-
mance of query times as a function of dataset size (Fig. 4)
likely arises due to retrieving and subsequently discard-
ing records (per the multi-clause heuristic described in
“Multiple column constraints” section). Additionally, it
appears that for the tested dataset sizes, that the worst
case logarithmic (as a function of inserted records) com-
plexity of timestamp range queries is still dominated by
the constant time multi-clause heuristic. The reason we
did not more thoroughly explore these various confound-
ing factors is two-fold: 1) query time is highly dependent
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Fig. 2 Memory Utilization. The max amount of main memory used during insertion, measured via gnu t ime
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Fig. 3 Disk Usage. The amount of storage used by MultiChain with our indexed representation. This value was calculated by measuring file system
utilization before and after insertion via the Linux df command
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Fig. 4 Query Scaling. A summary of query performance. Our test infrastructure, per dataset, generates a set of nine queries that cover the three
query modalities (a single clause, multiple clauses, and timestamp ranges). For the nine queries, the template is fixed, but the generator chooses
constraint values randomly. For each dataset, we generated five of these nine query benchmarks, and averaged the observed query times across the
five samples. For this plot we have shown four of the nine query types. Examples of the four queries displayed are as follows: “QUERY user=5"
clause(user), "“QUERY resource=resD activity=activityE" conjunction,"QUERY timestamprange=[99171676,102561181]" timestamp, and “QUERY
user=6 timestamprange=[32226847,82574461] sortby=Ref-ID" all three(sorted)
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upon the number of returned records, and 2) construct-
ing a sufficiently wide variety of test datasets was time
prohibitive for the time we had to contribute to our
challenge submission. Future work will include more thor-
oughly examining the factors that confound straightfor-
ward empirical analysis of query efficiency.

Given that the MultiChain 2 port exhibited a 30%-40%
storage savings, we could likely have safely increased our
insertion rate to 30 records per second without risking
chain islanding, resulting in a similar savings in insertion
time.

Testing infrastructure

We leveraged Sandia’s Emulytics [18] capability in build-
ing our test infrastructure. Emulytics affords precise spec-
ification of (in this case, virtualized) test networks, includ-
ing granular expression of network topology, operating
system type and version, and host virtual hardware and
software provisioning. As such, once we specified the test
network topology - a flat topology, four nodes, Ubuntu
14.04, each with two cores, and 8GB of RAM - we could
effortlessly (push button) redeploy a clean network, pro-
grammatically install a clean MultiChain, programmati-
cally install our software, run a benchmark, etc., all of
which was instrumented with the automated ability to
measure memory, disk, etc., usage. This proved invalu-
able both in development and testing, both for regression
testing and benchmarking.

Further optimizations: Z-ordering

An unsuccessful implementation strategy we attempted,
applying so-called Z-ordering [19], could have been viable
in slightly different challenge conditions. In Z-ordering,
data with multiple keys have their keys combined (e.g. by
interleaving bits), resulting in a single key space. To query
for items, the key space is searched via a creative traversal
strategy. In practice this approach can often outperform
standard two-level indices by an order or magnitude or
more. For Z-ordering to be a viable approach on a prob-
lem similar to that in iDASH 2018, there would likely
have to be tighter constraints on the values of columns. In
other words, if the enumerated types (activity, resource)
were constrained to a small number of values (e.g. 16 or
32), and the integer types (user, id ref-id) were limited to
e.g. 16 bits, then Z-ordering would likely be very efficient
search procedure for this problem. We leave exploring
Z-ordering in this context as future work.

Discussion

It is worth noting that the space of permissioned
blockchain ledger software is rapidly evolving, and it
would not be surprising if many of the results presented
here are obviated by advancements in the underlying
ledger platform. This effect was somewhat observed in
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this challenge, where MultiChain 2.0 (which was released
after the challenge was issued and had decided upon ver-
sion 1.0.4) yielded an easy 30%-40% performance increase
for record insertion.

Conclusion

We described our technique for a blockchain-based
immutable logging and querying audit trail. We presented
creative and efficient techniques for storing and querying
log file data in MultiChain 1.0.4 and 2.0 beta. We have
implemented these techniques, and thereby demonstrated
that it is feasible to use a permissioned blockchain ledger
for genomic query log data when data volume is on the
order of hundreds of megabytes and query times of dozens
of minutes is acceptable. This approach allows querying
parties to query immutable cross-site genomics logs (e.g.,
GTEx) in an efficient way with guarantees that all user
activity is reported.

We have identified a number of areas for future explo-
ration. First, we would like to look deeper into some of
the observed query performance characteristics. Second,
we would like to consider refinements to our multi-clause
constraint heuristic, as the penalty for retrieving and sub-
sequently discarding records is severe. Finally, we would
like to explore Z-ordering as an efficient index for the
situation when the same challenge problem has tighter
column value constraints.
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