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Abstract

Background: Blockchain has emerged as a decentralized and distributed framework that enables tamper-resilience
and, thus, practical immutability for stored data. This immutability property is important in scenarios where
auditability is desired, such as in maintaining access logs for sensitive healthcare and biomedical data. However, the
underlying data structure of blockchain, by default, does not provide capabilities to efficiently query the stored data.
In this investigation, we show that it is possible to efficiently run complex audit queries over the access log data stored
on blockchains by using additional key-value stores. This paper specifically reports on the approach we designed for
the blockchain track of iDASH Privacy & Security Workshop 2018 competition. In this track, participants were asked to
devise an efficient way to run conjunctive equality and range queries on a genomic dataset access log trail after
storing it in a permissioned blockchain network consisting of 4 identical nodes, each representing a different site,
created with the Multichain platform.

Methods: Multichain duplicates and indexes blockchain data locally at each node in a key-value store to support
retrieval requests at a later point in time. To efficiently leverage the key-value storage mechanism, we applied various
techniques and optimizations, such as bucketization, simple data duplication and batch loading by accounting for the
required query types of the competition and the interface provided by Multichain. Particularly, we implemented our
solution and compared its loading and query-response performance with SQLite, a commonly used relational
database, using the data provided by the iDASH 2018 organizers.

Results: Depending on the query type and the data size, the run time difference between blockchain based
query-response and SQLite based query-response ranged from 0.2 seconds to 6 seconds. A deeper inspection
revealed that range queries were the bottleneck of our solution which, nevertheless, scales up linearly.

Conclusions: This investigation demonstrates that blockchain-based systems can provide reasonable
query-response times to complex queries even if they only use simple key-value stores to manage their data.
Consequently, we show that blockchains may be useful for maintaining data with auditability and immutability
requirements across multiple sites.
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Background
Blockchains allow a set of parties to collaboratively
maintain a collection of data on a tamper-resilient and
decentralized ledger. This provides numerous benefits
compared to traditional data storage models, where the
administration of a shared database is delegated to either
one or more trusted entities.

One particularly notable benefit is that a blockchain-
based data storage solution mitigates security issues
that can arise from malicious administrators. Moreover,
it eliminates the potential for a single point of fail-
ure because data is replicated across multiple entities.
Due to their immutability and auditability guarantees,
blockchains are useful for storing access logs from multi-
ple sites to different datasets (e.g., genomic research data).
This is because access logs require strong auditability (e.g.,
auditing accesses to genomic information), transparency
(e.g., publicly verifying that certain data is not misused by
checking the logs) and tamper-resistance (e.g., preventing
an attacker from manipulating the stored logs).

Furthermore, blockchains provide access to an uni-
form view of data that is logged from different sites.
This, in conjunction with its other properties, can be
beneficial in various contexts as demonstrated by pre-
vious investigations, such as those in the healthcare
domain [1–3].

However, the underlying data structure of a blockchain,
by default, does not provide for an efficient technique
to query the stored data. To overcome this limitation,
most existing blockchain implementations, such as Bit-
coin [4] and Ethereum [5], provide support for key-value
stores to duplicate and store data on the blockchain.
These key-value stores are then leveraged to support sim-
ple key-based retrieval queries that return the associated
values.

In this paper, we show how to leverage the key-value
store provided by a blockchain to run complex queries
efficiently (e.g., range queries) on the blockchain data.
We specifically report on the approach we designed for
the blockchain track of iDASH Privacy & Security Work-
shop 2018 competition [6]. Our findings show that our
approach induces reasonable overhead, in terms query-
response time, in comparison to a traditional relational
database management tool.

Blockchain
Blockchain was first introduced by Nakamato as the
underlying ledger of the now famous Bitcoin cryptocur-
rency [4]. Briefly, a blockchain is an append-only, dis-
tributed and replicated database. It allows the participants
of a network to collectively maintain a sequence of data in
a tamper-resilient way. More importantly, it does so with-
out a requirement for a trusted third party by invoking a
consensus mechanism.

Informally, a blockchain network operates as follows:
participants broadcast their data and certain nodes called
miners gather and store the data they receive in wrapper
structures called blocks. Through a consensus mechanism,
the network elects a leader miner in a decentralized fash-
ion for a sequence of epochs. The epoch leader broadcast
his block to the network and, having received the leaders
block, other nodes store it in their local memory where
each block maintains a hash-link to the previous block.

The consensus algorithm that the blockchain network
deploys may depend on whether or not the network is
permissionless. For example, Bitcoin operates on a permis-
sionless network, where anyone is free to join and there
is no uniform view of the network across participants.
It utilizes a cryptographic puzzle called Proof-of-Work
[7] to achieve consensus. This makes tampering with
the order of blocks computationally infeasible when the
majority of the computation power in the network follow
the protocol honestly.

In permissioned networks however, participants can
employ more efficient consensus algorithms, such as
PBFT [8]. This is because the identity and number of
participants are known to every party.
Multichain
Multichain is a platform to deploy permissioned
blockchains [9]. In this context, permissioned means
that access to the blockchain network can be arbitrarily
restricted. Such networks are usually initialized by a single
party who, at a later point in time, allocates permissions
to other nodes to join the network and participate in the
consensus protocol. For consensus, Multichain deploys
a variant of a classical Byzantine fault tolerance algo-
rithm whose exact details are provided in the Mining in
MultiChain section of the corresponding whitepaper [10].

To handle queries efficiently, Multichain provides a
module called streams, which uses an abstraction of a dic-
tionary (i.e., key-value store) on top of a blockchain [11].
The streams module allows a node to store an arbitrary
datum and an associated key by submitting a key-value
pair in a transaction to the blockchain. Multichain dupli-
cates and indexes the data stored on the blockchain in
LevelDB (a key-value store [12]), which is locally main-
tained by each node to serve queries submitted to the
blockchain efficiently [13]. In other words, the streams
module allows a node to interact with the underlying key-
value store. It is possible to store multiple values with the
same key, such that query results can be returned as lists.

The streams module supports the following methods
(among others) on top of a blockchain.

• createDictionary(dictionary-name): Creates a
dictionary with the specified name.

• insert(dictionary-name, value, key): Inserts the
key-value pair to the specified dictionary.
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• retrieve(dictionary-name, key): Retrieves the value(s)
corresponding to the given key from the specified
dictionary.

We note that it is possible to create an arbitrary number of
dictionaries on top of a blockchain, each of which stores
data independently.

Overview of the task
The blockchain track of the iDASH Privacy & Security
Workshop 2018 competition provided a genomic dataset
access log trail [14] in which each log consists of 7 fields:
timestamp, node, ID, ref-ID, user, activity and resource.
The activity and resource fields can take on arbitrary
string values. The other fields can take on arbitrary posi-
tive integer values.

This trail is stored on a blockchain, where it is assumed
that the trail arrives as a data stream (i.e., one log at a
time). The competition rules dictated that the blockchain
must be created using Multichain version 1.0.4 and the
network must consist of four identical nodes, each repre-
senting a different site, initialized with default parameters
per Multichain specifications. It should be possible to
insert and query the data using any node. Also, the rules
prohibited the use of using any off-chain mechanisms to
handle the data other than what Multichain provides.

The goal is to develop a system that can query the
blockchain efficiently under this setting while minimizing
loading times and storage space. A viable solution must
support two types of queries:

• Conjunctive equality queries on selected fields.
• A range query on the timestamp field.

Furthermore, the system should support the reporting of
results in ascending or descending order on any field.

Methods
We now describe the techniques and the optimizations
we deployed to handle queries efficiently in our system.
We note that although our system is explicitly tuned for
the blockchain track of iDASH 2018, our methods can be
applied to support more general queries.

In what follows, we first describe how to handle con-
junctive equality queries. Next, we describe how to handle
range queries. We then explain how query response times
can be further improved via batch loading.

Conjunctive equality queries
For each field, we create a dictionary that uses field values
as keys and logs as values. For example, in the user dictio-
nary at key 1, we have the logs whose user field’s value is
1. Similarly, in the ID dictionary at key 2, we have the logs
whose ID is 2. Note that the logs are duplicated for each
field.

When processing such a query, we first find the most
restrictive field key and retrieve the logs from the cor-
responding dictionary with that key. Next, we filter the
retrieved logs with other field keys. Finding the most
restrictive field can be achieved efficiently. This is because
Multichain keeps track of how many items are stored
at a key in a dictionary, which can be accessed by a
getCount(dictionary-name, key) method.

As an example, consider a query that requests logs with
user = 1 ∧ ID = 2. We first compute x = getCount(user-
dictionary, 1) and y = getCount(id-dictionary, 2). Then
if x > y, we retrieve the logs from the id-dictionary, via
retrieve(id-dictionary, 2) and discard the logs whose user
field is not equal to 1.

Range queries on a single field
To handle range queries, we designed a bucketization
technique. That is, we create intervals of a fixed size and
assign each log to exactly one of those intervals depending
on the queried field’s value. Each interval is referred as a
bucket and identified by an unique value. Particularly, our
bucketization technique works as follows: first, we create
a separate dictionary, range-dictionary, in which we assign
each log the key = �Timestamp of log/N�, where N is a
predefined bucket size.

Next, given a range query [ x, y], which requests logs
whose timestamps are between x and y (inclusive), we
retrieve all of the logs with keys �x/N� + 1, �x/N� +
2, . . . , �y/N� − 1. Finally, we retrieve and perform a linear
scan of the logs at keys �x/N� and �y/N� and discard logs
whose timestamps are not in [ x, y].

Note that, for each log with a key in range [ �x/N� +
1, �y/N� − 1], it is guaranteed that the log is in [ x, y]. As a
result, we do not need to scan the logs stored at these keys.

Improving retrieval speed via batch loading
We observed that in the Multichain platform loading logs
in batches can substantially improve retrieval speed. Here
batch loading means that, instead of inserting one log in
each transaction, we buffer and insert several logs in a
single transaction.

We observed that if we load logs as batches of size k,
then retrieving these logs would be roughly k times faster
than storing them one at a time. The competition rules
required the solution to be crash-resistant, so a straight-
forward way of buffering would have failed to meet this
requirement. For example, if our buffer size is 4, then we
load logs to the blockchain in batches of size 4. Yet if the
system crashes after the first 2 logs arrive, then both of
these logs would be lost due to the fact that the contents
of the buffer was not loaded to the blockchain at the crash
time.

To overcome this problem, we extend our solution to
maintain two dictionaries per field, a batch dictionary and
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a regular dictionary. In the batch dictionary, we load logs
in batches, while in a regular dictionary, we load the logs
one at a time (i.e., a buffer size of 1). When retrieving data,
we select from the batch dictionary, compare the size of
the retrieved list with the corresponding list in the regular
dictionary and execute a crash recovery (if needed).

For example, imagine a query that attempts to retrieve
logs with node = 1. To support this query, we first
retrieve the logs from the batch dictionary via batchLogs
= retrieve(batch-node-dictionary, 1). We then compute
the length of the corresponding list in the regular dictio-
nary via logListSize = getCount(regular-node-dictionary,
1). Then, if the size of batchLogs is equal to logListSize, we
simply return batchLogs as the result.

Otherwise, it becomes evident that we lost some data
from the batch dictionary due to a crash. To recover, we
compute the difference between the size of batchLogs and
logListSize, i.e., x = logListSize - size(batchLogs). We then
retrieve the last x items from the regular dictionary and
append these to both batchLogs and the batch dictionary.
Finally, we return batchLogs as the result.

Results
In this section, we report on a set of experiments designed
to characterize the performance of our system.

Implementation details and experiment setting
We implemented our solution using Python 3.5.2, Multi-
chain 1.0.4 and used the Savoir wrapper to interact with
Multichain API [15]. Our code is available at [16]. Our test
setup consisted of four identical virtual machines with the
following specifications: 2-Core CPU (2.6. GHz Intel Xeon
E5), 7.5 GB of RAM and 50 GB of storage with the Ubuntu
14.04 LTS operating system.

We used the dataset supplied by the competition orga-
nizers, which consisted of four files, one per node, in
which each file has 105 logs.

From the previous discussion regarding batch loading,
it is evident that the larger the buffer size, the faster the
retrieval speed. However, Multichain imposes a size limit
on each transaction, such that it is not possible to increase
buffer size arbitrarily. We observed that, for the given
dataset, the transaction size limit is reached for a buffer
size around 104. As a result, we set the buffer size to 104.

Now, it can be seen that the number of buckets we
have to retrieve decreases with the increasing bucket size.
However, the number of individual logs we have to scan
may increase. This is because it depends on the distribu-
tion of logs over the buckets and the query. Note that if
one chooses bucket size poorly, it could be the case that
all the logs would go to the same bucket.

To determine an appropriate bucket size, we ran several
range queries of varying sizes on the given data and mea-
sured the average running time. During our empirical

Fig. 1 Average time required for a node to load logs of various sizes.
The large standard deviation is likely due to network latency. As
expected, load times scale linearly with the number of the logs

analysis, we observed an increase in the average running
time as bucket size increased from 101 to 107. After that
point however, average running time started to decrease
with the increasing bucket size. As a result, we selected a
bucket size of 107.

Finally, we compared our solution’s performance with a
traditional relational database, namely SQLite 3.22 which
we ran in one of the virtual machines. We report on the
average measures over 10 runs and illustrate standard
deviations by error bars in our plots. Also we note that

Experiments
First, we measured the load time by using logs of var-
ious sizes concurrently at each node. Figure 1 depicts
the average load time of a node with respect to num-
ber of logs loaded by it. We further plot the influence
of file size on total load time, which corresponds to the
slowest node. Those results are provided in Fig. 2. These
figures do not include the results from SQLite because

Fig. 2 Total load time required as a function of file size. As expected,
the total load time scaled linearly in the size of the file
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Fig. 3 Running times of test queries. Query 1 is a range query and the
others are conjunctive equality queries. Results imply range queries
dominate the performance

our solution is substantially slower. For instance, load-
ing all 400.000 logs required merely about 4 seconds in
SQLite.

Next, we investigated query-response times. We ran the
test queries supplied by the competition organizers. The
queries and the number of records returned by were as
follows:

• Query 1 : SELECT ∗ FROM Chain WHERE
u s e r = 7 AND ( t imestamp BETWEEN
1522257730000 AND 1 5 2 2 4 4 9 1 6 0 0 0 0 ) .
R e t u r n s 30489 r e c o r d s .

• Query 2 : SELECT ∗ FROM Chain WHERE
r e s o u r c e = ’MOD_WormBase ’ .
R e t u r n s 67462 r e c o r d s .

• Query 3 : SELECT ∗ FROM Chain WHERE
u s e r = 1 AND r e s o u r c e = ’TOPMed ’ .
R e t u r n s 17098 r e c o r d s .

• Query 4 : SELECT ∗ FROM Chain WHERE
node = 3 AND r e f −ID = 40345
ORDER BY timestamp ASC .
R e t u r n s 5983 r e c o r d s .

The running times for these queries are shown Fig. 3
As the results indicate, the main bottleneck of our solu-
tion is the range query. We also note that SQLite internal
representation and processing scheme is quite different
than our method. As such, the SQLite running time is not
always highly correlated with the blockchain time.

In Fig. 4, we compare the range query performance of
our solution with respect to SQLite’s performance. We
observe both methods scale linearly where the difference
is between 5-6 seconds.

Finally, Fig. 5 illustrates how the number of records
retrieved influences the query-response time. In this
experiment, we ran queries without any restrictions (i.e.,
query returns every stored log) after loading appropri-
ate number of logs. Given how our approach handles
conjunctive equality queries, this plot also represents the
performance of conjunctive equality queries. This is due
to the fact that a conjunctive equality query makes a call

Fig. 4 Running times of range queries
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Fig. 5 Processing time required as a function of the number of retrieved records

to getCount(.) per field given in the query in addition to
retrieving the data. This only adds a negligible overhead.

Finally, we considered the storage requirements. After
loading all logs, the size of the blockchain was about 3
GBs per node, whereas the size of the SQLite database was
several orders of magnitude smaller at 20 MBs.

Discussion
In this section, we discuss certain limitations and highlight
opportunities for improvement of our approach.

First, as mentioned earlier, bucket and buffer size was
based on an empirical investigation. We did not conduct
extensive studies on these parameters to optimize them.
It might be possible to improve query-response times by
fine-tuning these parameters.

Second, it is possible to map string fields (i.e., resource
and activity) to the integer values to reduce the size of logs.
This may improve the loading and query-response times.

Third, we did not consider parallelization. Although
Multichain platform imposes some limitations on the par-
allelization (e.g., concurrently reading different parts of a
stream is not possible) workarounds might exist [17].

Further, per the rules of the competition, we were
not permitted to modify the blockchain parameters. A
straightforward way of improving performance might be
to optimize these parameters. For example, the target-
block-time parameter controls the average number of sec-
onds between two blocks whose default value is 15. It
might be possible to decrease loading times by letting the
blockchain generates blocks more often.

Finally, we note that Multichain is expected to deploy
some new features to support data handling more effi-
ciently in future versions. For instance, in version 2,
blockchain stores just the hashes of data [18]. Since

transactions will be shortened, this will likely reduce load-
ing and response times. One can simply compare the
hashes of data after fetching them from the accompanying
key-value store with the hash on blockchain to ensure
immutability in this model.

Conclusion
In this paper, we demonstrated that blockchain technol-
ogy can overcome inherent limitations on querying and,
thus, can be a useful tool for managing data accross mul-
tiple sites, particularly in scenarios that require strong
immutability and auditability. We showed how bucketiza-
tion, simple data duplication and batch loading can be uti-
lized to run complex queries efficiently over blockchains
that provide support for only simple key-value stores. Par-
ticularly, we implemented these notions in the submission
to the blockchain track of iDASH 2018 competition that
supports efficient conjunctive equality and range queries
over blockchains created with Multichain platform. We
illustrated that our approach induced reasonable over-
head, in terms query-response time, in comparison to a
traditional relational database management tool.
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