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Abstract

Background: Genomic data have been collected by different institutions and companies and need to be shared for
broader use. In a cross-site genomic data sharing system, a secure and transparent access control audit module plays
an essential role in ensuring the accountability. A centralized access log audit system is vulnerable to the single point
of attack and also lack transparency since the log could be tampered by a malicious system administrator or internal
adversaries. Several studies have proposed blockchain-based access audit to solve this problem but without
considering the efficiency of the audit queries. The 2018 iDASH competition first track provides us with an opportunity
to design efficient logging and querying system for cross-site genomic dataset access audit. We designed a
blockchain-based log system which can provide a light-weight and widely compatible module for existing blockchain
platforms. The submitted solution won the third place of the competition. In this paper, we report the technical
details in our system.

Methods: We present two methods: baseline method and enhanced method. We started with the baseline method
and then adjusted our implementation based on the competition evaluation criteria and characteristics of the log
system. To overcome obstacles of indexing on the immutable Blockchain system, we designed a hierarchical
timestamp structure which supports efficient range queries on the timestamp field.

Results: We implemented our methods in Python3, tested the scalability, and compared the performance using the
test data supplied by competition organizer. We successfully boosted the log retrieval speed for complex AND queries
that contain multiple predicates. For the range query, we boosted the speed for at least one order of magnitude. The
storage usage is reduced by 25%.

Conclusion: We demonstrate that Blockchain can be used to build a time and space efficient log and query genomic
dataset audit trail. Therefore, it provides a promising solution for sharing genomic data with accountability
requirement across multiple sites.
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Background
With the rapid development of biomedical and computa-
tional technologies, a large amount of genomic data sets
have been collected and analyzed in national and inter-
national projects such as Human Genome Project [1] ,
the HapMap project [2] and the Genotype-Tissue Expres-
sion (GTEx) project [3], which yielded invaluable research
data and extended the boundary of human knowledge.
Thanks to the advance of computer technology, the cost
of genomic testing is dropping exponentially. Nowadays,
the testing price ranges from under $100 to more than
$2,000, depending on the nature and complexity of the
test [4]. One can test her gene easily and cheaply by using
services from DNA-testing companies such as Ancestry
and 23andMe. Given the above, genomic data sets have
been scattered around the world in different institutions
and companies. On the other hand, the potential business
value of genomic data and privacy concerns [5–7] hin-
der the sharing of cross-sites genomic data. Notably, the
General Data Protection Regulation (GDPR) restricts the
exchange of personal data. Under GDPR, such sensitive
data only could be accessed after obtaining the consent of
data subjects (i.e., the one who owns the data) and provid-
ing accountability audit. This requires that any cross-site
genomic data sharing system should be equipped with a
secure and transparent access control module.

Blockchain technology has received increasing attention
because it provides a new paradigm of value exchange.
Although it stems from cryptocurrency, many studies
have investigated the adoption of blockchain in differ-
ent application scenarios beyond financial domain that
typically involve multiple parties with conflict of inter-
ests such as personal data sharing [8–10], supply chain
[11–13], identity management [14, 15] and medical data
management [16–22]. They show that using blockchain
technology can reduce friction and increase transparency.
A blockchain system has several notable features: decen-
tralization, immutability and transparency. These are
achieved by cryptographic hash, consensus algorithm and
many other innovations from previously unrelated fields
such as cryptography and distributed computation [23].
Due to the space limitation, we do not introduce more
details of blockchain technologies and refer interested
readers to surveys on blockchain [24–31].

Several studies investigated blockchain-based access log
audit [32–34] (we introduce them in the next section).
They focus on how to achieve the immutability of the
log. However, none of them investigated the efficiency of
logging and querying for a blockchain system at the appli-
cation layer. On the other hand, a few recent studies [35–
38] from database community consider a blockchain sys-
tem as a distributed database, and attempt to improve the
performance of such system by exploring new designs of
bottom layers (such as storage or transaction processing)

of the system. However, without considering the applica-
tion characteristics, such modifications on the back-end
engine of the system may not have the desired perfor-
mance improvement on every application or even cause
unexpected side effects.

The 2018 iDASH competition first track, “Blockchain-
based immutable logging and querying for cross-site
genomic dataset access audit trail", provides us with an
opportunity to explore a light-weight and widely compati-
ble access audit module for existing blockchain platforms.
Our submitted solution won the third place of the com-
petition. In this paper, we report the system design and
technical details in our solution.

The competition task [39]
The goal of iDASH competition 2018 first track is to
develop blockchain-based ledgering solutions to log and
query the user activities of accessing genomic datasets
across multiple sites. Concretely, given a genomic data
access log file in which each entry includes seven
attributes including Timestamp, Node, ID, Ref − ID, User,
Activity, Resource, the task is to design a time/space effi-
cient data structure and mechanisms to store and retrieve
the logs based on Multichain version 1.0.4 [40].

Competition setup and requirement. It is required that
each entry in the data access log must be saved individ-
ually as one transaction (i.e., participants cannot save the
entire file in just one transaction), and all log data and
intermediate data (such as index or cache) must be saved
on-chain (no off-chain data storage allowed). Competition
participants can determine how to represent and store
each log entry in transactions. It does not need to be a
plain text copy of the log entry. Also, the query imple-
mentation should allow a user to search the log using any
field of one log entry (i.e., node, id, user, resource, activity,
timestamp, and a "reference id" referring to the id of the
original resource request), any “AND" combination (e.g.,
node AND id AND user AND resource), and any times-
tamp range (e.g., from 1522000002418 to 1522000011441)
using a command-line interface. Also, the user should be
able to sort the returning results in ascending/descending
order with any field (e.g., timestamp). There will be 4
nodes in the blockchain network, and 4 log files to be
stored. Users should be able to query the data from any
of the 4 sites. Participants can implement any algorithms
to store, retrieve, and present the log data correctly and
efficiently.

Evaluation Criteria. The logging/querying system needs
to demonstrate good performance (i.e., accurate query
results) by using a testing dataset, which is different from
the one provided for the participants. The speed, stor-
age/memory cost, and scalability of each solution will
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be evaluated. The competition organizer used the binary
version of Multichain 1.0.4 on 64-bit Ubuntu 14.04 with
the default parameters as the test bed for fairness. No
modification of the underlying Multichain source code
is allowed. The submitted executable binaries should be
non-interactive (i.e., depend only on parameters with
no input required while it works), and should contain
a readme file to specify the parameters. The organizer
tested all submissions using 4 virtual machines, each with
2-Core CPU, 8GB RAMs and 100GB storage.

Related work
The closest line of work to this competition is blockchain-
based access log audit. Suzuki et al., [32] proposed a
method using blockchain as an audit-able communica-
tion channel. This study is motivated by a similar problem
studied in this paper: in a client-server system, the log-
ging on either server-side or client-side does not provide
strict means of auditing, because the host of the log-
ging system could tamper the log. They implemented
a proof-of-concept system on top of Bitcoin by encod-
ing the messages (i.e., API calls from clients and Replies
from the server) between clients and the server into the
transactions of bitcoin. Since the transactions are publicly
available, they can be retrieved and verified by an audi-
tor as needed. The proposed system is easy to use and
convenient for a client-server system. However, answer-
ing the audit query using the proposed system may be
time-consuming, especially for a large-scale system serv-
ing millions of clients, as each reply is returned in the form
of a bitcoin transaction. The maximum transaction pro-
cessing capacity of bitcoin is estimated between 3.3 and 7
transactions per second [41].

Castaldo et al., [33] implemented a blockchain-based
tamper-proof audit mechanism for OpenNCP (Open
National Contact Points) [42], which is a system for
exchanging eHealth data between countries in Europe.
The idea is similar to the one proposed in [32], but deal-
ing with data exchange instead of answering queries. They
also encode the data that need to be exchanged into the
transactions, but the data are encrypted using symmetric
keys which are shared in advance between the sender and
receiver through a secure channel. The author suggests to
use Multichain because it provides low overhead for the
transactions handling.

ProvChain [34] is a blockchain based data provenance
architecture for assuring data operation (i.e., data access
and data changes) in the cloud storage application. This
differs from the previous two solutions mentioned, as
the major challenge is that the provenance data are also
sensitive but still need to be validated by a third party.
The authors proposed an additional layer as provenance
auditor which interacts with a blockchain network by
blockchain receipts which include provenance entry for
future validation.

The 2018 iDASH competition first track provides us
with an opportunity to explore the design of efficient
logging and querying methods for a blockchain sys-
tem. We attempt to design a blockchain-based log sys-
tem that can serve as a light-weight and widely com-
patible component for the existing blockchain plat-
forms. Especially, our solution is optimized for genomic
dataset access auditing under the requirements of the
competition task.

Method
We design a blockchain-based log system that is
time/space efficient to store and retrieve genomic dataset
access audit trail. Our method only leverages the
Blockchain mechanism and is not limited to any spe-
cific Blockchain implementation, such as Bitcoin[43],
Ethereum[44]. We introduce an on-chain indexing data
structure which can be easily adapted to any blockchains
that use a key-value database as their local storage. In our
development, we use Multichain version 1.0.4 as an inter-
face between Bitcoin Blockchain and our insertion and
query method. Multichain is a Bitcoin Blockchain fork.
It conveniently provides a feature, data stream, to allow
us to use Bitcoin Blockchain as an append-only key-value
database.

Overview
In Fig. 1, we illustrate the overview of the logging system,
which is built on top of Multichain APIs. The core task is
to design space and time efficient methods for insertion
and queries. As described in Section “Technical details
of the task”, there are three types of primitive queries:
point query, AND query, and range query. There are seven
fields in the given genomic dataset: Timestamp, Node, ID,
Ref − ID, User, Activity, Resource as shown in Table 1.

Fig. 1 Overview of the logging system
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Table 1 The Sample Logs

Timestamp Node ID Ref-ID User Activity Resource

152202801 1 1 1 1 REQ_RESOURCE MOD_FlyBase

152208352 1 2 1 1 VIEW_RESOURCE MOD_FlyBase

152216966 1 3 3 6 FILE_ACCESS GTEx

152237149 1 9 9 10 REQ_RESOURCE MOD_SGD

For point query, the user can query on any field. For
AND query, the user can query on any combination
of fields. For range query, the user can query only on
timestamp field with a start and end timestamp. See
Table 1 & 2 as a running example.

Baseline method
We first describe a naive method as a baseline. The
baseline method leverages only three Multichain APIs as
shown in Table 3.

Insertion: First, we create K streams, where K is the
number of fields. Multichain builds K tables in its back-
end key-value database. Second, we build K key-value
pairs, where the key is the attribute data and the value is
entire record line. Finally, we convert those K pairs into
one Blockchain transaction and publish it to Blockchain.
The following Fig. 2 is an example conversion from a log
record to blockchain transaction. We will use this example
log record in the remaining sections. After the transaction
is confirmed by Blockchain, Multichain decodes the trans-
action and insert each key-value pairs to its corresponding
table.

Point Query: The implementation of a point query is
straightforward which simply returns a list of records as
shown in Algorithm 1. In this literature, we assume the
run time complexity of all Multichain API is O(1). The run
time complexity of Point Query is O(1).

Algorithm 1: Point Query
Input: A, K //attribute and key
Output: lr //a list of record

1 lr ← liststreamkeyitems(A, K)
2 return lr

Table 2 Insertion and Queries Examples

Insertion

• Insert("152202801 1 1 1 1 REQ_RESOURCE MOD_FlyBase")

Queries

• Point_Query(Activity="VIEW_RESOURCE")

• AND_Query(ID="2", Node="1")

• Range_Query(start=1522000000000, end=1522000100000)

Table 3 Multichain APIs Used in Our Methods

Multichain APIs Description

create[ stream name] create a stream(table) in
database

publish[ streamname] [ key] [ value] Insert key-value pair to specific
stream(table)

liststreamkeyitems[ stream name] [ key] Retrieve all items with the
given key

AND Query: AND query enables a user to query with
multiple keys. We convert AND query to multiple point
queries and intersect the result of all point queries. The
run time complexity is O(K), where K = number of keys.

Algorithm 2: AND Query
Input: lAK // a list of attribute and key pairs
Output: lr //a list of record

1 lr ← point_query(lAK [ 0]A , lAK [ 0]K )

2 foreach (A, K) ∈ lAK do
3 lr ← lr ∩ point_query(A,K)
4 return lr

Timestamp Range Query: Given a start timestamp
and an end timestamp, Timestamp Range Query returns
records whose timestamp is in this range. We convert
Timestamp Range Query into R point queries, where R is
the range of timestamp. The run time complexity is O(R),
where R = range of timestamp.

Algorithm 3: Timestamp Range Query
Input: ts, te // start timestamp and end timestamp
Output: lr //a list of record

1 lr ← {}
2 for t = ts to te do
3 lr ← lr ∪ point_query("Timestamp",t)
4 return lr

Enhanced method
After testing the baseline solution, which will be discussed
in the result section, we found that the retrieve speed
heavily depends on the number of API calls. Therefore,
the fewer API calls we use, the faster retrieve speed we get.
More specifically, we found three non-optimal issues:

• The entire record is duplicated K times where K is
the number of fields, which is insufficient in terms of
storage overheads.

• Since we need to query all results and intersect them
in local memory, AND query takes significant
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Fig. 2 Log Record to Transaction Conversion

amount of memory when the number of AND
operations increases.

• If the length of a given range query is n (typically, n is
ranging from 106 to 108), the baseline method naively
translate the range query into n point queries and
concatenate the results.

The blockchain-based auditing system is an append-only
structure, so a data structure that keeps the minimum
amount of information while maintaining the efficiency
is essential. The percentage of read(query) operations in
the real-world auditing system is low [45], therefore we
trade retrieval speed for storage cost. We redesign the
key-value pairs in the blockchain transaction, modified
the query algorithm accordingly and built a selectivity list
based on data distribution. Most of all, we design a hier-
archical timestamp structure which significantly reduces
the number of queries(APIs) needed for the range query.

Insertion: To address these problems, we redesign the
key-value pairs. The key part remained the same (attribute
data), but we removed the entire entry from the value
part. As a result, we removed all duplicated values in the
baseline method as shown in Fig. 3

Point Query: Since we now have an empty value in the
key-value database, we cannot use the key to get origi-
nal record directly. We now take advantage of Blockchain
transaction ID which is included in the returning JSON
file of liststreamkeyitems API. First, we get a list of
TXID (transaction ID) with the given key. Second, we
use another Multichain API, getrawtransaction, to get
the matching transactions. Finally, we rebuild the origi-
nal record from the transaction where all attribute data
are included. It is worth mentioning that the point query
now requires 1 + T times API calls to retrieve the records
where T is the size of the TXID list. If the modification is
allowed in this competition, we can combine these three
steps into one, which reduces the total API calls from 1 +
T to 1. In other words, if Multichain nodes can perform
the work from line 3 to line 6 in Algorithm 4, users can
point query with just one API call. The run time complex-
ity of our point query is O(T), where T is the size of the
TXIDs list.

AND Query: In order to reduce the retrieval cost, we
build a selectivity list for attributes based on the example
test data which was given by the competition organizer.
A selectivity list is based on the rank of result size of
each attribute. The attribute which has the smallest query

Fig. 3 Transaction with empty values
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Algorithm 4: Point Query with additional step
Input: A, K //attribute and key
Output: lr //a list of record

1 [ TXIDs] ← liststreamkeyitems(A, K)
2 lr ←[ ]
3 foreach txid ∈[ TXIDs] do
4 T ← getrawtransaction (txid)
5 R ← rebuild(T)
6 append(lr , R)

7 return lr

result size is the most selective. For the enhanced AND
query, we call point query only one time for the most
selective key then filter the result in the memory. Since
we only query once from Blockchain, the total memory
usage is bounded by the largest query result. The run time
complexity is O(1).

Algorithm 5: AND Query with selectivity list
Input: lAK , lS // a list of attribute and key pairs and a

selectivity list
Output: lr //a list of record

1 SK ← findMostSelectiveKey(lAK , ls)
2 lr ← point_query(SKA, SKK )

3 foreach (A, K) ∈ lAK do
4 lr ← filter(lr , A, K)

Timestamp Range Query: Since Blockchain is an
immutable structure, the common indexing techniques,
such as B-tree and R-tree, which require adjust-
ing/balancing the entire data structure according to the
data distribution, won’t work. We introduce a hierarchical
timestamp structure, which is an incremental data struc-
ture and matches the append-only characteristics of the
blockchain system. Our design significantly reduces the
number of queries(APIs) needed for a single range query.

The hierarchical timestamp structure consists of mul-
tiple levels. See Table 4 as an example. The range in the
high level divides into multiple smaller range in the lower
level. We denote each range part as LevelNumber:Starting
Timestamp. A timestamp is recorded in the correspond-
ing part at all levels. In our running example, a timestamp
111 will be recorded in L0:100, L1:110, and L2:111 in
Table 4.

Table 4 Simple Hierarchical Timestamp Structure

L0 [100,200)

L1 [100,110) [110,120) [120,..)

L2 100 ... 109 110 ... 119 120 ... ...

To build this structure, we need to slightly modify the
insertion method by adding L streams where L is the num-
ber of levels, and we need to add L key-value pairs to
Blockchain transaction as well. See Fig. 4 as an example.

In our enhanced range query method, we recursively
find the largest range in the hierarchical timestamp struc-
ture and use multiple point queries to retrieve the result.

Algorithm 6: Timestamp Range Query with hierarchi-
cal timestamp structure
Input: ts, te // start timestamp and end timestamp
Output: lr //a list of record

1 lr ← list
2 l, r ← findLargestRange(ts, te)
3 while r �= None do
4 append(lr , point_query(l, r))
5 l, r ← findLargestRange(ts, te)

6 return lr

In the following example, we show the number of
queries(APIs) needed for our baseline range query and
enhanced range query.

Range query from timestamp 109 to timestamp 120.
Baseline Method:

q(′T ′, 109) ∪ q(′T ′, 110) ∪ ... ∪ q(′T ′, 120) → 11 queries
Enhanced Method:

q(′L2′, 109) ∪ q(′L1′, 110) ∪ q(′L2′, 120) → 3 queries
We reduce the number of queries needed for range

query from RTe−Ts to
∑L

i=0
Ri
rLi

, where Ri+1 = Ri
mod rLi , R0 = RTe−Ts and rLi is the elemental range at
level Li.

The run time complexity of the enhanced range query is
O

(∑L
i=0

Ri
rLi

)
.

Further optimizations
The database normalization can be used for both baseline
and enhanced solution. According to the given datasets,
Ref-ID refers back to the same original ID which means
those User and Resource are the same. For this reason, we
can exclude User and Resource in Blockchain transaction.

Results
Implementation environment
We used Python3 as our main programming language to
develop our solution, Savior [46] to interact with Mul-
tichain API and Docker [47] to simulate 4 Blockchain
nodes. Additionally, we created some bash scripts to auto-
matically setup Blockchain nodes and Multichain environ-
ment. We also wrote a benchmark program to compare
our baseline method and enhanced method. Our code
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Fig. 4 Transaction with Hierarchical Timestamp Structure

is available online [48]. The specifications of our test-
ing machine are as follows: 6 cores CPU(i7 8700k), 32
GB of RAM and 6TB of HDD with Ubuntu 16.04 as the
operating system.

We used the sample testing data supplied by the compe-
tition organizer to benchmark our implementation. The
sample testing data consists of 4 files, one per node. Each
file has 105 entries of log records which has 7 fields
(Timestamp, Node, ID, Ref − ID, User, Activity, Resource).
To illustrate, we provide a few sample data in Table 1.

To find the optimal number of levels and the step multi-
plier of two adjacent levels for the hierarchical timestamp
structure (Fig. 4), we test all reasonable parameter com-
binations by brute-force. For the given sample data, the
optimal parameter for the number of levels is 3 and the
step multiplier of two adjacent levels is 100. Future work
may include finding the optimal number of levels in a
more efficient way.

Benchmark
In our benchmark experiment, we show the scalability
of our two methods alongside LevelDB[49] as a refer-
ence. Many blockchain systems[43, 44, 50] use LevelDB
as a back-end database to store the raw transaction data.
It is worth mentioning that those systems only index
the raw transactions, not the actual content inside the
transactions. Database system and Blockchain do not

share the same design goal: the former is usually adminis-
tered by a centralized entity, and the latter intents to work
in a trustless environment. Nevertheless, this compari-
son offers useful insights of Blockchain based log system
which trades speed for data integrity. We simulate the
enhanced insertion, the enhanced point query, and the
enhanced AND query behavior in LevelDB. For range
query, we use LevelDB native method so we can properly
examine our hierarchical timestamp structure. In all tests,
we run 10 rounds for each methods with respect to vary-
ing the number of records. We calculate the average and
the standard deviation from the results. We notice that
the standard deviation is extremely small which shows the
little trace in all figures expect Fig. 5(Point Query). This
is due to the identical environment and the setup of our
simulated blockchain nodes.

Scalability test: queries
Figure 5 shows query time with respect to the varying
number of records for point query, range query, AND
query. For the point query test, the response time is
determined by the result size. As the number of records
increases, the result size increases and the response time
increases. The response time of the enhanced method
is worse than the baseline method because of the addi-
tion API calls which we introduced in the enhanced
point query. For the range query test, the performance

Fig. 5 Scalability Test: Queries
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is constant since the result size of certain time range
is constant. It is worth mentioning that our enhanced
range query method have very close performance com-
paring to the native LevelDB range query method. For
AND query, since it consists of point query, the response
time increases with the increasing number of records. It
is worth mentioning that the selectivity list design in our
enhanced AND query method offsets the drawback of the
enhanced point query method when the number of keys
is larger than 2.

Scalability test: insertion
Figure 6 shows the completion time of insertion meth-
ods with respect to varying the number of records. The
insertion time is depended on the transaction size. The
insertion times of the two methods are approximately
the same. The enhanced method needs more key-value
pairs to support hierarchical timestamp indexing struc-
ture. However, the empty values in key-value pairs offset
this transaction size increment.

Scalability test: storage
Figure 7 shows the total blockchain size in bytes with
respect to varying the number of records. The blockchain
size information is collected by calling Multichain API.
Since Blockchain and LevelDB measure their size in dif-
ferent ways, we exclude LevelDB in this test. The figure
suggests that the enhanced method uses less storage than

the baseline method. The duplication removal from the
blockchain transaction in the enhanced method works as
designed.

Detailed comparison
In this section, we show a detailed performance differ-
ence of 3 query types in the baseline method, enhanced
method, and LevelDB. We use the fixed 1000 records in
the remaining tests.
Point Query: Figure 8 shows the query response time for
different attributes. The enhanced method performance is
worse than the baseline method, because of the additional
API calls in the enhanced method. The rank in the result
also matches the rank in selectivity list which indicates
the return record size. The return record size of Activity
is the largest among the attributes. In other words, Activ-
ity has the lowest selective and need more API calls to
get the result than other attributes, so it has the worst
performance difference.
Range Query: Figure 9 shows the query response time
with respect to varying the time range. The enhanced
method is at least one order of magnitude better
than the baseline method. It proves that our hierar-
chical timestamp structure can batch a large number
of queries into a small (almost constant) number of
queries. Hence, the enhanced method achieves almost
constant time performance as LevelDB native range query
method.

Fig. 6 Scalability Test: Insertion
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Fig. 7 Scalability Test: Storage

Fig. 8 Point Query
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Fig. 9 Range Query

AND Query: Figure 10 shows the query time with respect
to varying the number of keys. We test all combinations of
keys. For example, for 2 keys test, we test all 21 combina-
tions(7 choose 2) and average the result. It is much easier
to find a more selective key when the number of keys is
increasing. This is the reason why the enhanced method
has a downward slope. When there are only 2 keys, the
enhanced method has high possibility to find a low selec-
tive key. As a result, when AND query takes a low selective
key, it requires a long response time.

Discussion
Our design is heavily governed by the competition
requirements, evaluation criteria[39], and Multichain
1.0.4 capability. In this paper, we intend to use Multi-
chain as only an interface, so our design can be applied to
any arbitrary blockchain system. Multichain 1.0.4 does not
allow an item to have multiple keys and competition does
not allow participators to modify Multichain, so we have
to manually construct the blockchain transaction. There
are two major developments for the future work: 1) A new
interface which encodes/decodes the log entry to/from
blockchain transaction more efficient. For example, in Bit-
coin blockchain transaction script, it can write entire log
entry only once in the blockchain transaction and let local
interface client translate the script to the database. A spe-
cific Bitcoin interface for this log system can significantly

reduce the transaction size. 2) A new Blockchain oriented
database system, such as Forkbase[37]. It aims to design
a new key-value architecture to reduce the development
efforts of the above application and provide efficient ana-
lytical query performance. It is possible to replace the
key-value engines in the existing blockchain platforms for
better query performance.

In this paper, we focus on designing efficient logging and
querying schemes for immutable blockchain systems, and
assume the blockchain network has been well-established
under a specific consensus algorithm and acceptable trans-
action throughput. In the following, we discuss how they
may affect our solution.

Consensus algorithm may affect the performance of
insertion functions because a newly generated access log
(as a transaction) need to be accepted by all node in
the network (achieving a consensus on the next block)
in order to be stored in the ledger. Consensus algorithm
manifests the transaction throughput, which is majorly
controlled by a predefined parameter in Multichain called
mining-diversity (the default configuration is 0.3). If the
transaction throughput is low, the insertion would be
insufficient since it may be suspended until the previous
batch of logs is finished. The transaction throughput also
affects the audit queries because the query is performed
on the locally synchronized ledger. Under low transaction
throughput, a newly generated log may take a long time to
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Fig. 10 AND Query

be included in the ledger and synchronized to a node so
that the query on a node may not be able to provide the
accurate real-time answer.

Further, the access log could be private since it records
all of the queries issued by a user. This is a challenge for
existing blockchain platforms since the ledger is public
to every node in the network for increasing transparency
and security. A recent version of Hyperledger Fabric [50]
includes a new function for this problem. The idea is
dividing the ledger to different channels and selectively
sharing a channel among a subset of users. There are
also other efforts for this problem by adopting secure
multiparty computation [9], zero-knowledge proof [10] or
trusted hardware [51]. Although this problem is beyond
the scope of this competition, our solution could be
extended using the above techniques.

Conclusions
In this paper, we presented two solutions for blockchain-
based logging and querying genomic dataset audit trail.
We built a baseline solution and then adjusted our imple-
mentation based on the evaluation criteria of the com-
petition[39] and the general real-world characteristics of
log systems[52]. The blockchain-based log system is an
append-only structure, so the storage increases monoton-
ically. In the real world, the percentage of writing opera-
tion(insertion) is much higher than the portion of reading
operation(query) in the workload [52]. Based on the above

two reasons, we decided to prioritize the storage space
over retrieval speed and insertion speed. We can reduce
the storage cost by 25% and increase the range query
speed by at least one order of magnitude. We claim that
our hierarchical timestamp structure design is Blockchain
implementation independent. It can be adapted to any
Blockchain (e.g., Bitcoin, Ethereum, Hyperledger) with the
help of an intermediary, such as Multichain.
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Vukolić M, Cocco SW, Yellick J. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In: Proceedings of the Thirteenth
EuroSys Conference. New York: Association for Computing Machinery;
2018. p. 30. 9781450355841, https://doi.org/10.1145/3190508.3190538.

51. Hynes N, Dao D, Yan D, Cheng R, Song D. A demonstration of sterling: A
privacy-preserving data marketplace. Proc VLDB Endow. 2018;11(12):
2086–9.

52. Rosenblum M, Ousterhout JK. The design and implementation of a
log-structured file system. ACM Trans Comput Syst. 1992;10(1):26–52.
https://doi.org/10.1145/146941.146943.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/ccgrid.2017.8
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1109/icde.2018.00025
http://www.humangenomeprivacy.org/2018/
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://bitcoin.org/en/
https://www.ethereum.org/
https://github.com/DXMarkets/Savoir
https://github.com/DXMarkets/Savoir
https://www.docker.com/
https://github.com/mshuaic/Blockchain_med
https://github.com/google/leveldb
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/146941.146943

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	The competition task idash
	Competition setup and requirement.
	Evaluation Criteria.


	Related work

	Method
	Overview
	Baseline method
	Enhanced method
	Further optimizations


	Results
	Implementation environment
	Benchmark
	Scalability test: queries
	Scalability test: insertion
	Scalability test: storage
	Detailed comparison


	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Author's contributions
	About this supplement
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

