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Abstract 

Background:  Multi-sample comparison is commonly used in cancer genomics studies. By using next-generation 
sequencing (NGS), a mutation’s status in a specific sample can be measured by the number of reads supporting 
mutant or wildtype alleles. When no mutant reads are detected, it could represent either a true negative mutation 
status or a false negative due to an insufficient number of reads, so-called "coverage". To minimize the chance of false-
negative, we should consider the mutation status as "unknown" instead of "negative" when the coverage is inade-
quately low. There is no established method for determining the coverage threshold between negative and unknown 
statuses. A common solution is to apply a universal minimum coverage (UMC). However, this method relies on an 
arbitrarily chosen threshold, and it does not take into account the mutations’ relative abundances, which can vary 
dramatically by the type of mutations. The result could be misclassification between negative and unknown statuses.

Methods:  We propose an adaptive mutation-specific negative (MSN) method to improve the discrimination 
between negative and unknown mutation statuses. For a specific mutation, a non-positive sample is compared with 
every known positive sample to test the null hypothesis that they may contain the same frequency of mutant reads. 
The non-positive sample can only be claimed as “negative” when this null hypothesis is rejected with all known posi-
tive samples; otherwise, the status would be “unknown”.

Results:  We first compared the performance of MSN and UMC methods in a simulated dataset containing varying 
tumor cell fractions. Only the MSN methods appropriately assigned negative statuses for samples with both high- and 
low-tumor cell fractions. When evaluated on a real dual-platform single-cell sequencing dataset, the MSN method not 
only provided more accurate assessments of negative statuses but also yielded three times more available data after 
excluding the “unknown” statuses, compared with the UMC method.
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Background
Multi-sample comparison is commonly used in cancer 
genomics analyses, such as tumor heterogeneity [1–3] 
and serial liquid biopsies [4–6]. An essential part of these 
multi-sample analyses is to compare the mutational pro-
files between multiple samples from the same patient [2]. 
As a consequence of the genetic evolution or environ-
mental factors, a mutation from one sample could either 
be positive or negative in another sample of the same 
patient. Accurate assessment of mutation statuses in all 
related samples not only provides essential information 
for deconvoluting tumor progression, but also plays an 
important role in identifying treatment targets [2, 7, 8]. 
However, similar to any other tests, a genetic test may 
generate a non-informative result due to technical fail-
ure. These non-informative results can be misclassified 
as negative and lead to incorrect mutation profiles, which 
may compromise the downstream effort for developing 
personalized treatment [9]. To accurately assess nega-
tive status, a designated strategy is needed to identify 
the potential false negative calls and reclassify them to 
"unknown" status.

Next-generation sequencing (NGS) technology has 
made it feasible to characterize somatic mutations in 
large quantities efficiently [10, 11]. A common techni-
cal failure for identifying a mutation using NGS is low 
coverage, which refers to the number of NGS reads cov-
ering the genomic site of the mutation. When a muta-
tion is not detected, determining whether the coverage 
is sufficient for claiming a negative status becomes a 
major challenge. A common bioinformatics method to 
avoid false-negative is to require a universal minimum 
coverage (UMC) [12]. Other alternative methods have 
also been used, such as providing an overall justifica-
tion of low false-negative rate by computational simula-
tion [13] or adopting ultradeep sequencing to reduce 

false-negative [14]. Theoretically, the minimum coverage 
needed to claim a negative status of a specific mutation 
should depend on the relative abundance of that muta-
tion. In high-purity tumors, the mutations are easier to 
detect and thus require less coverage to claim negative 
status. On the other hand, for the samples with low lev-
els of tumor content such as circulating cell-free DNA 
(cfDNA), much higher coverage is needed to claim nega-
tive status [15]. However, none of the existing methods 
take account of the difference in the relative abundance 
of individual mutations when determining the minimum 
coverage threshold. In NGS, a mutation’s relative abun-
dance can be measured by the Variant Allele Frequency 
(VAF), defined as the fraction of NGS reads harboring 
the mutant allele at the mutation’s site.

In a hypothetical example for demonstration purposes, 
a non-small cell lung cancer patient received the first 
biopsy test, which identified two actionable EGFR muta-
tions [16]: T790M at 56% VAF and a C797S at 5% VAF. 
After treatment, a follow-up biopsy did not detect any of 
these two mutations. However, the coverage was subop-
timal in the second biopsy (only 15X and 30X for T790M 
and C797S, respectively) (Table 1). When using the UMC 
method with a threshold of 20X, the C797S mutation 
would be classified as negative, while the T790M muta-
tion would be classified as unknown (Status #1). A prob-
lem with this strategy of solely defining negative status 
using UMC is that the mutation’s relative abundance, in 
the form of VAF, was not taken into consideration. In the 
first biopsy, the T790M mutation had a higher VAF and 
thus required less coverage to detect. However, there is 
no perfect way of determining the expected VAF in the 
second biopsy. To solve this problem by developing a 
more adaptive method than UMC, we propose an alter-
native approach. Instead of asking whether the second 
biopsy is negative, which cannot be answered definitively, 

Conclusions:  We developed a new adaptive method for distinguishing unknown from negative statuses in multi-
sample comparison NGS data. The method can provide more accurate negative statuses than the conventional UMC 
method and generate a remarkably higher amount of available data by reducing unnecessary “unknown” calls.
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Table 1  A hypothetical example of the negative data problem

Mutations Biopsy (#1) Biopsy (#2)

Read counts 
(mutant/total)

VAF (%) Status Read counts 
(mutant/total)

VAF (%) Status #1 (UMC 20X) Status #2 (MSN)

EGFR (T790M) 40/72 56 Positive 0/15 0 Unknown Negative

EGFR (C797S) 5/100 5 Positive 0/30 0 Negative Unknown
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we now ask whether the second biopsy appears to be sim-
ilar to the first biopsy in terms of the mutation’s relative 
abundance. When this null-hypothesis is rejected, it sug-
gests the second biopsy is different from the first positive 
biopsy. We then define the second biopsy as "negative", 
given the fact that no mutant reads have been detected 
in it, and there are sufficient non-mutant reads to show it 
is significantly different from the known positive biopsy. 
With this strategy, the T790M mutation was determined 
to be negative (p < 0.05, Fisher’s exact test), while the 
C797S was classified as unknown (p > 0.05) (Status #2). 
Without considering the mutation’s relative abundance, 
the conventional UMC method tends to unnecessarily 
misclassify low-VAF mutations as negative; meanwhile, 
it can be over-conservative for expected high-VAF muta-
tions by failing to call them as negative. In this exam-
ple, the MSN method identified the EGFR C797S as 
“unknown” in the second biopsy because of a previous 
low-VAF positive result, suggesting additional coverage 
would be needed to determine its actual status in the 
second biopsy. Further, it rescued the high-VAF muta-
tion (T790) from the non-informative “unknown” status 
and reclassified it as “negative”. These assessments gener-
ated by the MSN method were more seasonable as they 
matched the specific characteristics of the mutations.

Methods
Introduction
We propose a designated method for distinguishing 
"unknown" from "negative" status by individual muta-
tions, which incorporates information from the observed 
mutation-positive (referred to as "positive") samples. In 
general, a mutation can be classified as "positive" when 
there is solid evidence that mutant reads are present. On 
the other hand, when no mutant reads are detected, the 
absence of mutant reads could either be true negative or 
false negative due to insufficient numbers of measures 
(i.e., low coverage in NGS data). Our goal is to identify 
those samples at high risk of being false negative and 
reclassify them as "unknown". The MSN method allows 
the users to use any preferred method for defining posi-
tive statuses, such as an existing mutation caller or any 
customized threshold such as a minimum number of 
mutant reads or a minimum mutant VAF. After positive 
samples are defined, the focus of the MSN method is in 
distinguishing "unknown" from "negative" statuses for the 
remaining "non-positive" samples.

The proposed method is based on a central hypoth-
esis that a potential false negative sample may contain 
the same frequency of mutant reads as one of the posi-
tive samples but was not tested positive because of insuf-
ficient numbers of measures, i.e., low coverage. The 
common observation of mutations present in different 

samples at the same or approximate VAFs [2] provides 
an opportunity for developing a mutation-specific strat-
egy for determining the range of expected relative abun-
dance. In the proposed MSN method, any "non-positive" 
sample will be tested against every positive sample for the 
null-hypothesis that the "non-positive" sample may con-
tain the same VAF of mutant reads as the "positive" sam-
ple. If this null-hypothesis is rejected when comparing 
the “non-positive” sample with all known positive sam-
ples, then the mutation status of the non-positive sam-
ple is defined as "negative". Otherwise, it is considered as 
"unknown". In test runs using both simulated and a real 
dataset of dual-platform single-cell sequencing data, our 
method demonstrated improved performance compared 
with existing methods using UMC.

Data preparation
The current method was designed specifically for any 
dataset containing multiple tumor samples from the 
same patient, referred to as "related" samples. The appli-
cable samples may also include other samples contain-
ing tumor cells or DNA, such as circulating tumor cells 
(CTCs) and circulating tumor DNA (ctDNA). Before 
running the current method, we assume the following 
steps have already been finished: (1) identify somatic 
mutations from all tumor samples using any variant caller 
chosen by the user; (2) combine the mutations from all 
"related" samples of the same patient into a list of unique 
mutations, as defined by the chromosome, position, ref-
erence allele, and mutant allele; 3) calculate the numbers 
of mutant and wildtype reads of each unique mutation 
in all "related" samples using any appropriate program 
such as the SAMtools [17], and define which samples are 
positive for each mutation. The input data to our pipe-
line is a data matrix containing the counts of mutant and 
wildtype reads of every mutation in all "related" samples 
and which samples are considered as positive.

Performance evaluation using simulated data
Tumor BAM files containing varying fractions of tumor 
cells were simulated using BAMSurgeon [18]. High-
quality paired-end reads passing Illumina RTA filter were 
initially processed against the NCBI human reference 
genome (GRCh37) using public available bioinformatics 
tools [19, 20], and Picard (http://picar​d.sourc​eforg​e.net/). 
A total of 200 somatic mutations from a previously 
published study [21] were introduced to an unrelated 
wildtype BAM [22]. To consider tumor heterogeneity, we 
split the 200 somatic mutations into two groups: clonal 
mutations (n = 100) that are present in all samples and 
subclonal mutations (n = 100) that are randomly present 
in half of the samples. An overall 200X coverage was used 
for all BAM files. We assumed all mutations are located 

http://picard.sourceforge.net/
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in diploid regions, i.e., the mutation’s expected VAF is 
half of the tumor cell fraction in the sample. For any spe-
cific mutation, the numbers of mutant reads were first 
calculated by multiplying the coverage with the expected 
VAF, with the random variation modeled using a Poisson 
distribution.

We simulated four different scenarios (#1–4) contain-
ing different tumor cell fractions from 90, 20, 5 to 1%. 
Each scenario was independently simulated three times 
(referred to as measurements) to mimic multiple sam-
pling. After the simulation, the numbers of mutant and 
wildtype reads of each mutation in every measurement 
were extracted using a customized Perl program. For any 
measurement, any mutations with mutant reads detected 
are considered as mutation-positive. The remaining 
mutations are considered as “non-positive” and subse-
quently being further classified into negative or unknown 
statuses using different negative-defining methods. 
Mutations without any mutant reads in all three meas-
urements were excluded from the downstream evalua-
tion of negative-defining methods, as these mutations 
would not have been captured by any somatic mutation 
caller.

Performance evaluation using real data
For the current evaluation, we used an input dataset 
generated by a previous study [22] for evaluating dual-
platform single-cell whole-exome sequencing (Additional 
file  1: Table  S1). After single-cell capture and whole-
genome amplification (WGA), each cell was captured 
using two platforms, including Agilent SureSelect XT 
Target Enrichment System (referred to as "AGL") and 
Illumina Nextera rapid capture (referred as "NXT"), to 
create two independent samples from every cell. Somatic 
mutations were identified from individual samples. Sub-
sequently, all identified somatic mutations were consoli-
dated into a list of unique mutations. Then every unique 
mutation was re-examined in all samples to extract the 
counts of mutant and wildtype reads. In an ideal error-
free experiment, the two paired runs (AGL and NXT) 
of the same cell should yield identical mutation status 
for any specific mutation. Based on this principle, this 
dataset is used as the gold standard to evaluate the per-
formance of the two negative-defining methods (UMC 
and MSN) by (1) the total number of informative data 
points, defined as the single-cell/mutation pairs where 
both platforms (NXT and AGL) yielded an informa-
tive mutation status after excluding “unknown” statuses; 
(2) the concordance between the two platforms (NXT 
and AGL), defined as the percentage of informative data 
points where the two platforms yielded the same muta-
tion statuses in one single cell. Here, all unique mutations 
that were initially identified from at least one cell were 

included, then re-visited in all available cells to extract 
the numbers of mutant and wildtype reads for subse-
quent mutation-status analysis.

Results
Demonstrate the process for defining mutation status 
in the MSN method
The process for defining mutation status using the pro-
posed adaptive MSN is illustrated in Fig. 1: (1) Defining 
"positive" samples. For any mutation, before defining 
negative samples, we need first to identify the "positive" 
samples. There are numerous published tools available 
for identifying mutation-positive samples [23–27]. To 
use the MSN method, we assume the users have already 
identified the positive samples using their own preferred 

Input data matrix
(mutant/wildtype read 
counts in all samples)

Mutation 
detected?

Non-positive 
samples

Test against every
positive sample

Rejected in 
all tests?

NegativeUnknownPositive

Output
(mutational status matrix)

Yes

No

Yes

No

Fig. 1  Flowchart illustrating the process of defining a mutation’s 
status in multiple related samples. Begin with an input data matrix 
containing the numbers of mutant and wildtype read counts for 
every mutation in all related samples (top), the mutation’s status in 
each sample is classified in a two-step fashion. First, positive sample/
mutation pairs were identified. We assume the users have completed 
this step using their preferred method before running MSN. The MSN 
method does not create or remove positive statuses but directly 
report them to the output (left). Second, for every mutation, each 
“non-positive” sample is compared with every positive sample to 
determine if they may contain the same frequency of mutant reads. If 
and only if this null hypothesis is rejected against all positive samples, 
then this non-positive sample is considered as negative (right), 
otherwise, it would be classified as unknown due to low coverage 
(middle). The output is a data matrix containing all updated mutation 
statuses (bottom)
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method. (2) Classify "non-positive" samples into "nega-
tive" and "unknown" groups. The remaining "non-pos-
itive" samples are further classified into two groups, 
"negative" and "unknown" using the MSN method. Spe-
cifically, each "non-positive" sample was tested against 
every "positive" sample to exclude the possibility that the 
absence of mutant reads was a false negative due to low 
coverage. The null hypothesis is that the "non-positive" 
sample may contain an equal proportion of mutant reads 
as a given positive sample. If the null-hypothesis is suc-
cessfully rejected in tests against all positive samples, 
then that "non-positive" sample is defined as "negative". 
Otherwise, if we fail to reject the null-hypothesis against 
any one of the positive samples, then that non-positive 
sample is considered as "unknown". For "unknown" sam-
ples, additional coverage is required to determine its true 
status. In this evaluation, the null hypothesis was tested 
using Fisher’s exact test on the read count data; specifi-
cally, the numbers of mutant and wildtype reads in the 
two samples to be compared.

This negative-defining process using the MSN method 
is demonstrated in a hypothetical example (Table  2). A 
mutation was examined in five separate samples (A-E) 
with the numbers of mutant and wildtype reads listed in 
all samples. Following the above criteria, two of five sam-
ples (A and C) were identified as "positive" (Table  2A). 
The remaining three "non-positive" samples (B, D, and 
E, marked as "TBD" for "to-be-determined") then went 
through the following process to distinguish "negative" 
from "unknown" samples. To test the null hypothesis that 
a "non-positive" sample may contain an equal frequency 

of mutant reads as any of the known "positive" samples, 
we compared every "non-positive" sample (B, D, or E) 
with each of the two "positive" samples (A and C) using 
Fisher’s exact test. At least one test turned out to be not 
significant for sample D (D vs. C) and E (E vs. A, and E 
vs. C). In such cases, we could not exclude the possibil-
ity that samples D and E may contain the same frequency 
of mutant reads as at least one of the "positive" samples. 
Therefore, samples D and E were classified as "unknown". 
For the remaining sample B, since a significant difference 
(p < 0.05) was found, and the null-hypothesis was rejected 
against all positive samples, sample B was classified as 
"negative" (Table  2B). Adjustment of the p-value cutoff 
for multiple testing is not considered here. We will allow 
users to vary the p-value cutoff in practice.

Evaluate negative‑defining methods using simulated 
datasets
We evaluated the performance of MSN in simulated 
datasets. To determine the effect of the relative abun-
dance of mutations on the performance of MSN, we sim-
ulated four different scenarios containing varying tumor 
cell fractions from 90, 20, 5 to 1%. This wide fraction 
range allows us to mimic many real situations of muta-
tion detection including clonal mutations in high-quality 
tumor biopsy (90%), subclonal mutations or mutations 
within CNV regions (20%), and low-frequency mutations 
in rare tumor population or liquid biopsy (5% and 1%). 
At each tumor cell fraction, three datasets were inde-
pendently simulated (referred to as “measurements”) 
to mimic multiple samplings such as multisite biopsy 

Table 2  A step-by-step example of differentiating “unknown” from “negative” status using the MSN method

*  TBD to-be-determined
**  By Fisher’s exact test

A. Define “positive” samples

Sample Read counts Status

Mutant Total (coverage)

A 10 20 Positive

B 0 20 TBD*

C 4 9 Positive

D 0 8 TBD*

E 0 5 TBD*

B. Separate “unknown” from “negative” statuses

“Non-positive” sample Rejected against positive samples (p value**) Final status

vs A vs C

B Yes (< 0.01) Yes (< 0.01) Negative

D Yes (< 0.05) No Unknown

E No No Unknown
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or longitudinal liquid biopsies. In each measurement, 
200 pre-selected mutations, including 100 clonal muta-
tions and 100 subclonal mutations, were introduced into 
a wildtype BAM file. After all positive mutations were 
identified in individual measurements, we discriminated 
between the negative and unknown statuses using either 
MSN or UMC methods with different cutoffs, including 
two MSN cutoffs (p < 0.01 and p < 0.05) and four UMC 
cutoffs (20X, 50X, 200X and 300X).

A clear association between tumor cell fraction and 
the performance of the negative-defining methods was 
observed (Fig.  2). When tumor cell fractions were rela-
tively high (≥ 20%), the high-cutoff UMC methods 
appeared to be over-conservative. For example, in sce-
nario #4 of 90% tumor cell fraction, the UMC 300X 
method incorrectly assigned 19.6% of all mutations as 
“unknown”, which all should be negative. On the other 
hand, the low-cutoff UMC methods (20X and 50X) and 
MSN methods correctly assigned almost all mutation sta-
tuses. In contrast, for the scenarios of very low tumor cell 

fractions (≤ 5%), however, the low-cutoff UMC methods 
(20X and 50X) resulted in dramatically increased false-
negative calls. For instance, in scenario #1 of 1% tumor 
cell fraction, the UMC 20X and 50X assigned 25% of all 
mutations as negative, while most of them (22.9% of 25%) 
were false negative.

In contrast, the MSN methods (p < 0.01 and p < 0.05) 
and the UMC 300X method correctly assigned these 
non-positive mutations as “unknown”, which raises the 
concern that additional sequencing is needed to deter-
mine the mutations’ actual statuses. Overall, only the 
MSN methods can appropriately assign negative statuses 
for both high- and low- tumor cell fractions. Lastly, since 
the MSN method was designed for multi-sample (≥ 2) 
comparison, it would be of interest to determine the 
minimum number of measurements needed for MSN. 
We performed another simulation using only two meas-
urements per scenario, and the results were highly simi-
lar to the 3-measurement comparison (Additional file 2: 
Figure S1). Together, these results indicate that MSN is 

Fig. 2  Evaluate the performance of negative-defining methods in a simulated dataset. From bottom to top: we simulated four different scenarios 
containing varying tumor cell fractions from 90, 20, 5 to 1%. Each scenario was independently simulated three times (referred to as measurements) 
to mimic multiple sampling. Only mutations that are positive in at least one of the three measurements after simulation were included. X-axis: 
different negative-defining methods including MSN using two thresholds (p < 0.01 and p < 0.05) and UMC using four thresholds (minimum 
coverage for non-positive samples to be considered as negative: 20X, 50X, 200X and 300X). Y-axis: percent of defined mutation statuses by type 
(Unknown: non-positive but the coverage was too low to be considered as negative; FN false negative, TN true negative, FP false positive, TP true 
positive). Please note that the current negative-defining methods do not affect positive mutation statuses (TP and FP)
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an adaptive method that can work seamlessly with muta-
tions of different relative abundances, which cannot be 
appropriately handled by the UMC method.

Evaluation using real single‑cell dual‑platform sequencing 
data
We compared the performance of the MSN method with 
the conventional UMC method on an existing dataset 
of somatic mutations identified from the whole-exome 
sequencing of single cells (n = 12) derived from spheres 
grown from a melanoma specimen [22]. Every single cell 
was sequenced using two different capture methods, Illu-
mina Nextera rapid capture ("NXT") and Agilent Sure-
Select XT Target Enrichment System ("AGL"). The data 
generated from a specific cell captured by one platform 
was treated as a sample, totaling 24 samples with two 
samples from each cell. This single-cell dual-platform 
dataset provided a unique opportunity for evaluating the 
performance of methods for defining mutation status—
since the same cell was sequenced with two separate plat-
forms, every mutation’s statuses in the two samples of the 
same cell should match with each other, and therefore the 
dataset serves as a gold standard. Only the comparisons 
between two samples of the same cell but not cross-cell 
comparisons were included in the gold standard due to 
the cell-to-cell heterogeneity.

From these 12 cells, we identified a total of 3511 unique 
mutations. For each mutation, the numbers of mutant 
and wildtype reads were re-measured in all 24 samples 
(Additional file  1: Table  S1). We first identified "posi-
tive" samples by requiring a minimum of two mutant 
reads. Subsequently, for other non-positive samples, we 
applied the MSN method, as well as the conventional 
UMC method, to distinguish "unknown" from "nega-
tive" statuses. For ease of communication, the final muta-
tion status of one specific mutation in a given cell will 
be henceforth regarded as a “data point”. After exclud-
ing all "unknown" statuses due to low coverage in either 
platform, the performance of the two negative-defining 
methods was assessed by (1) the concordance between 
the two capture platforms of AGL and NXT, defined as 
the percentage of “data points” where the two paired 
runs, i.e., NXT and AGL of the same cell, generated the 
same status (either "positive" or "negative") for the same 
mutation; (2) the total numbers of “informative data 
points”, where an informative data point was defined as 
any”data point” with an either “positive” or “negative” 
status (excluding "unknown"). In general, a more con-
servative negative-defining method would classify more 
"negative" statuses as "unknown", leading to a higher con-
cordance but at the cost of a reduced number of “inform-
ative data points”.

In the current evaluation, we tested the two methods 
with the following thresholds: 1) the UMC methods with 
six coverage thresholds: 10X, 20X, 50X, 100X, 300X and 
1000X; 2) the adaptive MSN method with two thresh-
olds: p < 0.05 and p < 0.01(Fig. 3). For the UMC methods, 
as the coverage threshold increases from 10 to 1000X, 
the concordance increases from 97.02% to 100.00%, 
while the total “informative data points” decreases from 
14,777 to 1790. For the MSN method, the concordances 
were 99.37% and 99.85%, and the total “informative data 
points” were 7449 and 5832, for p < 0.05 and p < 0.01, 
respectively. When compared at similar levels of con-
cordance, the MSN method yielded much higher num-
bers of “informative data points” than the UMC method: 
for example, the UMC method at 100X threshold gen-
erated a concordance of 99.17% with 2543 “informative 
data points”. Meanwhile, the MSN method with p < 0.05 
generated even better concordance (99.37%), and yielded 
2.9 times more (n = 7449) “informative data points”. At 
a higher coverage threshold of 300X, the UMC method 
had increased concordance (99.62%) but dramatically 
reduced “informative data points” (n = 1850). For com-
parison, the MSN method with p < 0.01 yielded bet-
ter concordance (99.85%) and produced 3.2 times more 

Fig. 3  Evaluate the performance of negative-defining methods using 
dual-platform single-cell sequencing data. Two negative-defining 
methods, UMC and MSN, were tested in a single-cell dual-platform 
whole-exome sequencing dataset using varying thresholds, including 
UMC (p < 0.01, p < 0.05) and MSN (minimum coverage of 10X, 20X, 
50X, 100X, 300X and 100X), as indicated under each dot. The overall 
performance of each method with a specific threshold was evaluated 
by (1) Y-axis: the total number of informative data points after 
excluding unknown statuses, with “informative data points” defined 
as the single-cell/mutation pairs where both platforms (NXT and 
AGL) yielded an informative mutation status, i.e., either positive or 
negative, but not unknown; (2) X-axis: the concordance of mutation 
statuses between the two platforms (NXT and AGL), defined as the 
percentage of informative data points where the two platforms 
yielded the same mutation status, either both positive or both 
negative, for the same single cell
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“informative data points” (n = 5832) (Additional file  1: 
Table  S2). These results suggest that the MSN method 
not only provides a more accurate assessment of the neg-
ative status but also recovered remarkably higher num-
bers of available data (approximately three times in the 
current test data).

Discussion
Multi-sample comparison on the mutational level plays 
an important role in understanding tumor evolution and 
progression [1, 2, 28]. The presence or absence of a par-
ticular mutation may affect a patient’s clinical classifica-
tion, such as drug resistance and metastatic potentials 
[16]. Therefore, accurate determination of mutation sta-
tuses is essential for any genetic testing. Although a large 
number of methods have been developed to identify pos-
itive samples [23–27, 29], to the best of our knowledge, 
there has been no existing method designed for defin-
ing negative samples or discriminating between negative 
status and unknown status. Most previous tumor het-
erogeneity studies simply required a universal minimum 
coverage threshold [12]. Applying a higher requirement 
of coverage helps reduce false-negative but result in less 
available data points. Theoretically, there is no universal 
minimum coverage for claiming the negative status as it 
depends on the mutation’s relative abundance, which var-
ies greatly and can be measured by VAF using NGS data.

We developed the current approach to discriminate 
between "unknown" and "negative" statuses based on the 
relative abundance information in the "positive" samples. 
Unlike “positive” mutation status, which only requires 
the presence of mutant reads to claim, a negative status 
cannot be definitively determined unless hypothetically 
every cell in the sample has been tested. We propose to 
define an adaptive “negative” status when a sample has 
no mutant reads detected and is significantly different 
from all known positive samples. Based on the evaluation 
using both simulated and real single-cell dual-platform 
sequencing datasets, the MSN method outperformed the 
conventional UMC method by providing more accurate 
negative statuses, meanwhile yielded more available data. 
The MSN method’s ability to adjust for varying VAFs is 
especially important for tumor analyses. Due to intratu-
moral heterogeneity and copy number variants (CNVs), 
tumor samples often contain mutations at very different 
levels of VAFs. In such cases, all mutations’ negative sta-
tuses cannot be correctly defined using a universal cov-
erage cutoff. Instead, the MSN method would provide a 
more adaptive and accurate assessment of negative sta-
tuses. The current MSN method would be particularly 
useful for comparing the mutational profiles of two or 
more tumor samples from the same patient, serial liquid 

biopsies, or comparing exome and RNASeq of the same 
sample.

The current method has several limitations. First, 
MSN focuses on the discrimination between negative 
and unknown statuses but does not create or remove 
positive statuses. Instead, it relies on the user-provided 
positive statuses. If the user-provided input data con-
tain false-positive for certain mutation, we expect MSN 
to become over-conservative and more likely to classify 
that mutation as unknown instead of negative in other 
samples. Next, our method is built on the assumption 
that the mutation’ relative abundance is overall consist-
ent in the tested samples. While this generally holds for 
the majority of mutations in cancer, the performance may 
be suboptimal in certain cancers containing genomic 
regions with excessive ongoing changes of copy number 
variations (CNVs) or inter-tumoral heterogeneity. Even 
for these challenging situations, we expect the MSN 
method may still perform better than the UMC method, 
which does not consider the variation of VAFs. Further, 
our method is based on the read count data generated by 
next-generation sequencing; therefore, it would not work 
for Sanger sequencing data. Lastly, the MSN method was 
designed for any multi-sample comparison and can work 
with as few as two samples (Additional file 2: Figure S1). 
However, the UMC method might be the only available 
option for single-sample analysis.

Conclusions
We present the first method designated for reclassifying 
potential false negative mutation status caused by low 
coverage into "unknown" status in multi-sample com-
parison analyses. Instead of using a universal minimum 
coverage, our method is designated to be flexible towards 
individual mutations. The method has been shown to 
provide a more accurate assessment of negative statuses 
as it is adaptive to varying VAFs and yield a remarkably 
higher amount of available data by reducing unnecessary 
“unknown” calls.
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