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Abstract 

Background:  Acute myeloid leukemia (AML) is biologically heterogeneous diseases with adverse prognosis. This 
study was conducted to find prognostic biomarkers that could effectively classify AML patients and provide guidance 
for treatment decision making.

Methods:  Weighted gene co-expression network analysis was applied to detect co-expression modules and analyze 
their relationship with clinicopathologic characteristics using RNA sequencing data from The Cancer Genome Atlas 
database. The associations of gene expression with patients’ mortality were investigated by a variety of statistical 
methods and validated in an independent dataset of 405 AML patients. A risk score formula was created based on a 
linear combination of five gene expression levels.

Results:  The weighted gene co-expression network analysis detected 63 co-expression modules. The pink and 
darkred modules were negatively significantly correlated with overall survival of AML patients. High expression of 
FNDC3B, VSTM1 and CALR was associated with favourable overall survival, while high expression of PLA2G4A was 
associated with adverse overall survival. Hierarchical clustering analysis of FNDC3B, VSTM1, PLA2G4A, GOLGA3 and CALR 
uncovered four subgroups of AML patients. The cluster1 AML patients showed younger age, lower cytogenetics risk, 
higher frequency of NPM1 mutations and more favourable overall survival than cluster3 patients. The risk score was 
demonstrated to be an indicator of adverse prognosis in AML patients

Conclusions:  The FNDC3B, VSTM1, PLA2G4A, GOLGA3, CALR and risk score may serve as key prognostic biomarkers for 
the stratification and ultimately guide rational treatment of AML patients.

Keywords:  The cancer genome atlas database, Acute myeloid leukemia, Weighted gene co-expression network 
analysis, Risk score, Overall survival
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Background
Acute myeloid leukemia (AML) is biologically heteroge-
neous diseases with a relatively adverse survival rate [1]. 
The Surveillance, Epidemiology, and End Results Pro-
gram [2], reports an incidence rate of 4.3 per 100,000 
persons and mortality rate of 2.8 per 100,000 persons 
annually. AML patients show a relatively poor 5-year 

survival rate of 27.4%. The 2017 European Leukemia 
Net (ELN) guidelines are well established tools for the 
assessment of risk of resistance and prognosis for AML 
patients. The ELN 2017 could effectively classify AML 
patients into three subgroups, including favorable, inter-
mediate and poor subgroups, according to leukemia cell 
genetic abnormalities and mutations in driver genes [3]. 
For instance, some cytogenetic abnormalities are related 
to favorable clinical outcome, such as inv(16)(p13.1q22) 
and t(8;21)(q22;q22.1). While, others are indicative of 
poor overall survival in AML patients, such as t(6;9)
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(p23;q34.1), inv(3)(q21.3q26.2) [3]. RUNX1-RUNX1T1 
or MYH11-CBFB fusions are indicators of good clinical 
outcomes in AML patients who underwent chemother-
apy based consolidation regimens [4, 5]. While, a large 
proportion of AML genomes are lack of structural abnor-
malities [6, 7]. In addition to cytogenetic abnormalities, 
the 2017 ELN also includes mutations in several genes 
for risk stratification. The TP53 mutation is one of the 
known adverse factors and frequently associated with 
complex cytogenetics. NPM1 and CEBPA mutations are 
indicative of favorable prognosis regardless of cytoge-
netic abnormalities. A FLT3 internal tandem duplication 
(ITD) with the ratio of mutated to normal alleles > 0.5 
is associated with poor prognosis [3]. DNMT3A, NPM1 
mutations and MLL translocations have been shown to 
ameliorate risk classification for patients showing nor-
mal karyotype [8]. However, these genes are not applied 
to those AML patients who didn’t have DNMT3A, NPM1 
mutations and MLL translocations [8]. Therefore, none of 
the current markers is entirely accurate, novel biomark-
ers are required to improve prognostic classification.

The weighted gene co-expression network analysis 
(WGCNA) package identifies co-expression modules 
in which the expression of a set of genes is highly cor-
related and seeks for associations between interested 
co-expression modules and clinical characteristics. The 
analysis enables researchers to detect co-expression net-
works related to certain phenotypic trait [9]. In this study, 
we applied the WGCNA algorithm to a genome-wide 
study of 18,366 genes using RNA-seq expression data 
of 173 AML patients from The Cancer Genome Atlas 
(TCGA) database. The WGCNA analysis revealed two 
co-expression modules which were significantly associ-
ated with patients’ overall survival (OS). Further analysis 
of the two mortality-associated modules identified a gene 
panel of FNDC3B, VSTM1, PLA2G4A, GOLGA3 and 
CALR. Hierarchical clustering analysis of the five genes 
enabled the identification of a subgroup of AML patients 
with favourable OS. The co-expression modules and gene 
panel may be of importance in evaluating the prognosis 
of AML patients.

Methods
Data acquisition and processing
In total, normalized read counts (RNA-seq) data of 
20,531 genes of 173 AML patients and their clini-
cal data were acquired from the TCGA database [10]. 
Genes without expression values in 90% AML patients 
were removed. Totally, 18,366 genes met the inclusion 
criterion of the WGCNA analysis. The FAB subtypes 
consisted of 8 subtypes, including minimal maturation 
AML (M0), no maturation AML (M1), maturation AML 
(M2), acute promyelocytic (M3), myelomonocytic (M4), 

monoblastic or monocytic (M5), erythroid (M6), mega-
karyoblastic (M7) leukemia and others. Cytogenetic risk 
comprised favorable, intermediate and poor prognosis 
categories. Gene expression and clinical characteristics of 
AML patients (n = 405) were obtained from the Oregon 
Health & Science University (OHSU) database for valida-
tion analysis [11].

The weighted gene co‑expression network analysis in AML
Co-expression networks were built by the R package of 
WGCNA using normalized read count data of 18,366 
genes of 173 AML patients in R3.2.0. The parameter of 
soft thresholding was set to 7, the minimum number of 
genes was set to 30, other parameters were used with the 
default values. Heatmap tools package was painted to 
analyze the strength of the interactions. The constructed 
modules were ranged by the number of genes and genetic 
information was extracted from each module. In order to 
identify co-expression modules which showed significant 
correlation with phenotypes, associations between mod-
ules and clinical traits were investigated by analyzing the 
correlation of the co-expression module eigengenes with 
clinical traits.

Functional enrichment analysis
We utilized the Gene ontology (GO) [12] and Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING)
[13] to analyze the potential functional importance 
for the genes in the co-expressed modules. The enrich-
ment of GO terms and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways were regarded to be statisti-
cally significant based on the cutoff values of adjusted P 
value and false discovery rate (FDR) < 0.05 respectively.

Survival analyses
We followed the methods of Lai et  al. and Sha et  al. to 
perform the survival analyses [14, 15]. In brief, AML 
patients were grouped into two subgroups, including 
high and low expression groups, according to the cutoff 
values determined by the pROC package [16]. The dif-
ference in overall survival rates was compared between 
the two groups of AML patients using the Kaplan–Meier 
survival analysis. The prognostic importance of genes 
were further evaluated by the logistic regression model 
[17, 18]. Survival-related genes were further divided into 
risk genes (odd ration [OR] > 1) and protective genes 
(0 < OR < 1). The five genes FNDC3B, VSTM1, PLA2G4A, 
GOLGA3 and CALR were used to build the risk score 
model. Risk score = expression of gene 1 × β1 + expres-
sion of gene 2 × β2 + ⋯ + expression of gene n × βn. 
The β values were coefficients generated by the logistic 
regression model. The relation between risk scores and 
OS was investigated by Kaplan–Meier survival analysis 
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and logistic regression model analysis. P < 0.05 was con-
sidered statistically significant.

Unsupervised hierarchical clustering analysis
Unsupervised hierarchical clustering of CALR, VSTM1, 
PLA2G4A, GOLGA3 and FNDC3B was conducted with 
the R package of pheatmap [19]. Difference in quantita-
tive clinical factors was analyzed by analysis of variance 
test among four clusters of patients. For between-group 
comparison, the Wilcoxon sum rank test was used. Dif-
ference in qualitative variables was investigated by fisher 
exact test. To characterize the prognostic probabilities 
of clusters of AML patients, we plotted Kaplan–Meier 
curves and compared overall survival rate differences 
using the log-rank test [20]. P < 0.05 was considered sta-
tistically significant.

Results
General characteristics of 173 AML patients
The mean age was 55.28 (range 18–88  years old). The 
mean percent of bone marrow blast cells was 38.85 at 
diagnosis. The AML patients comprised 16 M0, 42 M1, 
39 M2, 16 M3, 35 M4, 18 M5, 2 M6, 3 M7 and 2 unclas-
sified samples. 32, 103 and 36 patients were predicted 
to have favorable, intermediate and poor prognosis by 
the ELN guidelines respectively. The number of AML 
patients with IDH1, IDH2, DNMT3A, NPM1, FLT3 and 
CEBPA mutations was 16, 17, 43, 48, 48 and 13 respec-
tively. 45 AML patients received neoadjuvant treat-
ment. 114 AML patients were dead, 59 were alive and 10 
patients were lost to contact. The average follow-up time 
was 563.61 days (range 0–2861 days).

Detection of co‑expression modules in AML
The WGCNA package was applied to construct the co-
expression network and detect co-expression modules 
using normalized read counts of 18,366 genes of the 173 
AML samples. The scale-free fit index was greater than 
0.8 and the mean connectivity of the WGCNA network 
was stable at the soft-thresholding power value of six. 
Therefore, we used the soft-thresholding power value 
of seven in the WGCNA analysis (Additional file 1: Fig-
ure 1). The WGCNA analysis detected 63 co-expression 
modules and turquoise, blue, brown, yellow and green 
modules were the top 5 modules having largest number 
of genes (Fig. 1 and Additional file 1: Figure 2, Additional 
file 2: Table 1).

Module‑trait association analysis in AML
The majority of modules (59/63) showed significant cor-
relation with the 15 clinical traits. 14, 26, 22, 5, 3, 3, 6,23, 
2,12,27 and 12 modules were significantly correlated with 
patients’ age, bone marrow blast cell, cytogenetic risk, 
gender, IDH1 mutation, IDH2 mutation, DNMT3A muta-
tion, NPM1 mutation, CEBPA mutation, FLT3 mutation, 
FAB subtypes and neoadjuvant treatment respectively 
(P value < 0.05 for all cases, Fig. 1 and Additional file 2: 
Table  1). Importantly, the pink and darkred modules 
(hereinafter referred to as overall survival-associated 
module1: OSAM1, overall survival-associated module2: 
OSAM2 respectively) were negatively correlated with 
patients’ OS (P value < 0.05 for all cases, Fig. 1). Moreo-
ver, the OSAM1 module also showed significantly nega-
tive correlation with patients’ age, PBMBC, cytogenetic 
risk, DNMT3A mutation and NPM1 mutation. The 

Fig. 1  The associations between co-expression modules and clinical traits. Each row and column corresponded to a module eigengene and 
clinical trait respectively. The correlation co-efficient and P value were presented in each cell. The red-to-blue bar on the right showed the degree of 
correlation between co-expression modules and clinical traits
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OSAM2 module was negatively correlated with FAB sub-
types (P value < 0.05 for all cases, Fig. 1, Table1).

Functional annotation of genes in the OSAM1 and OSAM2 
modules
The functional values of genes in the OSAM1 and 
OSAM2 modules were analyzed by GO and KEGG path-
way enrichment analysis. Genes in the OSAM1 module 
were significantly enriched in 53 GO terms (adjusted 
P value < 0.05), such as negative regulation of signal-
ing (GO:0023057), regulation of cell communication 
(GO:0010646), negative regulation of developmental pro-
cess (GO:0051093), cell differentiation (GO:0030154), 
negative regulation of developmental process 
(GO:0051093). Moreover, the genes in the OSAM1 mod-
ule were over-represented in the KEGG pathway of pro-
tein processing in endoplasmic reticulum (FDR < 0.05). 
The OSAM2 module genes were significantly enriched in 
the KEGG pathway of other types of O-glycan biosynthe-
sis (FDR = 0.001).

Identification of survival‑related genes in AML
Kaplan–Meier survival analysis suggested that patients 
with high expression levels of 327 genes exhibited favora-
ble clinical outcome, such as FNDC3B, VSTM1 and 
CALR. Whereas, patients with high expression levels of 
12 genes were associated with a poor prognosis, such as 
PLA2G4A (P < 0.05 for all cases, log rank test, Fig. 2 and 
Additional file  2: Table  2). Among the clinicopathologic 
characteristics, cytogenetic risk and patients’ age were 
significantly associated with patients’ mortality (P < 0.001 
for all cases, Fisher exact test or Wilcoxon sum rank test, 
Additional file 2: Table 3). However, the association was 
not observed between OS and other factors, such as 
gender, PBMBC, IDH1, IDH2, DNMT3A, NPM1, FLT3, 
CEBPA mutations and neoadjuvant treatment (P > 0.05 
for all cases, Fisher exact test or Wilcoxon sum rank test, 
Additional file 2: Table 3). Then, logistic regression model 
was applied between patients’ OS and patients’ age, 
cytogenetic risk, 339 gene expression levels. High expres-
sion of 207 genes was associated with favorable progno-
sis, such as FNDC3B, VSTM1 and CALR (P < 0.05 for all 

cases, OR: 0.32–0.44, Additional file  2: Table  2). While 
high expression of 8 genes was associated with inferior 
overall survival, including IL15RA, ITGB1BP1, STAB1, 
PLA2G4A, STIM2, VCL, DCLRE1B and USP20 (P < 0.05 
for all cases, OR:2.31–3.88, Additional file 2: Table 2).

Validation of survival‑related genes
The clinical characteristics of AML patients in the 
OHSU cohort are presented in Additional file 2: Table 4. 
Kaplan–Meier survival analysis suggested that patients 
with high expression of 55 genes showed a favour-
able prognosis than those with low expression, such 
as FNDC3B, VSTM1 and CALR. While, AML patients 
with high IL15RA, VCL and PLA2G4A expression had 
a poor prognosis than those with low IL15RA, VCL and 
PLA2G4A expression (P < 0.05 for all cases, log rank test, 
Fig.  3, Additional file  2: Table  5 and Additional file  1:  
Figure  3). Then, logistic regression model was applied 
between patients’ OS and 48 gene expression levels and 
the survival-related features, including age, cytogenetic 
risk, chemotherapy, bone marrow transplant, targeted 
therapy. 37 genes were demonstrated to be protective 
genes, such as FNDC3B, VSTM1 and CALR (P < 0.05 for 
all cases, OR 0.29–0.34), while VCL and PLA2G4A was 
confirmed to be risk genes (P = 0.01, OR 1.99, P < 0.001, 
OR: 2.85, respectively, Additional file  2: Table  5 and 
Additional file 1: Figure 3).

Unsupervised hierarchical clustering analysis
To build a panel of prognostic biomarkers to accurately 
evaluate the prognosis of AML patients, we selected the 
top five genes most significantly associated with patients’ 
OS. FNDC3B, VSTM1, GOLGA3 and CALR showed the 
smallest four OR values and P values among the protec-
tive genes, PLA2G4A had the largest OR and smallest 
P value among the risk genes in the validation cohort. 
Therefore, these five genes were included in the gene 
panel for further survival analysis. Hierarchical clustering 
analysis of the five genes revealed four subgroups of AML 
patients (Additional file  1: Figure  4). The cluster1 AML 
patients showed younger age, lower cytogenetics risk, 
higher frequency of NPM1 mutations and better OS than 
cluster3 patients (P values < 0.05 for all cases, Wilcoxon 
sum rank test, fisher exact test or log-rank test, Fig. 4 and 
Additional file 2: Table 6). The hierarchical clustering of 
the five genes also uncovered four subgroups of AML 
patients in the OHSU dataset (Additional file 1: Figure 5). 
Cluster1 tumors exhibited lower cytogenetics risk than 
those in cluster 3 or 4, lower frequency of NPM1 muta-
tions than cluster2 tumors, lower frequency of FLT3-
ITD mutations than cluster 2 or 4 tumors and better OS 
than cluster 2, 3 or 4 tumors (P values < 0.05 for all cases, 

Table 1  The associations between  clinical traits 
and the OSAM1 and OSAM2 in the WGCNA network

PBMBC percent of bone marrow blast cells, OSAM1 overall survival-associated 
module1, OSAM2 overall survival-associated module2

Module Number 
of genes

Correlation with clinical traits

OSAM1 429 Age, PBMBC, Cytogenetic risk, 
OS, DNMT3A mutation, NP1 
mutation

OSAM2 151 OS, FAB
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Wilcoxon sum rank test, fisher exact test or log-rank test, 
Additional file 1: Figure 6 and Additional file 2: Table 7).

Risk score is a risk factor for overall survival in AML
We established the risk score model by a linear combi-
nation of the five genes FNDC3B, VSTM1, PLA2G4A, 
GOLGA3 and CALR using the coefficients gen-
erated from the logistic regression models. Risk 
score = 0.32 × expression of CALR + 0.39 × expression of 
VSTM1 + 3.88 × expression of PLA2G4A + 0.25 × expres-
sion of GOLGA3 + 0.44 × expression of FNDC3B in the 
TCGA dataset. Kaplan–Meier survival analysis exhib-
ited the risk score was negatively associated with OS of 
AML patients in the TCGA dataset (P < 0.05, log rank 
test and Fig.  5). The logistic regression model analy-
sis validated that risk score was significantly associated 
with inferior OS following adjustment of survival-related 

features (P < 0.05 for all cases, Table2 and Fig. 5). To vali-
date the findings above, risk score was calculated fol-
lowing the formula: risk score = 0.34 × expression of 
CALR + 0.32 × expression of VSTM1 + 2.85 × expres-
sion of PLA2G4A + 0.35 × expression of 
GOLGA3 + 0.29 × expression of FNDC3B. The negative 
correlation between OS and risk score was confirmed in 
the OHSU cohort (Table 2 and Fig. 5).

Discussion
WGCNA is a common computational tool to develop 
co-expression network and to identify the co-expression 
modules. Genes in the same module were regarded as 
functionally relevant. Thus, the application of WGCNA 
analysis enables the identification of clinical trait-
associated modules which might become potentially 
prognostic and therapeutic targets [9]. In this study, 63 

Fig. 2  Kaplan–Meier survival analysis of patients’ OS with VSTM1 (a), FNDC3B (b), PLA2G4A (c) and CALR (d) expression levels in 173 AML patients of 
the TCGA dataset. The blue and red plots are low and high expression groups respectively
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co-expression modules were detected by the WGCNA 
method using RNA-seq expression data of 18,366 genes 
from 173 AML samples. We identified 59/63 co-expres-
sion modules showed significant correlation with clini-
cal traits. The OSAM1 module showed significantly 
negative correlation with age, cytogenetic risk, PBMBC, 
DNMT3A mutation and NPM1 mutation and OS. The 
OSAM2 module was negatively associated with FAB sub-
types and OS. GO enrichment analysis suggested that 
genes in the OSAM1 module were significantly enriched 
in 53 GO terms, such as negative regulation of signal-
ing, regulation of cell communication, negative regula-
tion of developmental process. Moreover, the genes in 
the OSAM1 module were over-represented in the KEGG 
pathway of protein processing in endoplasmic reticulum. 
Thus, we speculate that the OSAM1 and OSAM2 mod-
ules play a pivotal role in the overall survival of AML 

patients.FLT3-ITD frequently occurs in AML patients 
and indicates an inferior prognosis in AML [21]. There 
are 200 and 672 AML samples in the TCGA and OHSU 
datasets respectively, however, only 173 and 451 patients 
had somatic mutation and RNA-seq expression data. 173 
AML patients in the TCGA cohort and 405 patients in 
the OHSU cohort were included in the study. Owing to 
the lack of FLT3-IDT information in the TCGA dataset, 
we analyzed the association between the FLT3 mutation 
and OS in the 173 patients with RNA-seq data and the 
200 AML patients. However, no significant correlation 
was observed between the FLT3 mutation and overall 
survival (Additional file 2: Table 8). In the OHSU cohort, 
the FLT3-IDT mutation was indicative of poor prognosis 
in the 672 AML patients. However, the association was 
not statistically significant in our study (Additional file 2: 
Table  9). Therefore, the difference of our results and 

Fig. 3  Kaplan–Meier survival analysis of patients’ OS with VSTM1 (a), FNDC3B (b), PLA2G4A (c) and CALR (d) expression levels in 405 AML patients of 
the OHSU dataset
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previous publications on the association of FLT3-IDT 
mutation with overall survival is probably caused by the 
selection of different cohorts of AML patients.

We analyzed the associations between 580 genes in the 
OSAM1 and OSAM2 modules and AML patients’ OS 
in the TCGA and OHSU datasets using many statisti-
cal methods and identified set of genes was significantly 
associated with OS in AML patients, such as FNDC3B, 
VSTM1, PLA2G4A, GOLGA3 and CALR. The PLA2G4A 
gene encodes a member of the cytosolic phospholipase 
A2 group IV family which plays an important role the 
regulation of hemodynamics, inflammatory responses 
and other intracellular pathways [22].  The expression 
of PLA2G4A is up-regulated in a wide range of can-
cer types [23–26]. PLA2G4A depletion significantly 

repressed cellular proliferation in glioblastoma, lung can-
cer and colon cancer [23, 25, 26]. These results demon-
strate PLA2G4A may play an oncogenic role in cancers. 
Another gene, CALR, has been involved in calcium reten-
tion and protein folding, as well as in immune responses 
[27]. In line with the finding in our study, CALR exposure 
by malignant blasts is correlated with robust anticancer 
immunity and superior OS in AML patients [28]. Acti-
vation of unfolded protein response, including CALR, is 
associated to more favorable clinical outcome and lower 
relapse rate [29]. These studies suggest CALR is a positive 
prognostic biomarker for AML patients.

High FNDC3B, VSTM1, GOLGA3 and CALR expres-
sion and low PLA2G4A expression were indicative of 
decreased mortality of AML patients. Among the four 

Fig. 4  Differences in patients’ age (a), cytogenetic risk (b), NPM1 mutation (c), and OS (d) were compared among the four clusters of AML patients 
(1–4) in the TCGA dataset
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subgroups of AML patients identified by hierarchical 
clustering analysis, the cluster1 AML patients showed 
younger age, lower cytogenetics risk, higher frequency of 
NPM1 mutations and more favourable OS than cluster3 

patients. Therefore, expression analysis of the gene panel 
might be clinically useful in the future. AML patients 
exhibiting low FNDC3B, VSTM1, GOLGA3 and CALR 
expression or high PLA2G4A expression are expected 
to have poor clinical outcome. Therefore, these patients 
may need more aggressive therapies or more frequent 
follow-up.

Furthermore, we developed a risk score based on the 
linear combination of the five gene expression values. 
The risk score effectively stratifies AML patients with 
two distinct risk groups with significant different prog-
nosis. Recent studies have reported a four-gene LincRNA 
expression signature (LINC4) and a 17-gene stemness 
score (LSC17) to predict risk in AML patients [30, 31]. 
Our risk score, LINC4 and LSC17, have all been tested on 
the TCGA dataset. Though the prognostic difference of 
subgroups of AML patients stratified by the three prog-
nostication scores all were statistically significant, our 
risk showed higher OR value (3.88) than the OR values of 
LINC4 (2.22) and LSC17 (2.62), suggesting the risk score 
might have more predictive power for overall survival in 
AML. Moreover, the LSC17 score requires quantifica-
tion of expression of 17 genes. Therefore, implementing 
the LSC17 risk classification might cause more experi-
mental workload and higher cost than the LINC4 and 
our risk score. Lastly, the five genes may become drug-
gable targets for AML patients. For instance, depletion 
of PLA2G4A caused significant decrease in cellular pro-
liferation in glioblastoma, lung cancer and colon cancer 
cells [23, 25, 26].

Conclusion
In conclusion, the OSAM1 and OSAM2 modules were 
the most critical modules in the OS of AML patients. The 
five gene panel comprising FNDC3B, VSTM1, PLA2G4A, 
GOLGA3 and CALR and risk score may function as 
potential prognostic biomarkers for AML, which also 
needs much further research.

Fig. 5  Risk score is a negative prognostic factor. a High risk score is 
associated with a poor prognosis in the TCGA dataset. b High risk 
score is associated with a poor prognosis in the OHSU dataset

Table 2  Multivariate analyses between OS and the risk score in the TCGA and OHSU datasets

OR odds ratio, CI confidence interval

TCGA dataset OHSU dataset

Clinical feature OR 95% CI P value Clinical feature OR 95% CI P value

Age 1.03 1.01–1.06 < 0.01 Age 1.04 1.02–1.05 < 0.001

Cytogenetic risk 1.71 0.97–3.1 0.07 Cytogenetic risk 0.97 0.74–1.28 0.85

Risk score 3.88 1.84–8.46 < 0.001 Chemotherapy 0.27 0.01–1.47 0.22

Transplant 0.38 0.23–0.63 < 0.001

Targeted therapy 2.87 1.51–5.71 < 0.002

Risk score 2.37 1.49–3.81 < 0.001
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