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and modeling of the Nanostring Banff Human 
Organ transplant gene panel using archival data 
from human kidney transplants
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Abstract 

Background:  RNA gene expression of renal transplantation biopsies is commonly used to identify the immuno-
logical patterns of graft rejection. Mostly done with microarrays, seminal findings defined the patterns of gene sets 
associated with rejection and non-rejection kidney allograft diagnoses. To make gene expression more accessible, the 
Molecular Diagnostics Working Group of the Banff Foundation for Allograft Pathology and NanoString Technologies 
partnered to create the Banff Human Organ Transplant Panel (BHOT), a gene panel set of 770 genes as a surrogate 
for microarrays (~ 50,000 genes). The advantage of this platform is that gene expressions are quantifiable on formalin 
fixed and paraffin embedded archival tissue samples, making gene expression analyses more accessible. The purpose 
of this report is to test in silico the utility of the BHOT panel as a surrogate for microarrays on archival microarray data 
and test the performance of the modelled BHOT data.

Methods:  BHOT genes as a subset of genes from downloaded archival public microarray data on human renal allo-
graft gene expression were analyzed and modelled by a variety of statistical methods.

Results:  Three methods of parsing genes verify that the BHOT panel readily identifies renal rejection and non-rejec-
tion diagnoses using in silico statistical analyses of seminal archival databases. Multiple modelling algorithms show a 
highly variable pattern of misclassifications per sample, either between differently constructed principal components 
or between modelling algorithms. The misclassifications are related to the gene expression heterogeneity within a 
given diagnosis because clustering the data into 9 groups modelled with fewer misclassifications.

Conclusion:  This report supports using the Banff Human Organ Transplant Panel for gene expression of human renal 
allografts as a surrogate for microarrays on archival tissue. The data modelled satisfactorily with aggregate diagnoses 
although with limited per sample accuracy and, thereby, reflects and confirms the modelling complexity and the 
challenges of modelling gene expression as previously reported.
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Background
RNA gene expression is now commonly used to find 
diagnostic patterns of gene expression in renal trans-
plants. Mostly done using microarrays on fresh tissue, 
many informative and seminal studies identified the 
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dominant pattern of differential gene expressions associ-
ated with renal transplant diagnoses [1–9].

Recent technology, NanoString nCounter, employs 
formalin fixed paraffin embedded archival tissue as the 
RNA source for gene expression [20]. To promote gene 
expression in renal transplants, the Molecular Diagnos-
tic Working Group of the Banff Foundation for Allograft 
Pathology and NanoString Technologies partnered to 
create a subset of microarray genes, the Banff Human 
Organ Transplant (BHOT) panel to encourage more 
widespread usage of gene expression in allografts [21]. 
NanoString gene panels employ only 770 gene targets 
and, therefore, are not gene discovery tools.

Validation of the BHOT panel is best done by compar-
ing the BHOT panel and microarrays on the same RNA, 
but such an experiment has not yet been done. The pur-
pose of this report is to test in silico if the BHOT panel 
as a subset of microarray genes shows similar microarray 
expression patterns as archival microarray data [1–9, 22], 
with the caveat that some variation in patterns may occur 
in BHOT vs microarray expression. In addition, model-
ling studies were performed to test how well the BHOT 
gene subset identifies the annotated diagnostic classes 
and, additionally, highlights the practical issues investiga-
tors will find when using classification of gene expression 
for clinical decision making.

Methods
Abbreviations and their Definitions: See abbreviations 
under declarations below at the end of this document.

BHOT Panel Genes: [23]
Annotations for Definitions of Pathways and Cell 

Types: CIBERSORT [24], KEGG [25], Human Blood 
Atlas [26], BHOT [23].

Data
Downloaded text files of GSE data sets 30718 [6], 36059 
[10, 27, 28], and 48581 [10, 29] from NCBI all derived 
from HU-133 plus 2 microarrays with their diagnostic 
annotations were first imported into excel. These three 
databases established the gene expression patterns for T 
Cell Mediated Rejection (TCMR), Antibody Mediated 
Rejection (ABMR), and delayed graft function (Acute 
Kidney Injury, AKI) [6, 10, 27–29]. These data were 
joined with the BHOT panel excluding non-BHOT genes 
and non-renal parenchymal and viral genes. Data were 
renormalized using the housekeeping probes with negli-
gible effect. Data were then log2 transformed.

Software
Analyses were performed using SAS/JMP 14.2/R4.0.2/
JMP Genomics 9.2 using linear models with valida-
tion, principal components, multiple logistic regression, 

K-means clustering, or one-way anova with the Steele-
Dwass post-hoc test, which is a non-parametric ver-
sion of Tukey–Kramer with the addition of an adjusted 
P value, or Python 3.7 with the sklearn module (Pycaret 
2.0), which was used also for multiple classifications. 
Principal components were robust to suppress outli-
ers. Bayesia Labs 9.0 was used to construct Bayesian 
Networks. Classification parameters for models are in 
Additional file  1: Table  S1. From power calculations 
(power > 0.8, usually > 0.9), significance was set at a False 
Discovery Rate Adjusted P value of 0.005 (− log10 = 2.3). 
This was also applied to the significance of any mean dif-
ference. Graphing was performed with Graph Builder 
(JMP 14.2) or Python 3.7 with matplotlib/seaborn.

Batch effects. UMAP (Uniform Manifold Approxima-
tion and Projection for Dimension Reduction) clustering 
was performed to identify by clustering unknown anom-
alous effects (batch effects) in the archival data using 
genes with a coefficient of variation (CV) of ≤ 5%, which 
included the house keeping genes from BHOT. Genes 
with CV ≤ 5% have little partitioning value. The three 
clusters were manually coded as categorical variables, 
and batch normalization was performed using the lowest 
CV genes. The lowest 5% CV (coefficient of variations) 
including housekeeping genes were deleted, leaving 667 
genes and 764 samples [30].

Parsing of genes
Three methods of parsing genes were used to create mul-
tiple principal components that were used to partition 
the diagnostic groups. Principal component analysis was 
chosen for data reduction due to the massive collinearity 
of individual gene expressions.

The first method, supervised, finds the highest gene 
expressions by ANOVA/linear models between two 
groups, TCMR, ABMR, AKI, MIXED, or NORMAL 
as compared to NO REJECTION. Multiple princi-
pal components with eigen values from 3 to > 100 were 
derived from each binary comparison. These princi-
pal components are called Pathological Based Princi-
pal Components (PBPC) [1–9, 31]. The second method, 
semi-supervised, used genes from CIBERSORT LM22, 
Blood Atlas, and KEGG, and NanoString annotations to 
create PCs for a specific cell type or immunological path-
way. This method was inspired by Nanostring Advanced 
Analysis software, in which “scores” are created using 
singular value decomposition, a sparse principal compo-
nent, of genes that identify a cell type or immunological 
pathway. The genes within a cell type or pathway created 
one principal component with an eigen value > 5 and are 
called Cell Pathway Principal Components (CPPC). The 
third method, unsupervised, derives multiple princi-
pal components with eigen values from 3 to > 100, from 
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all genes without regard to a class or diagnosis and are 
called Unsupervised Principal Components (UPC).

Pathological diagnoses
Pathological diagnoses, derived from annotations of the 
downloaded databases, are categorical classes: T Cell 
Mediated Rejection (TCMR), Antibody Mediated Rejec-
tion (ABMR), Mixed (both TCMR and ABMR), NO 
REJECTION (NR), Acute Kidney Injury (AKI) which is 
defined as renal dysfunction unrelated to rejection and 
often occurring post transplantation, and Normal Native 
(NORMAL). These diagnostic classes are summary 
classes derived from the more complex classifications of 
renal allograft rejections per Banff classification schemes, 
which employ microscopic criteria, many of which can-
not be evaluated, identified, or correlated with RNA 
expression [32, 33].

Results
Although the combined data were derived from the 
same array, unknown batch effects can often skew data. 
It is unknown how many experiments were done to cre-
ate the archived datasets, so that batch corrections can-
not be done on individual experiments. To work around 
this problem UMAP clustering was performed on the 
genes with the lowest 5% coefficient of variation. Figure 1 
shows a graph in which three clusters were identified 
with the lowest expressing genes before batch correction. 
After batch normalization, one cluster remained. Such 
batch effects have a slight influence (F = 0.02) on classi-
fication accuracy (Pycaret classification, compare models 
module), Additional file  2: Table  S2, using all data and 
the target as DX (diagnosis). Batch normalized data was 
throughout.

To find the highest partitioning values (feature selec-
tion) of the PCs with the strongest associations with 
the diagnostic groups, linear models and active effects 
in multinomial logistic regression were used, confirmed 
by Pycaret regressions their estimates and significance 
appear in Additional file  3: Table  S3. Graphically, Fig.  2 
shows the principal components (PCs) vs DX for the 
three different methods of gene selection. Pathologically 
based PCs (PBPCs, Fig.  2a) and the unsupervised PCs 
(UPC, Fig.  2c) readily partition the diagnostic groups. 
CPPC (Fig.  2b) identify immunologically interpretable 
patterns with a high PC for tubules in NORMALS, and 
a high endothelial PC in ABMR and MIXED but low in 
the other groups. Inflammatory cell types and mediators 
are highest in TCMR and MIXED rejections, known to 
contain inflammatory infiltrates, and low in NORMALS 
and AKI.

To understand how the PCs distribute among the DX, 
kernel density estimates appear in S. Fig. 1. The relatively 

normally distributed PCs are in S. Fig. 1A. S. Figure 1B, 
C, and D shows average distributions of the PCs for the 
PBPC, CPPC, & UPC per diagnostic group. The PBPC 
(1B) shows flat distributions of the diagnoses other than 
normal, which raises a caveat for their usefulness parti-
tioning diagnostic groups. The CPPC (1C) shows wide 
separation of the diagnostic groups. The UPC (1D) also 
shows good separation of the diagnostic groups.

The highest gene expressions per principal compo-
nent (UPC and PBPC) defined by PC loading tables and 
confirmed by Partial Least Squares were compared to 
the transcript patterns previously identified in micro-
arrays called pathologically based transcripts (PBTs) 
[1–9, 22]. PBPC1 is dominated by genes identifying 
adaptive immunity, chemokine and cytokine signaling, 
cytotoxicity, T cell receptor signaling, toll-like recep-
tor signaling, type 2 interferon, CD4 and CD8 T cells, 
and macrophages and found in PBTs (Type 2 inter-
feron induced, cytotoxic lymphocyte induced, T cell, 
injury and injury repair transcripts). PBPC1, therefore, 
is an inflammatory signature that is associated with the 
inflammation commonly seen in TCMR and MIXED 
rejections. PBPC2, low in the AKI diagnoses, is low 
for genes in the cytokine signaling (JAK2) pathway, 
innate immunity, TH17 pathways, and toll-like recep-
tor signaling and found in PBTs (late injury repair and 
type 2 interferon induced transcripts). PBPC3, high in 
AKI, identifies higher and different cytokines (CXCL13, 
16, and CXCR6) and is found in PBTs (injury repair, 

Fig. 1  UMAP Clustering. UMAP clustering (JMP 14.2/R4.0.2) of data 
using genes with a coefficient of variation (CV) of ≤ 5%, which 
included the house keeping genes identified three groups, A, B, & 
C, each indicated by a black arrow. After batch normalization in JMP 
Genomics 9.2, repeat UMAP clustering created one group, red arrow. 
Each differently colored circle is one sample
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Fig. 2  Scaled estimates vs Diagnosis for each of the three types of derived principal components: a Pathologically Based (PBPC); b Cell Pathways 
(CPPC); and c unsupervised (UPC). Error bar is one SEM. Graph builder JMP 14.2
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endothelial, type 2 interferon induced, and decreased 
solute carrier transcripts). PBPC4, highest in ABMR 
and MIXED rejections, is dominated by the expres-
sion of endothelial genes and some CD4 cells and found 
in PBTs (endothelial and alloantibody induced tran-
scripts), and is an endothelial pattern closely associ-
ated with antibody mediated rejections (ABMR and 
MIXED). PBPC5, high in AKI and TCMR, contains 
genes for B cells, complement, and innate immunity 
and is found in PBTs (B cell, macrophage, injury-related 
transcripts). PBPC6, lowest in the AKI and normal 
diagnoses is low for genes in innate immunity, type 2 
interferon, and CD4s, and CD8 T cells and low in PBTs 
(injury related type 2 interferon inducible, T cell tran-
scripts). PBPC7, is low for chemokine, T, B endothelial, 
and macrophage genes and low in PBTs (B cell, alloan-
tibody induced, endothelial injury repair and type 2 
interferon induced transcripts). PCPC8, highest in the 
normal diagnosis is high for glomerular, tubular, TH17 
pathway, and tissue homeostasis genes and found in 
PBTs (solute carrier (high), alloantibody induced (low), 
endothelial (low), type 2 interferon induced (low)).

Within the unsupervised principal components UPC1, 
like PBPC1, identifies an inflammatory pattern highest 
in genes for adaptive immunity, chemokines, cytokines, 
cytotoxicity, innate immunity, toll-like receptor signaling, 
CD4 and CD8 T cells, and macrophages. UPC2, high-
est in NO REJECTION contains type 1 and 2 interferon 
related gene expressions, chemokine and cytokine, innate 
and toll-like receptor related gene expressions without 
inflammatory cells and found in PBT interferon related 
transcripts. UPC3, highest in AKI, shows the highest 
gene patterns in cytokines, complement, innate immu-
nity, oxidative stress, without markers for B, T, or mac-
rophage cells and is found in PBTs (interferon and injury 
repair transcripts and solute carrier (low)). UPC4, high in 
ABMR and MIXED, identifies an endothelial pattern with 
many endothelial genes, adaptive immunity, chemokines, 
complement, cytokines, B cell, CD4, CD8, macrophage 
genes without any cytotoxicity signals and is found in 
PBTs (endothelial and alloantibody induced, B cell, type 
2 interferon). UPC5, highest in the normal diagnosis 
includes gene signals for glomeruli, tubules, some innate, 
oxidative, TH17, TNF without type 2 interferon, plasma, 
CD4, CD8, or macrophage cells and is found in PBTs 
(high tubular, high endothelial, injury repair). UPC6, 
high in AKI, shows the greatest number of genes in adap-
tive, cytokine, complement, innate, and CD8, and mac-
rophages and is found in PBTs (type 2 interferon, injury 
related, macrophage related transcripts). UPC7, highest 
in NO REJECTION, is highest for genes in chemokine, 
cytokine, innate, oxidative, TH17 pathways, with some 
markers for B, CD4, CD8, and macrophage cells and is 

found in PBTs (injury related, type 2 interferon related 
transcripts).

All the genes within these principal components 
(PBPC, UPC, and CPPC) are described in many prior 
publications on gene expression in renal allografts [1–9, 
22], confirming that the BHOT panel is a suitable substi-
tute for microarrays.

Modelling
Modelling is used to estimate how good variables 
describe classification parameters, i.e., how accurately 
the PCs identify the diagnoses. Modelling programs 
assign a class or in this case a diagnosis to each sample 
based on the highest probability within the target diag-
nosis for a specific sample. Initially, multinomial logistic 
regression modelled the data (CPPC, PBPC, UPC and all 
three (ALL)) with the target as the diagnosis (DX). All 
four models created acceptable ROC curves, Fig.  3a–d. 
The NORMAL and the AKI groups model best because 
their gene expression patterns are so dramatically dif-
ferent than the rejection groups, S. Fig.  1. The ABMR 
and NO REJECTION groups model less well. However, 
the errors in the confusion matrices, a sensitive and 
easily interpreted classification metric, were substan-
tial, 30–40%, indicating that modelling the genes poorly 
matched many DX, Table  1A. Even more problematic, 
the per sample error of 46.9% indicates per sample dis-
crepancies with different types of data engender different 
patterns of errors. Reeve et.al. also, identified variations 
in misclassifications when clustering using archetypal 
analysis as compared to annotated diagnoses [34]. Indi-
vidual samples are misclassified differently depending on 
the data set or the modelling algorithm.

Although the ROC curves suggest workable models, 
the misclassifications in the error matrices are excessive 
for clinical decision making. The classification assign-
ment for the error matrices is derived from the highest 
probability per group, whether the highest probability 
is below or above 50%. The average probabilities were 
examined in misclassified and concordant samples, 
Fig. 4. Misclassified samples have lower average probabil-
ities (left, disparities) as compared to concordant samples 
(right, concordant) suggesting that many samples with-
out a consistently high probability cause per sample vari-
ations in the error matrices [34].

Two possibilities exit for the per sample misclassifica-
tion patterns: (1) The annotated diagnosis is not a pure 
category or that (2) Gene expression heterogeneity exists 
within samples of a diagnostic class. To explore this, dis-
tributions were analyzed for all principal components by 
diagnosis. Figure 5 shows the distributions of all the prin-
cipal components from the three data sets (CPPC, UPC, 
and PBPC) for the six diagnostic classes for each sample 
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(grey lines) and a group mean (black line). The grey lines 
show wide distribution patterns within a diagnosis, and 
the group mean shows biphasic distributions for the 
diagnoses AKI, TCMR, and MIXED, which are, there-
fore, mixtures of distributions. The red vertical line is the 
average of NORMAL for reference. Vast heterogeneity is 
evident for all diagnoses.

To test if a better model could be created by reducing 
the heterogeneity across samples, the samples were clus-
tered using K Means, resulting in 9 clusters by optimal 
cubic clustering criterion. Using multinomial logistic 
regression with all PCs and the 9 clusters as the target 
regression created good models. Table  1B shows that 
the percent misclassification from the confusion matri-
ces dropped to 6–17%, a dramatic improvement as com-
pared to using the DX as the target, Table 1A. However, 
the per sample errors in misclassifications were 27.9%, 
which were much lower than 46.9% using the DX as the 
target. Table  2 is a contingency table of DX vs clusters. 
NORMAL cluster and Cluster 6 are similar, but the other 
diagnoses are widely distributed among the clusters, 
especially NO REJECTION. These findings suggest that 
gene expression heterogeneity within the diagnoses and/
or impurity of the diagnosis as a categorical variable are 
contributors to suboptimal classifications.

To determine if other modelling algorithms might 
improve and/or confirm the prior models, Pycaret, which 
uses Python and sklearn modules, was used to test addi-
tional models, Additional file 1:  Table S1 for parameters. 
The Pycaret permits comparison of multiple models to 
find the most optimal model by accuracy. The models 
tested and their parameters are found in Table  3. The 
best model with the highest accuracy was also tested 

a

b

c

d

Fig. 3  ROC graphs of validated multinomial logistic regression 
(General Regression, JMP14.2 with adaptive elastic net and 
K = tenfold validation. Target is diagnosis (DX). a Data = All PC (CPPC, 
PBPC, & UPC); b Data = CPPC; c Data = PBPC; d Data = UPC

Table 1  Summary of errors in confusion matrices

Percent Errors = Percent Errors from Confusion Matrix

Percent Sample Errors = Percent of Samples with a Single Discordance between 
Confusion Matrices of a Target per Data Group, Average of Four Data Groups

From Multinomial Logistic Regression, General Regression Model, JMP 14.2. 
Regression parameters in Supplemental Table 1

Data Target Percent errors Percent errors 
per sample

A

All DX 32.8 46.9

CPPC DX 38

PBPC DX 39.6

UPC DX 34

B

All Clusters 5.9 27.9

CPPC Clusters 10.4

PBPC Clusters 8.6

UPC Clusters 16.6
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with the tuning, bagging, boosting, and blending with 
negligible improvements in accuracy (data not shown). 
Making an ensemble model of the top three models also 
did not show any improvement in accuracy. Three mod-
els for the data (All, CPPC, PBPC, UPC) with targets as 
DX and Clusters is shown in Table 3A (DX) and Table 3B 
(Clusters) with Clusters showing fewer discrepancies. 
Modeling individual sets (CPPC, PBPC, and UPC) vs 
the target DX showed a range of confusion matrix errors 
of 25 – 37%, Table 3C. Per sample discrepancies appear 
in Table  3D (DX) and Table  3E (Clusters) with Clusters 
showing fewer discrepancies. With PyCaret (Table  3F 
and G) showed similar patterns with dramatic improve-
ments in accuracies (> 0.9) using Clusters as the target 
and with dramatic reductions in the error rates (6–7%).

A Bayesian Network Model using CPPC was also cre-
ated, Additional file  6: Figure S2 and Additional file  4: 
Table S4, because some data are non-parametric, (Fig. 5, 

parameters in Additional file  1: Table  S1). Graph Addi-
tional file 6: Figure S2A and B show a graphical network 
with the center node as the target (DX or Clusters) using 
the CPPC. Optimal binning algorithms create a high 
or low value as a categorical variable for each CPPC. 
Arrows indicate the complex interdependent relation-
ships among the variables as determined by their mutual 
information/Kulback-Leibler divergence and show 
the complex conditional probabilities of the variables 
including the categorical targets (DX or Cluster). S. Fig-
ure 2C and D show the Bayes factors (BFs, definition in 
Abbreviations) for DX and Clusters. For DX (S. Fig. 2C) 
NORMAL is high for the TUB PC and low for the other 
CPPC, the expected finding. ABMR, MIXED, and TCMR 
show high inflammatory CPPC with TCMR showing low 
ENDO. These BF patterns are like those in Fig.  2. Most 
notable are the low BFs for NO REJECTION, any dem-
onstrating the difficulty of resolving this heterogeneous 

Fig. 4  Mean Probability vs Disparity. Using the regression in 3A, the regression creates a column for the probability for each of the six diagnoses 
for each sample. The highest probability is assigned as most likely DX. The disparities between the annotated DX and the most likely DX creates the 
confusion matrix. Left = Disparity: DX does not equal most likely DX. Right = No disparity: DX = most likely DX

Table 2  Contingency table of diagnoses (DX) vs Clusters

DX/clusters 1 2 3 4 5 6 7 8 9 Total responses

ABMR 0 6 18 4 49 0 13 8 7 105

AKI 4 5 8 0 0 0 0 11 0 28

Mixed 0 2 0 6 12 0 6 2 0 28

TCMR 4 0 7 24 3 0 13 11 5 67

Norejection 25 31 137 20 39 1 98 55 108 514

Normal 0 0 0 0 0 22 0 0 0 22
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group. S. Figure 2D shows the BFs for the Clusters with 
Cluster 6 resembling the NORMAL DX. The other Clus-
ters show inflammatory CPPC with variations in ENDO 
and TUB, again showing the complex patterns of gene 
expressions and the difficulty of resolving the Clusters 
into known diagnostic clinically useful groups, Table  2. 
Additional file 4: Table S4A shows the percent error with 
this model is high 56% for DX with a poor mean ROC of 
77% (underlined) and a high log-loss. Again, the Clus-
ters show improved mean ROC 91% and fewer discrep-
ancies (34%), both underlined and with a lower log-loss, 
again suggesting that clustering creates a simpler model, 
Additional file 4: Table S4B.

Discussion
Findings show that the BHOT panel of genes recapitu-
lates the diagnostic patterns identified in seminal archival 
data, using either of three methods of parsing the genes 
into principal components (Fig. 2, Fig. 5, Additional file 3: 
Table 3). As the selected BHOT panel genes are derived 
partially from many microarray studies, it is not surpris-
ing that BHOT panel genes identify the expected pat-
terns of rejection. All three methods of parsing genes 
created workable models with high average ROC scores. 
It is unclear which method of parsing the genes into prin-
cipal components is easiest or most suitable to create an 
efficient and standardized data analysis pipeline. Using 
PCs (PBPC) from sets of the highest genes between 
binary diagnostic comparisons is conceptually simple but 
engenders many principal components, which share col-
linearity and make feature selection for modelling both 
tedious and difficult. Using principal components of cell 
types and pathways is conceptually easier to understand 
immunologically. Creating unsupervised principal com-
ponents is the easiest for feature selection and has an 
advantage that a latent variable or pathway may be pre-
sent, which is not readily identified by the first two gene 
selection methods [18, 19]. These three methods, includ-
ing just finding the highest genes by t-tests, will likely 
vary between independently derived data sets because 
results are very dependent on the sample size of the data 
set, the balance of the classes employed, and the purity of 
the annotated class diagnosis.

Some investigators argue that gene expression models 
assign a more accurate diagnosis than the original diag-
nosis, and use such models for clinical diagnosis. How-
ever, heterogeneity is present in the misclassification 
assignments per sample by different models [34] or data 
(CPPC, UPC, PBPC), (Tables  1 and 3, Additional file  4: 
Table  S4). As different modelling algorithms or slightly 
different PC sets engender inconsistent discordant pat-
terns of misclassifications, changes to the sample diag-
nosis by modelling may be premature. Model averaging 

or an ensemble of models does not solve this problem as 
a new error matrix is created, which still maintains the 
per sample variations in classifications. Arbitrarily using 
a high probability to assign a diagnostic classification 
solves part of the misclassification problem by reducing 
some misclassifications, but many samples could remain 
unclassified [34]. To improve assignment of diagnoses of 
ambiguously modelled samples, additional clinical infor-
mation such as histological parameters, alloantibody, 
C4d, or time after transplant, all of which use expert 
knowledge of prior probabilities, could be incorporated 
with gene expression to create a clinical pathological 
diagnosis [34, 35]. Although using expert knowledge may 
allow assignment of some samples to canonical or varia-
tions of canonical diagnoses, and make overall interpre-
tation easier, interpreting such heterogeneous variables, 
absent in the model, is subjectively biased and may work 
for some samples but not all.

Although clustering data independent of diagnosis 
makes a better model with fewer misclassifications, 
interpreting synthetic clusters remains problematic. 
It is better to find the best model for the data rather 
than find the best data for a model. Are these synthetic 
clusters just “toy” data, that models well but has no 
biological relevance? Some clusters resemble canoni-
cal diagnoses, but others do not. How do you assign a 
meaningful and clinically interpretable name to syn-
thetic cluster? Nevertheless, creating more homogene-
ous groups of samples from clustered data may identify 
clinically important subgroups, not appreciated in the 
annotated classes [19, 31]. This is most important in the 
NO REJECTION diagnosis, which is the most hetero-
geneous by gene expression (Tables 2 and 3, Additional 
file  4: Table  S4) and the most frequent diagnosis. This 
diagnosis lacks evidence of rejection, and subjects usu-
ally have a preserved creatinine, yet the gene expres-
sion pattern within the NO REJECTION diagnosis 
is markedly heterogeneous. If some gene expression 
subset patterns within the NO REJECTION diagnostic 
category correlate with a subsequent clinical rejection 
or correlate with renal outcome, then analysis of gene 
expressions within clusters or class subsets adds value 
to clinical and pathological decisions.

The gene expression data are heterogeneous within 
the original diagnostic classes because clustering all the 
principal components creates a better model with fewer 
misclassifications. This is most likely because pathologi-
cal diagnoses are complex and critically dependent on 
microscopic findings that cannot be identified within a 
mixture of extracted RNAs. For example, tubulitis, which 
is mononuclear inflammation identified within tubules, 
is required for a diagnosis of TCMR but cannot be cap-
tured in a slurry of RNA. In addition, many of the Banff 
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Table 3  Additional models for confusion matrices/discrepancies

A. Average discrepancies between Diagnoses All PC

Model Target Data % Discrepancies

Multinomial logistic 
regression

Diagnoses ALL PC 37.3

Boot strap forest Diagnoses ALL PC 24.1

Partial least squares Diagnoses ALL PC 37.3

B. Average discrepancies between Clusters All PC

Model Target Data % Discrepancies

Multinomial logistic 
regression

Clusters ALL PC 10.0

Boot strap forest Clusters ALL PC 12.2

Partial least squares Clusters ALL PC 15.1

C. Average discrepancies CPPC, UPC, & PBPC

Model Target Data % Discrepancies

Multinomial logistic 
regression

Diagnoses CPPC 36.9

Boot strap forest Diagnoses CPPC 25.6

Partial least squares Diagnoses CPPC 27.2

Multinomial logistic 
regression

Diagnoses UPC 24.4

Boot strap forest Diagnoses UPC 24.9

Partial least squares Diagnoses UPC 27.0

Multinomial logistic 
regression

Diagnoses PBPC 35.2

Boot strap forest Diagnoses PBPC 27.5

Partial least squares Diagnoses PBPC 29.2

D. Average per sample discrepancies between Diagnoses All PC

Model Target Data % Discrepancies

Multinomial logistic 
regression vs Boot 
strap forest

Diagnoses ALL PC 33.1

Multinomial logistic 
regression vs Partial 
least squares

Diagnoses ALL PC 32.7

Boot strap forest vs 
Partial least squares

Diagnoses ALL PC 33.1

E. Average per sample discrepancies between Clusters All PC

Model Target Data % Discrepancies

Multinomial logistic 
regression vs Boot 
strap forest

Clusters ALL PC 12.4

Multinomial logistic 
regression vs Partial 
least squares

Clusters ALL PC 13.5

Boot strap forest vs 
Partial least squares

Clusters ALL PC 14.4
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Fig. 5  Distribution of all PC (CPPC, PBPC, & UPC) for each of the six annotated diagnoses (JMP Genomics 9.2/Distribution). Grey lines are individual 
samples. Black curve is the average. The red vertical line is the average of normal for reference

*Best model chosen; N = 12

Table 3  (continued)

F. Additional models for diagnoses all PC, CPPC, PBPC, & UPC*

Model Target Data Mean accuracy Average precision/
recall

Percent errors

Extreme Gradient 
Boosting

Diagnoses ALL PC 0.74 0.79 36.5

Linear Discriminant 
Analysis

Diagnoses CPPC 0.75 0.78 32.6

Extra Tree Classifier Diagnoses PBPC 0.75 0.76 35.3

Linear discriminant 
analysis

Diagnoses UPC 0.76 0.70 33.9

G. Additional models for clusters all PC, CPPC, PBPC, & UPC*

Model Target Data Mean accuracy Average precision/
recall

Percent errors

Multinomial logistic 
regression

Clusters ALL PC 0.93 0.95 6.9

Extra tree classifier Clusters CPPC 0.90 0.93 6.9

Extreme gradient 
boosting

Clusters PBPC 0.92 0.94 6.2

Multinomial logistic 
regression

Clusters UPC 0.92 0.94 6.9
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histological lesions used or required for allograft diagno-
ses are also somewhat non-specific [10, 27, 36]. Addition-
ally, the rejection classes (TCMR, ABMR, and MIXED) 
used to categorize the data are summaries of rejections 
patterns, which have grades from clinically mild to clini-
cally very serious, so that the annotated class diagnoses 
are heterogeneous and mere summary approximations. 
Clustering gene expression data may find clinical subsets 
not appreciated within the original annotated diagnoses.

Modelling creates challenges for investigators, who 
wish to use gene expression to inform diagnostic deci-
sions because classifications do not uniformly assign a 
consistent diagnosis per sample. This is problematic as 
investigators using different models or slightly differently 
derived data sets could reassign diagnoses discordantly. 
Uncertainties could also arise in clinical trials using 
allograft transplant gene expression for classifications 
if contributors to the clinical trial assign variant gene 
expression classifications, depending on how the genes 
are analyzed or modelled. This problem also applies to 
aligning disparate studies investigating a similar hypoth-
esis. Additional information as covariates might include 
creatinine trajectory, proteinuria, time after trans-
plant, prior diagnoses, or histological parameters might 
improve or alter modelling performance [37, 38].

Although clustering the data independent of the anno-
tated DX makes modelling more consistent and lowers 
misclassification rates, it is unclear if these additional cat-
egories represent biologically relevant diagnostic classes, 
inconsequential minor variants, biopsy sampling error 
or evolving forms of established diagnoses. Only cor-
relation of pathological diagnoses and gene expression 
patterns with the endpoint of renal allograft survival or 
subsequent rejections can resolve such discrepancies and 
identify the optimal and biologically relevant classes for 
clinical decision-making. This is likely best done by longi-
tudinal analysis of a patients’ samples.

Conclusion
These findings confirm the BHOT gene panel is a suit-
able surrogate for microarrays and identifies the expected 
patterns in human allografts. These findings also confirm 
the complexity of modelling gene expressions and sug-
gest that reassigning a diagnosis based solely on gene 
expression is not straightforward for clinical decision 
making. Future analytical challenges facing investigators 
include: (1) how and which genes are best and most effi-
ciently parsed to create an efficient data analysis pipeline; 
(2) how is best modelling performed to assign a diagno-
sis to a patient’s sample; (3) what clinical and pathologi-
cal parameters improve model performance; (4) how to 
resolve the heterogeneity of gene expression and patho-
logical diagnoses into more homogeneous groups that 

permit the most accurate modelling and immunological 
interpretation; and finally, (5) determine if new and more 
homogeneous classes are biologically relevant.
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