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Abstract 

Background:  A substantial number of infants infected with RSV develop severe symptoms requiring hospitalization. 
We currently lack accurate biomarkers that are associated with severe illness.

Method:  We defined airway gene expression profiles based on RNA sequencing from nasal brush samples from 106 
full-tem previously healthy RSV infected subjects during acute infection (day 1–10 of illness) and convalescence stage 
(day 28 of illness). All subjects were assigned a clinical illness severity score (GRSS). Using AIC-based model selection, 
we built a sparse linear correlate of GRSS based on 41 genes (NGSS1). We also built an alternate model based upon 13 
genes associated with severe infection acutely but displaying stable expression over time (NGSS2).

Results:  NGSS1 is strongly correlated with the disease severity, demonstrating a naïve correlation (ρ) of ρ = 0.935 
and cross-validated correlation of 0.813. As a binary classifier (mild versus severe), NGSS1 correctly classifies disease 
severity in 89.6% of the subjects following cross-validation. NGSS2 has slightly less, but comparable, accuracy with a 
cross-validated correlation of 0.741 and classification accuracy of 84.0%.

Conclusion:  Airway gene expression patterns, obtained following a minimally-invasive procedure, have potential 
utility for development of clinically useful biomarkers that correlate with disease severity in primary RSV infection.
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Background
Respiratory syncytial virus (RSV) is the most impor-
tant cause of respiratory illness in infants and young 
children, accounting for more than 57,000 bronchiolitis 

and pneumonia hospitalizations in the US annually [1]. 
Worldwide, 33.1 million acute lower respiratory infec-
tions and 3.2 million hospitalizations in children under 
5 years of age are attributed to RSV each year [2]. In the 
US ~ 1–2% of newborns are hospitalized during their first 
winter, with rates greatest in the first two months of life 
(25.9 per 1000) [3]. Risk factors for severe disease include 
gestational age < 29  weeks, bronchopulmonary disease 
and symptomatic congenital cardiac disease, while less 
well defined risks include lack of breast feeding, and 
exposure to tobacco smoke. However, the majority of 
hospitalized infants are full-term infants whose only risk 
factor is young age at the time of infection [3].
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A number of severity scores using clinical parameters, 
including cutaneous oximetry, have been used to grade 
illness severity for use in management and as an out-
come in therapeutic, or potentially, vaccine trials. [4–13] 
However, none of the clinically based severity scores have 
been universally adopted [14]. Reasons may include het-
erogeneity in the scope and purpose of the score, the ages 
to which it is applied and concerns about inter-observer 
variability and subjectivity in interpreting clinical signs, 
including oximetry, that often are temporally dynamic 
over short intervals. Identification of an objective bio-
marker that accurately correlates with, or potentially pre-
dicts, disease severity could be highly useful [15, 16].

We and others have reported a relationship between 
disease severity and host gene expression in periph-
eral blood cells and nasal swab samples during infection 
[17–20]. These results suggest such an approach may 
allow development of biomarkers to accurately catego-
rize RSV disease severity. As part of the AsPIRES study 
[21] we recently reported on the feasibility of measuring 
gene expression of airway cells collected by nasal swab in 
healthy infants in order to study RSV disease pathogen-
esis [22]. However, in this manuscript, we describe the 
use of this gene expression data during RSV infection to 
develop two airway gene expression-based classifiers that 
are highly correlated with clinical disease severity. This 
represents a first step in developing a biomarker using 
gene expression responses capable of accurately classify-
ing clinical severity in primary RSV-infection that could 
be used in conjunction with clinical evaluation.

Methods
Study subjects
Subjects included RSV infected infants enrolled in the 
AsPIRES study at the University of Rochester Medi-
cal Center and Rochester General Hospital [21]. RSV-
infected infants came from three cohorts during three 
winters (October 2012 through April 2015); one cohort 
included infants hospitalized with RSV, a second cohort 
was recruited at birth and followed through their first 
winter for development of RSV infection, and the third 
cohort was RSV infected infants seen in pediatric offices 
and emergency departments and managed as outpa-
tients. All subjects were full-term infants undergoing a 
primary RSV infection during their first winter season. 
Nasal samples were collected from the inferior nasal tur-
binate, by gentle brushing with a flocked swab as previ-
ously described [22], during the acute illness visit (visit 
1) and at a convalescent visit ~ 28 after illness onset 
(visit 2). Illness severity was graded from 0 to 10 using a 
Global Respiratory Severity Score (GRSS), that uses nine 
parameters (age adjusted respiratory rate, chest retrac-
tions, wheezing, rales/rhonchi, apnea, cyanosis, room air 

oxygen saturation, lethargy and poor feeding) as previ-
ously described [23]. We defined a GRSS > 3.5 as severe 
disease as it is highly correlated with illness requiring 
hospitalization.

Nasal RNA processing
The process for nasal RNA recovery was previously 
described [22]. Briefly, following flushing of the nares 
with 5 ml of saline to remove mucus and cellular debris, 
a flocked swab was used to recover cells at the level of the 
turbinates. The swab was immediately placed in RNA sta-
bilizer (RNAprotect, Qiagen, Germantown, MD, USA) 
and maintained at 4  °C. Cells were recovered by filter-
ing through a 0.45 uM membrane filter. Recovered cells 
were lysed and homogenized using the AbsolutelyRNA 
Miniprep kit (Agilent, Santa Clara, CA, USA) according 
to the manufacturer’s instructions. 1 ng of total RNA was 
amplified using the SMARter Ultra Low amplification kit 
(Clontech, Mountain View, CA, USA) and libraries were 
constructed using the NexteraXT library kit (Illumina, 
San Diego, CA, USA). Libraries were sequenced on the 
Illumina HiSeq2500. Sequences were aligned against 
human genome version of hg19 using STARv2.5, counted 
with HTSeq, and normalized by Fragments Per Kilobase 
of transcript per Million mapped reads (FPKM). This 
process was illustrated as Fig. 1 in [22]. As an alternative, 
we also tried replacing FPKM with CrossNorm [24–27], 
a normalization procedure designed for processing gene 
expression data with skewed patterns. In either case, a 
total of 6844 transcription profiles (genes) were reported 
after quality assurance analysis and preprocessing that 
include batch-effects removal and non-specific filtering. 
Additional technical details on data preprocessing can 
be found in Supplementary Methods and Supplementary 
Figure E1.

Statistical methods
Descriptive statistics are reported in Table  1. Discrete 
variables are summarized in percentages, and continu-
ous variables were summarized as Mean (STD). For 
continuous variables, we performed two-sample Welch 
t-tests to check the equality between the mild and severe 
groups; for categorical variables, Fisher’s exact test was 
used instead. The nasal gene-expression severity scores 
we developed in this study were primarily based on mul-
tivariate regression analysis with bi-directional stepwise 
model selection based on Akaike Information Criterion 
(AIC). We also tried another model selection procedure 
based on elastic-net regularized regression, which uses 
both L1 (LASSO) and L2 (ridge) regression to produce a 
sparse regression model. The results are summarized in 
Supplementary Table E1. The R package glmnet [28, 29] 
was used for this purpose. Technical details of model 
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development and cross-validation (CV) can be found in 
section Model Developing and Cross-validation in Sup-
plementary Methods. All analyses were conducted using 
SAS 9.3 (SAS Institute Inc., Cary, NC, USA) and the R 
programming language (version 3.5, R Foundation for 
Statistical Computing, Vienna, Austria).

Results
Of the 139 RSV-infected infants enrolled in the AsPIRES 
study, nasal samples were available from 119 subjects 
during acute infection (day 1–10 of illness) and 81 sub-
jects during convalescence (day 28 of illness). Among 
these 200 samples, 175 samples (106 acute samples and 
69 convalescent samples) met sufficient quality to be 
used for subsequent analyses. Demographic and clini-
cal information for these 106 subjects are provided in 
Table 1. The clinical severity score (GRSS) for these sub-
jects ranged from 0 to 10, with 42 subjects considered 
to have mild disease (GRSS ≤ 3.5; mean ± SE GRSS of 
1.63 ± 0.15) and 64 to have severe disease (GRSS > 3.5; 
mean GRSS of 6.13 ± 0.22). There were no significant 
differences between the mild and severe groups in gen-
der, race, delivery type, breast feeding, or exposure to 
tobacco smoke. There also was no difference in age at 
time of infection or in duration of illness at the time of 
evaluation.

Nasal gene expression correlates of clinical severity 
during acute illness
The 6,844 genes remaining after data preprocessing and 
filtering were subjected to the Pearson correlation test to 
select genes that were significantly correlated with GRSS 

during acute infection. After controlling the false dis-
covery rate (FDR) at the 0.05 level, 66 significant genes 
were identified [30]. Using these genes, we applied model 
selection procedures (see Model Developing and Cross-
validation in Supplementary Methods for more details) 
to select an initial multivariate regression model for 
GRSS (Model 1), which was comprised of 39 genes and 
had relatively good predictive power (77.4% accuracy, or 
24 misclassifications) for the dichotomous clinical out-
come (mild vs. severe illness) in leave-one-out cross-vali-
dation (LOOCV).

Not unexpectedly, there is a strong correlation among 
the 66 genes, which might reduce the diagnostic per-
formance of Model 1. Using a novel method based on 
principal component analysis (PCA), we identify ten 
supplementary genes as additional features to model 
GRSS (see Model Developing and Cross-validation in 
Supplementary Methods for more details). With these 
additional features and using the same model selection 
strategy, we developed two additional models: Model 
2 comprised of 41 genes and Model 3 comprised of 42 
genes. The performance of these models was evaluated 
by LOOCV (Table  2). We found that the incorporation 
of the supplementary genes into Model 2 (CV predic-
tion accuracy of 89.6%; 11 misclassifications) significantly 
improved the accuracy compared to Model 1 (24 mis-
classifications) and Model 3 (23 misclassifications). Of 
note, Model 2 contained 5 supplementary genes, and we 
defined it as NGSS1 (nasal gene expression severity score 
1). As shown in Fig. 1, NGSS1 is highly associative with 
GRSS (naïve ρ = 0.935; CV ρ = 0.813). For the popula-
tion of subjects in the AsPIRES study, the sensitivity and 

Fig. 1  Correlating NGSS1 (severity score predicted by Model 2) with GRSS. Left: naïve Pearson correlation between GRSS and NGSS1 is ρ = 0.935 . 
Right: cross-validated Pearson correlation between GRSS and NGSS is ρ = 0.813 . Solid dots are subjects with severe symptoms (defined by 
GRSS > 3.5) and empty dots are those with mild symptoms (GRSS ≤ 3.5)
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Table 1  Demographic data of subjects

P-values reported in the last column were either based on Fisher’s exact test (if the variable is categorical) or Welch t-test (if the variable is continuous). Continuous 
variables are reported as sample means (STD); categorical variables are reported as percentages
a  Based on GRSS ≤ 3.5 (mild) or > 3.5 (severe)

Mild (n = 42)a Severe (n = 64)a p value

n Mean (STD) or % n Mean (STD) or %

Global Severity Score 42 1.63 (1.00) 64 6.13 (1.72) < 0.001

Visit age (months) 42 3.52 (1.99) 64 3.24 (2.37) 0.5122

Gestational age (weeks) 42 39.05 (1.25) 64 38.8 (1.44) 0.3437

Birth weight (kg) 42 3.32 (0.68) 64 3.36 (0.57) 0.7468

Family size 42 4.43 (2.86) 64 3.98 (1.73) 0.3703

Days since disease onset 42 4.31 (1.76) 64 4.86 (1.78) 0.1209

Breast feeding summary 42 1.56 (1.23) 63 1.53 (1.25) 0.8979

Sex 23 44.23 29 55.77 0.4275

Male

Female 19 35.19 35 64.81

Ethnicity 8 42.11 11 57.89 0.8018

Hispanic or Latino

Non-Hispanic or non-Latino 34 39.08 53 60.92

Race 23 37.1 39 62.9 0.3115

Caucasian

Other race 19 47.5 21 52.5

Missing - 0 4 100

Delivery type 29 36.71 50 63.29 0.3634

Vaginal

C-section 13 48.15 14 51.85

Smoking exposure 14 38.89 22 61.11 1

Yes

No 28 40 42 60

RSV group 23 38.98 36 61.02 1

A

B 18 39.13 28 60.87

Missing 1 100 - 0

Table 2  Performance of four models used in developing NGSS1 and NGSS2

Naïve and CV RSS are the mean residual sums of squares of the predictive model in the original and cross-validation analyses, respectively. Correlation are the Pearson 
correlation coefficient between the predicted severity scores and the clinically defined GRSS. Prediction accuracy is the percentage of correctly predicted mild 
(NGSS ≤ 3.5) or severe (NGSS > 3.5) symptoms, compared with the same phenotype defined by the GRSS (mild: GRSS ≤ 3.5; severe: GRSS > 3.5)

*Designated NGSS1. **Designated NGSS2

Number 
of genes 
selected

Naïve RSS Naïve correlation Naïve 
misclassified 
subjects
(out of 106)

CV RSS CV Correlation CV prediction 
accuracy

CV 
misclassified 
subjects
(out of 106)

Model 1 39 genes 1.234 0.909 15 2.743 0.797 77.4% 24

Model 2* 41genes 0.884 0.935 9 2.681 0.813 89.6% 11
Model 3 42 genes 0.920 0.933 13 2.119 0.844 78.3% 23

Model 4** 13 genes 2.549 0.800 16 3.215 0.741 84.0% 17
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specificity for identifying severe disease were high (sen-
sitivity 90.1%, specificity 88%) which would translate to 
a positive predictive value (PPV) of 92% and a negative 
predictive value (NPV) of 86%.

As a comparison, the Pearson correlation test identified 
68 genes processed by CrossNorm with significant asso-
ciation with GRSS. The majority of them (39) were also 
detected by the FPKM normalized data, which showed 
that the two normalization methods are largely compa-
rable. Using these 68 genes plus ten supplementary genes 
identified by PCA as candidate genomic features, we 
developed Model 2b, which had similar but slightly worse 
prediction accuracy in LOOCV experiments. Technical 
details of the development of Model 2b and the sum-
mary of its performance are provided in An Alternative 
Method Based on CrossNorm in Supplementary Meth-
ods and Supplementary Table E4. We will focus on FPKM 
normalized data from now on.

Validation of NGSS1 at the convalescence phase
NGSS1 was trained exclusively from data collected at the 
acute phase (visit 1). For a subset (n = 54) of subjects, we 
also had their nasal transcriptome profiles at the conva-
lescence phase (day 28 after illness onset), a time when 
most infants had completely recovered from their ill-
ness. If NGSS1 is a valid surrogate for disease severity, we 
hypothesized that NGSS1 calculated from the severely ill 
subjects at visit 2 would converge to those of the mildly 
ill subjects. Compared with the acute visit, the calculated 
NGSS1 at the convalescent visit predicted a significantly 
lower mean severity score for severe subjects (n = 29, 6.22 
vs. 2.82, p < 0.001). In contrast, there was no significant 
difference in NGSS1 between the two visits for the mildly 
ill group (n = 25, 1.96 vs. 2.31, p = 0.45), nor between the 
severe and mild groups at visit 2 (2.82 vs. 2.31, p = 0.40). 
These results are illustrated in Fig. 2a.

Exploratory association analysis based on stable nasal 
genes
In the process of developing NGSS1 we observed that 
a large number of genes had expression levels that 
remained stable between the acute and convalescent vis-
its. We speculated that a NGSS based on stable genes 
that were correlated with GRSS could potentially be pre-
dictive of disease severity prior to illness onset. Thus, 
we next developed an NGSS based on genes displaying 
stable expression across acute illness and convalescence 
in the 54 subjects with samples from both time points. 
Specifically, we included only genes whose mean expres-
sion levels correlated with disease severity during acute 
illness, and whose expression did not change significantly 
from the acute to convalescent stage.

We identified 2127 genes in subjects with mild illness 
and 1531 genes in subjects with severe illness, based 
on paired two sample t-test (p > 0.5) and fold change 
increases or decreases within 10%. Of the total 3658 
genes, 689 stable genes were common in both groups 
(Fig.  3a). A quality assurance analysis based on IQR 
showed that a small subset (n = 14) of these genes had 
relatively small dynamic range in the combined dataset, 
and were excluded. We applied marginal screening based 
on Pearson correlation with GRSS to the remaining 675 
stable genes and identified 44 marginally significant 
genes. As in developing NGSS1, we added 5 supplemen-
tary genes with strong marginal associations with GRSS. 
Model selection identified 13 genes as Model 4 (desig-
nated as NGSS2). The performance of NGSS2 is provided 
in Table  2 and illustrated in Fig.  3b. NGSS2 showed a 
significant correlation with GRSS (ρ = 0.741), and a CV 
accuracy of 84% (17 misclassifications out of 106 cases, 
Table 2). Of note, NGSS1 and NGSS2 do not contain any 
commonly selected gene, which is expected due to differ-
ent screening criteria. Figure  2b shows that on average, 
NGSS2 did not change between visit 1 and visit 2, which 

Fig. 2  Paired comparisons between visit 1 and visit 2 using NGSS1 
(panel a) and NGSS2 (panel b). A total of n = 54 subjects with samples 
in both visits were used. Solid dots represent severe subjects and 
empty dots represent mild subjects. The solid line represents the 
mean trend of severe subjects and the broken line represents the 
mean trend for mild subjects. a At visit 1, there was a significant 
difference in mean NGSS1 between the severe (n = 29) and mild 
(n = 25) groups (6.22 vs. 1.96, p < 0.001). Mean NGSS1 of the mild 
group was virtually unchanged between two visits (1.96 vs. 2.31, 
p = 0.45). In comparison, mean NGSS1 of the severe group declined 
significantly at visit 2 (6.22 vs. 2.82, p < .001). b In contrast to NGSS1, 
the differences in NGSS2 was virtually unchanged between the two 
visits, due to the fact that NGSS2 were built with stable genes
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is the key difference between these two classifiers. A full 
list of genes used in NGSS1 and NGSS2, as well as their 
estimated linear coefficients in the models, are listed in 
Supplementary Tables E2 and E3.

Discussion
Several approaches have been proposed for quantifying 
RSV disease severity in young infants [4–13]. A vari-
ety of clinical parameters have been included in several 
described severity scores, with incomplete agreement on 
the optimal factors to select [14]. One reason is that many 
clinical signs of RSV infection in young infants, includ-
ing cutaneous oximetry, can fluctuate frequently and 
rapidly during the course of illness, making consistent 
assessment difficult. In fact, even the direct measurement 
of RSV viral load in respiratory secretions is not signifi-
cantly correlated with disease severity in the AsPIRES 
study [31]—similar phenomenon was also reported by 
several other similar studies [32–34]. An objective bio-
marker reliably correlated with clinical severity could 
prove useful for clinical management and as a classifier 
and/or an outcome measure in vaccine or therapeutic 
trials.

Transcriptomic analysis of host cells has proven 
informative in the study of several respiratory viral 
infections, including RSV, with the emphasis on disease 
pathogenesis [17–20]. Unlike this report that focuses on 
nasal epithelial cell samples, most reports have described 

gene expression correlates of disease severity in periph-
eral blood mononuclear cells during infection since 
RSV pathogenesis is thought to be closely linked to the 
host’s immune response [35]. In two publications from 
the same group, RSV infection was associated with over-
expression of innate immunity genes (neutrophil and 
interferon genes) and suppression of adaptive T and B 
cell genes. [17, 19] The investigators used the results to 
develop a gene-expression based illness score (designated 
Molecular Distance to Health [MDTH]) that was signifi-
cantly correlated with a clinical disease severity score, 
duration of hospitalization and need for supplemental 
oxygen. Recently, Jong et al. described an 84 gene signa-
ture that was highly predictive of RSV disease severity in 
infants [16]. Similarly, we reported that gene expression 
patterns in purified blood CD4 T cells during infection 
were correlated with clinical disease severity [18]. Gene 
expression results from nasal swabs collected from hos-
pitalized infants during RSV infection have also been 
recently reported by another group, with differentially 
expressed genes correlated with clinical severity [20].

Although the nasal brush samples from the AsPIRES 
study were collected to investigate molecular pathways 
and disease mechanisms involved in pathogenesis (pre-
sented in a separate manuscript [36]), we also consid-
ered that the data could be useful for the development of 
a gene based biomarker of RSV severity. We used mar-
ginal screening of all genes followed by PCA analysis and 

Fig. 3  a Diagram indicating the stable genes for the mild (GRSS ≤ 3.5) and severe (GRSS > 3.5) groups and the 689 intersecting stable genes 
common to both groups. b Correlating NGSS2 (severity score predicted by Model 4) with GRSS. Naïve Pearson correlation between GRSS and 
NGSS2 is ρ = 0.800 . Right: cross-validated Pearson correlation between GRSS and NGSS is ρ = 0.741 . Circles are subjects with correct cross-validated 
classification based on NGSS2; solid triangles are misclassified subjects
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step-wise model selection to develop NGSS1, a multi-
variate linear classifier of severity. In CV analysis, NGSS1 
was strongly correlated with GRSS and was a relatively 
accurate classifier of binary disease severity. Further-
more, the score tracked well with clinical improvement 
28 days after illness onset. Of particular note, we found 
that including uncorrelated supplementary genes 
enhances the accuracy of the models, and recommend 
this approach as a routine for future classification/pre-
diction analyses based on high-throughput data with 
substantial correlation. Another point worth mentioning 
is that the data went through a thorough pre-processing 
prior to model development. This “defensive preproc-
essing” not only greatly reduced aberrations in the data, 
but also guaranteed that the selected candidate features 
were highly informative. Consequently, the particular 
choice of normalization procedure (FPKM or Cross-
Norm) became less important. As noted, in the popula-
tion enrolled in our study the operating characteristics of 
NGSS1, including sensitivity, specificity, PPV and NPV, 
were quite good. However, it should be recognized that 
the proportion of mildly ill to severely ill subjects was 
determined by the recruiting strategy used, and that the 
PPV and NPV would vary depending on the population 
to which NGSS1 was applied [21]. If mildly ill subjects 
are increased by a factor of 3–5 this would reduce the 
PPV to 40–70% although the NPV would remain > 90%.

Although the aim of this report is not to describe 
molecular mechanisms operative during RSV infec-
tion, it should be noted that the 41 NGSS1 genes include 
cytokines (TNFSF10, IL6, and CXCL2), extracellular 
matrix proteins (VIM, MMP19, RPS15A, FKBP1A, and 
VCAN), inflammation regulators (CXCL2, CD163), 
and components of various signaling processes (GNS, 
HAVCR2, PTPRC, CTSL, INHBA, IL6, MMP19, CXCL2, 
SLC39A8, CCDC80, VCAN, CD163). Some genes are 
only known to be involved in fundamental biological pro-
cesses and are therefore novel in RSV research, includ-
ing ST3GAL1 (a type II membrane protein) and ATP10B 
(ATPase Phospholipid Transporting 10B). Note that only 
two genes (TNFSF10, RABGAP1L) have been associ-
ated with disease severity in our recent study based on 
purified CD4 T cells [18]. In addition, IL-6 Signaling is 
the only significant canonical pathway identified from the 
CD4 T cells that contains an NGSS1 gene (IL6).

A unique and very preliminary result from our analy-
sis is the development of NGSS2 using differentially 
expressed genes associated with GRSS that did not 
change between the acute and the convalescent time 
points. It is possible that these genes may simply be 
slow to return to baseline expression levels, in contrast 
to those genes selected for NGSS1. Although specula-
tive, it occurred to us that “stable” genes might possibly 

be predictive of severity regardless of when a nasal sam-
ple was obtained, thus raising the possibility of infants 
at risk prior to or early in infection. While NGSS2 is 
slightly less accurate than NGSS1 in predicting GRSS 
during acute illness, the association between NGSS2 and 
GRSS is still relatively strong. Interestingly, the 13 NGSS2 
genes were broadly related to cytoplasmic activities 
(EXOSC10, PLK2, PPIC, CLDN10, MAP3K13, MT1G, 
PXN), ATP binding (SEPHS2) and phosphoprotein regu-
lation (BCKDK, PLK2, MAP3K13); activities that may 
be less directly responsive to acute RSV infection. These 
observations suggest that the best nasal transcriptome 
predictors of respiratory symptoms are not necessarily 
limited to those genes that directly regulate the immune 
response to RSV infection.

The use of nasal brush specimens for development of 
a severity biomarker in infants is attractive for a number 
of reasons. Nasal respiratory epithelial cells are the first 
cells infected and directly initiate early innate immune 
responses to RSV. The mucosa is also the site of migration 
of both innate and adaptive immune cells during infec-
tion. Importantly, we have shown that gene expression 
in nasal respiratory epithelial cells is highly concordant 
with published gene expression in lower respiratory tract 
epithelial cells, and thus should be a reasonable proxy for 
lung responses to RSV infection [22]. Of practical impor-
tance, collection of nasal epithelial cells is relatively non-
invasive and simple to perform with minimal discomfort.

There are several important limitations to our study 
and conclusions. First, we do not have an independent 
cohort to validate our findings; the only publically avail-
able nasal gene expression data during RSV infection 
used microarray technology that did not identify many 
of the genes we identified by RNAseq. Due to the lack 
of independent samples for validation, we applied cross-
validation techniques to prevent model overfitting and 
validate the accuracy of prediction for both NGSS1 and 
NGSS2 at the acute visit. CV estimator for prediction 
accuracy is known to be asymptotically unbiased [37] 
under very weak statistical assumptions, namely, the 
training and testing data are independent and identi-
cally distributed (which can even be relaxed further, see 
[38, 39]). Additionally, we further validated the NGSS1 
trained at the acute visit with the convalescence data, 
and the results conformed with our prediction remark-
ably well. Note that the acute infection and convales-
cence visits are reasonably spaced out (about 2 ~ 3 weeks 
apart), therefore they are nearly independent: the mean 
and median serial correlations among all filtered genes 
is 0.103 and 0.095, respectively. Although the NGSS1 
declined for the severely ill infants when clinical symp-
toms had resolved, it would be useful to determine if 
NGSS1 tracked closely over the full course of an illness. 
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However, validation of our findings with an independ-
ent prospective cohort will be required. In addition, the 
results may not be valid for infants older than 10 months 
of age when infected with RSV, nor for infants with pre-
maturity or other underlying medical conditions.

Another possible limitation is that all data used in these 
analyses were generated on the same technical platform 
and processed by the same team, therefore the valida-
tion results do not reflect the impact of “artifacts” in 
transcriptomic studies such as batch effects and platform 
differences, which can be reduced but not entirely eradi-
cated by advanced normalization methods.[40–43]

Importantly, speculation that NGSS2 might predict 
disease severity prior to infection demands careful pro-
spective validation. Finally, to extend the utility of time-
intensive gene expression assays beyond a research tool 
and use it as a clinically useful biomarker of RSV disease 
severity, will require translation of these results to a rapid 
readily performed multiplex reverse transcription poly-
merase chain reaction (RT-PCR) assay, similar to those 
that have recently been developed for microbial diagnos-
tics in respiratory secretions [44].

Conclusions
In this report, we demonstrate that gene expression data 
obtained from an easily and safely obtained nasal brush 
specimen in young infants with acute RSV infection 
shows promise for development of composite molecu-
lar biomarkers that closely correlate with clinical sever-
ity score. Using a statistical learning procedure based on 
marginal screening, PCA, and multiple regression with 
stepwise model selection, we developed two nasal gene-
expression severity scores (NGSS1 and NGSS2) that are 
highly correlated with a clinically derived disease severity 
score (GRSS). Further studies to refine and validate the 
potential of predictive gene expression data from readily 
collected nasal samples are needed.
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