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Abstract 

Background:  Due to its reduced cost and incomparable advantages, WGS is likely to lead to changes in clinical diag-
nosis of rare and undiagnosed diseases. However, the sensitivity and breadth of coverage of clinical WGS as a diagnos-
tic test for genetic disorders has not been fully evaluated.

Methods:  Here, the performance of WGS in NA12878, the YH cell line, and the Chinese trios were measured by 
assessing their sensitivity, PPV, depth and breadth of coverage using MGISEQ-2000. We also compared the perfor-
mance of WES and WGS using NA12878. The sensitivity and PPV were tested using the family-based trio design for the 
Chinese trios. We further developed a systematic WGS pipeline for the analysis of 8 clinical cases.

Results:  In general, the sensitivity and PPV for SNV/indel detection increased with mean depth and reached a 
plateau at an ~ 40X mean depth using down-sampling samples of NA12878. With a mean depth of 40X, the sensitiv-
ity of homozygous and heterozygous SNPs of NA12878 was > 99.25% and > 99.50%, respectively, and the PPV was 
99.97% and 98.96%. Homozygous and heterozygous indels showed lower sensitivity and PPV. The sensitivity and PPV 
were still not 100% even with a mean depth of ~ 150X. We also observed a substantial variation in the sensitivity of 
CNV detection across different tools, especially in CNVs with a size less than 1 kb. In general, the breadth of cover-
age for disease-associated genes and CNVs increased with mean depth. The sensitivity and coverage of WGS (~ 40X) 
was better than WES (~ 120X). Among the Chinese trios with an ~ 40X mean depth, the sensitivity among offspring 
was > 99.48% and > 96.36% for SNP and indel detection, and the PPVs were 99.86% and 97.93%. All 12 previously vali-
dated variants in the 8 clinical cases were successfully detected using our WGS pipeline.

Conclusions:  The current standard of a mean depth of 40X may be sufficient for SNV/indel detection and identifica-
tion of most CNVs. It would be advisable for clinical scientists to determine the range of sensitivity and PPV for differ-
ent classes of variants for a particular WGS pipeline, which would be useful when interpreting and delivering clinical 
reports.
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Background
Recently, whole-exome sequencing (WES) and whole 
genome sequencing (WGS) have been routinely used and 
are gradually being optimized for the detection of rare 
and common genetic variants in humans [1–4]. Several 
studies have compared the performance of WES and 
WGS in both technical aspects and clinical aspects [5, 
6]. For example, focusing on mappability, Barbitoff et al. 
assessed the coverage of coding regions provided by sev-
eral modern WES platforms and WGS [5]. Scala et  al. 
compared the diagnostic performance of WES and WGS 
in children and adults with epilepsy [6]. In comparison 
to WES, WGS is more powerful for detecting variants. 
Theoretically, WGS has the potential to identify nearly all 
forms of genetic variation [7], including single-nucleotide 
variants (SNVs), in both the protein-coding and non-
coding regions (such as introns and promoters) of the 
genome, small insertions/deletions (indels), and copy-
number variants (CNVs) [8, 9]. Without target region 
selection, WGS could provide a more uniform DP for the 
genome, making the detection of CNVs easier. Moreover, 
WGS could provide higher sensitivity and a higher yield 
in variant detection in the coding regions [10–12]. Sev-
eral studies have demonstrated the advantages of WGS 
for variant detection [13–16]. For patients with highly 
suspected genetic disorder, WGS might be optimal for 
further evaluation when the patient remains undiag-
nosed after clinical WES. With the reduction of the cost 
of sequencing and its incomparable advantages, WGS is 
likely to change the clinical diagnosis of rare and undiag-
nosed diseases and is bound to become a routine part of 
clinical care in the near future.

The analysis of a clinical WGS usually starts from qual-
ity evaluation. Mean DP is often recognized as a general 
indicator of overall sensitivity. It has been reported that 
variant calling is more reliable with increasing DP [17]. 
As a crucial factor in data quality, most centers conduct-
ing MPS technology would determine thresholds for 

average DP across WES/WGS and determine the mini-
mum DP that must be achieved for a certain fraction 
of target bases [18]. The breadth of coverage describes 
the fraction of the total target genomic region that is 
sequenced to an adequate depth in a particular assay [4]. 
The American College of Medical Genetics and Genom-
ics (ACMG) recommends that 90%-95% breadth of 
coverage above a minimum threshold of 10X should be 
achieved for exome data with an average depth of 100X 
[18]. Thus far, a mean depth of 30-50X is the most widely 
used mean DP for WGS [19, 20]. However, the sensitivity 
and breadth of coverage of clinical WGS have not been 
fully evaluated, especially for CNV detection, some of 
which are associated with human disease [21–24]. For 
clinical WGS, the sensitivity and coverage of CNVs have 
not been comprehensively investigated.

In this study, we performed a systematic analysis of 
the sensitivity and coverage of clinical WGS using 5 gold 
standard samples (NA12878, YH, NA24631, NA24694 
and NA24695). Then, we applied clinical WGS for the 
reanalysis of 8 clinical cases with known disease-causing 
variants. The results may provide a reference for labora-
tories that perform clinical WGS.

Methods
Sequencing of samples
Based on the study design, DNA samples of NA12878, 
NA24631, NA24694 and NA24695 were procured from 
Coriell (Camden, NJ). One microgram of DNA was used 
for YH and the GIAB Chinese family to generate paired-
end reads of 100 bp. The most widely used NA12878 was 
sequenced 2 times (WES and WGS) (Table 1). This study 
and all the protocols followed herein were approved by 
the ethics committee of BGI (NO. BGI-IRB19143).

Alignment and variant calling
In this study, a standard bioinformatics pipeline was 
used for analysis of all the samples (Additional files 1, 

Keywords:  WGS, Sensitivity and PPV, DP and breadth of coverage, CNV, Clinical diagnosis

Table 1  Sample information

Sample name Sequencing Platform DNA input PCR/PCR-free Read length Mean depth

NA12878-1 WGS MGISEQ-2000 1 μg PCR PE100 197

NA12878-2 WES MGISEQ-2000 300 ng PCR PE100 220

YH WGS MGISEQ-2000 1 μg PCR PE100 151

NA24631 WGS MGISEQ-2000 1 μg PCR PE100 111

NA24694 WGS MGISEQ-2000 1 μg PCR PE100 115

NA24695 WGS MGISEQ-2000 1 μg PCR PE100 117
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2). To eliminate variability due to differences among 
various bioinformatics tools, we developed a stand-
ard bioinformatics pipeline, which included current 
widely used tools (Additional files 1, 2). In general, after 
removal of sequencing adapters and low-quality reads, 
“clean reads” were aligned to the GRCh37 with BWA 
0.7.12-r1039 [25]. Genome Analysis Toolkit (GATK)-
package-4.0.11.0 [26] MarkDuplicates was used to 
remove duplicate reads. After realignment around 
indels and quality score re-calibration using GATK-
package-4.0.11.0 [27], VCF files were generated using 
GATK for further analysis. For the CNV detection, 3 
widely used tools (CNVnator [28], BreakDancer [29] 
and LUMPY [30]) were performed in this study.

After trimming sequencing adapters and consecu-
tive low-quality bases using fastp [31], the clean 
reads of NA12878-1 were down-sampled by the 
sequencing depth of 10X (NA12878-1_10X), 20X 
(NA12878-1_20X), 30X (NA12878-1_30X), 40X 
(NA12878-1_40X), 50X (NA12878-1_50X), 60X 
NA12878-1_60X), 70X (NA12878-1_70X), 80X 
(NA12878-1_80X), 90X (NA12878-1_90X), 100X 
(NA12878-1_100X), 120X (NA12878-1_120X) and 
150X (NA12878-1_150X) using seqtk (https://​github.​
com/​lh3/​seqtk). The high-coverage NA12878-1 sam-
ple was sequenced with the MGISEQ-2000 platform to 
an average depth of ~ 197X (PE100) using PCR-based 
library construction. The clean reads of YH were also 
down-sampled by the sequencing depth.

Sensitivity and positive predictive value of variant calls
To evaluate the performance of variant calls in detect-
ing true genotypes, the high-confidence calls (SNPs 
and indels) for GIAB sample HG001 (NA12878) and 
HG005/HG006/HG007 (Chinese son/father/mother) 
were considered true-positive calls (v3.3.2) [32]. We 
restricted the calculation of sensitivity (high-confi-
dence calls detected by our method/all high-confidence 
calls in GIAB), specificity (sites called as a reference 
using our method/all reference sites in GIAB), accu-
racy (percent of calling agreement of our method when 
compared with GIAB) and PPV (high-confidence calls 
detected by our method/all variants detected by our 
method) of variant calls to the high confidence region 
(v3.3.2) [32]. High-confidence variant calls and regions 
tend to include a subset of variants and regions that are 
easier to detect [32]. The sensitivity and PPV of variant 
calls in the YH sample were also evaluated. The alleles 
validated by the Illumina 1  M BeadChip were consid-
ered “true-positive” calls for YH [33]. Genotype quality 
(GQ) and DP were used to filter out variants with erro-
neous variant calls.

Breadth of coverage for disease‑associated genes 
and CNVs
To assess the recommended depth for proband-only 
WGS in clinical diagnostics, we collected a total of 6 gene 
sets for coverage analysis of disease-associated genes: 
ACMG59 [34], ClinVar [35] (3824 genes, accessed on 
19 February 2019), Genetic Home Reference [36] (1471 
genes, accessed on 2 July 2019), HGMD [37] (8171 genes, 
professional March 2018), OMIM [38] (3835 genes, 
accessed on 4 April 2018) and Orphanet [39] (2405 genes, 
accessed on 2 July 2019). For the annotation of gene 
regions, we used the information available in NCBI anno-
tation release 104. For different transcripts, we first used 
the transcripts used in the HGMD database. The rest of 
the gene region consisted of a combination of the regions 
of all transcripts. Coverage analysis of the 12 down-sam-
pling samples of NA12878-1 and YH for the 6 gene sets 
was performed for evaluation.

The genes in a single gene set of the 6 gene sets were 
incomplete. To generalize a new gene list containing all 
the putative disease-associated genes, we compiled a 
list of 8394 putative disease-associated genes from the 6 
gene sets (Additional file 2: Table S9). This new gene set 
was generated using the following criteria: (1) a gene was 
retained when it was recorded with an association sta-
tus of “assessed” in the Orphanet database and had one 
of the following association types: (a) “Disease-causing 
germline mutation(s) in”, (b) “Disease-causing germline 
mutation(s) (gain of function) in”, (c) “Disease-causing 
germline mutation(s) (loss of function) in”, (d) “Major 
susceptibility factor in”, (e) “Modifying germline mutation 
in”, (f ) “Role in the phenotype of”, (g) “Candidate gene 
tested in”; (2) a gene was retained when it was recorded 
as a disease-related gene in the Genetic Home Reference 
database; (3) a gene was retained when it was recorded as 
a disease-related gene and the molecular basis of the dis-
ease was known, unless the inheritance of the disease was 
recorded as “SMu” (somatic mutation) only in the OMIM 
database; (4) a gene was retained when at least one vari-
ant of the gene was recorded as a probable/possible 
pathological mutation in the HGMD database; (5) a gene 
was retained when at least one variant of the gene was 
recorded as pathogenic or likely pathogenic in the Clin-
Var database; (6) a gene was retained unless it was not 
recorded with a well-defined gene ID or genome coor-
dinate information in NCBI annotation release 104. This 
new gene list was used in the comparison of WES and 
WGS and is ideal for coverage analysis of clinical WGS.

We also performed coverage analysis of the 12 down-
sampling samples of NA12878-1 and YH for CNVs 
described in the DECIPHER database (GRCh37_v9.29). 
Detailed information can be found in Additional file  2: 
Table S4.

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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CNV analysis
Unlike SNPs and indels, there is no perfect "gold stand-
ard" CNV dataset for benchmarking. In this study, to 
assess the recommended depth for proband-only WGS 
in clinical diagnostics, we evaluated the sensitivity of 
CNV detection using 3 CNV call sets of NA12878 from 
published papers [40–42]. CNV call set 1 was also used 
by Haraksingh et al. [40] for the benchmarking of CNV 
detection from 17 commercially available arrays and 
low-coverage WGS. CNV call set 2 was determined 
by a machine learning-based approach (svclassify) and 
obtained from the GIAB Consortium benchmark SV 
calls resource [41]. CNV call set 3 included 874 deletions 
detected by both reference-based (a custom pipeline and 
PBHoney using both raw and error-corrected reads) and 
assembly-based analysis via single-molecule technologies 
[42]. All 3 CNV call sets have been previously compiled 
from NA12878 for benchmarking and downloaded for 
further analysis in the current study (Additional file  2: 
Table S10).

In the 12 down-sampling samples of NA12878-1, 
CNVnator (v0.3.2) [28], BreakDancer (v1.4.5) [29] and 
LUMPY (v0.2.13) [30] were assessed for CNV detection 
sensitivity with default or recommended parameters. In a 
CNV call set, true positives were classified as CNVs with 
at least a 50% reciprocal overlap with CNVs in the call set 
(BEDTools) [43]. For benchmarking, we determined the 

number of gold standard CNVs detected in the 12 down-
sampling samples of NA12878-1 for the 3 CNV call sets.

Sensitivity and PPV of variant calls in the Chinese trios
To test the sensitivity and PPV of variant calls for trio-
based WGS, we investigated the sensitivity and PPV 
when taking advantage of the family-based trio infor-
mation in the Chinese trios. Using the segregation pat-
tern, we focused on the autosomes and X chromosome 
of NA24631, NA24694 and NA24695. Taking advantage 
of the family-based trio design, we analyzed all variants 
(DP ≥ 10X) of both parents, where one parent was con-
sistently called as homozygous for the reference allele 
and the other as homozygous for the alt allele. We then 
used the variant calls (SNPs and indels) in the offspring 
to test the sensitivity and PPV for these loci.

Results
Study design
To test the sensitivity and coverage of clinical WGS, the 
Genome in a Bottle (GIAB) sample HG001 (NA12878), 
HG005 (NA24631)/HG006 (NA24694)/HG007 
(NA24695) (known as the Chinese son/father/mother) 
and YH cell line (a human lymphoblastoid cell line 
from first Asian genome donor) [33] were collected and 
sequenced using the MGISEQ-2000 platform. All the 
samples used in this study are listed in Table 1.

NA12878-1 and YH
with high depth

Sensitivity and PPV
of variant calls

12 down-sampling samples
with increasing mean DP

(10X-150X)

Sensitivity of
CNV detection

Depth and breadth of
coverage analysis for

disease-associated genes
and CNVs

Recommended mean DP
for proband-only WGS

WGS (40X)

The Chinese trios

GQ and DP
distribution
analysis

Sensitivity
and PPV
analysis

Depth and breadth of
coverage analysis for

disease-associated genes
and CNVs

8 clinical cases Detection of disease-causing
variants Cost analysis

Sensitivity and PPV
among trios

WES (120X)

2 down-sampling
samples of
NA12878

Fig. 1  Study design
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Figure  1 shows the overall design of this study. 
First, to assess the recommended depth for proband-
only WGS in clinical diagnostics, the analysis of the 
sensitivity and positive predictive value (PPV) of 
high-confidence SNPs/indels, the sensitivity of CNV 
detection, and the depth and breadth of coverage for 
disease-associated genes and CNVs were performed 
using down-sampling samples of NA12878-1. Down-
sampling samples were randomly down-sampled to a 
certain sequencing depth using seqtk (https://​github.​
com/​lh3/​seqtk). The results of the sensitivity and 
PPV from a single genome may be difficult to gener-
alize to a range of samples [44]. Consequently, in this 
part, similar analyses were also performed for down-
sampling samples of another high depth sequencing 
sample of YH. After determining the recommended 
mean DP for the proband-only WGS, the Chinese trios 
(NA24631, NA24694 and NA24695) with the recom-
mended mean DP were used to test the sensitivity and 
PPV of trio-based WGS when taking advantage of the 
family-based trio design in clinical WGS. Using down-
sampling samples of NA12878-1 and NA12878-2, we 
also compared the performance of WES and WGS 
using the recommended mean DP. Finally, we analyzed 
8 clinical cases with known disease-causing variants 
using our WGS pipeline (Fig. 1).

Sensitivity, specificity, accuracy, and positive predictive 
value of variant calls
The mean DP was recognized as a general indicator of 
overall sensitivity for SNV/indel detection [4]. To reveal 
the sensitivity of proband-only WGS for SNP/indel 
detection, 12 down-sampling samples of NA12878-1 
with an increasing mean DP (10X–150X) were evaluated. 
For the 12 down-sampling samples of NA12878-1, we 
restricted the calculation of sensitivity and PPV of SNPs/
indels to the high confidence region (v3.3.2). GQ (≥ 20) 
and DP (≥ 10) were used to filter out variants with erro-
neous variant calls. As a result, when the mean depth is 
more than 40X, the sensitivity of detecting homozygous 
and heterozygous SNPs is more than 99.25% and 99.50%, 
the sensitivity of homozygous and heterozygous indels 
is more than 88.50% and 89.09%, respectively. We also 
restricted the calculation of specificity and accuracy of 
our method to the high confidence region. Both the over-
all specificity and accuracy of our method was more than 
99.99% when the mean depth was more than 40X. The 
PPV (high confidence region) for homozygous and het-
erozygous SNPs exceeded 99.97% and 98.96%, and the 
PPV for homozygous and heterozygous indels exceeded 
98.93% and 84.26%, respectively. Heterozygous indels 
showed the lowest PPV. Considering the sensitivity of 
SNP/indel detection and sequencing costs, a sequencing 

a

b

Fig. 2  Sensitivity and PPV of variant calls from 12 down-sampling samples of NA12878-1. a Sensitivity and PPV of SNP detection in down-sampling 
samples of NA12878-1; b sensitivity and PPV of indel detection in down-sampling samples of NA12878-1

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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depth of ~ 40X provided the best value for SNP/indel 
detection, as indicated by the trends in the sensitivity 
results (Fig. 2).

The sensitivity of homozygous and heterozygous SNPs 
exceeded 96.48% and 96.59%, and it reached a plateau 
even with a mean depth of only 20X. The sensitivity sig-
nificantly increased with sequencing depth from 10 to 
30X for both homozygous and heterozygous indels, but it 
reached a plateau at an ~ 40X mean depth. A mean depth 
of 40X could provide a percentage of more than 99.05% 
for sites covering more than 20X in the high confidence 
region. However, clinical scientist should know that, even 
with a DP of ~ 150X, the sensitivity and PPV is still not 
100%. With a DP of 150X, the sensitivity for homozy-
gous and heterozygous SNPs was 99.70% and 99.81%, and 
the sensitivity of homozygous and heterozygous indels 
reached 92.57% and 91.57% respectively. With a DP of 
150X, the PPV for homozygous and heterozygous SNPs 
was 99.97% and 98.82%, and the PPV for homozygous 
and heterozygous indels reached 99.61% and 81.42%, 
respectively.

The results from a single genome may be difficult to 
generalize to a range of samples [44]. Consequently, in 
this study, we also performed a sensitivity and PPV analy-
sis of SNPs (in the 1 M validated region) for down-sam-
pling samples of another high-depth sequencing sample 
of YH (Additional file 2: Table S1). In the 1 M validated 
region, the alleles were validated by the Illumina 1  M 
BeadChip [33], and similar results were obtained.

Sensitivity of CNV detection
To detect the sensitivity of proband-only WGS for CNV 
detection, the 12 down-sampling samples of NA12878-1 
(10X–150X) with increasing mean DP were evaluated. 
CNVnator (read depth) [28], BreakDancer (read pair) 
[29] and LUMPY (read depth and read pair) [30] were 
used for the detection of CNVs for the 12 down-sam-
pling samples. In this study, a total of 3 CNV call data-
sets were assessed. The overall sensitivity of CNVnator, 
BreakDancer and LUMPY of the 12 down-sampling sam-
ples for CNV call set 1 (BreakDancer only included the 
detection of deletions in CNV call set 1), CNV call set 2 
and CNV call set 3 is shown in Fig. 3. In general, CNV 
calling is reliable with an increasing DP (Fig.  3a–c). At 
increasing sequencing depths, the trends of the sensitiv-
ity curves for the 3 CNV tools were different from one 
another. CNVnator showed a wide range of sensitivity 
with varying DP, and the sensitivity visibly increased with 
the mean depth, indicating that the sensitivity of CNV 
detection was positively correlated with the sequencing 
depth.

We also observed that the size of the CNVs might influ-
ence the sensitivity of CNV tools. The performance of 
each tool varied along with the size of CNVs (Additional 
file 1: Figs. S1-S9). Taking the deletions in CNV call set 1 
as an example, the widely used tool CNVnator may not be 
suitable for CNV detection when the size of the CNV is 
less than 1 kb. When the CNV size was less than 1 kb, the 
sensitivity significantly increased with sequencing depth 
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from 10 to 30X but reached a plateau at a depth of ~ 40X 
(Additional file 1: Figure S10). This result indicated that 
when the CNV size was less than 1 kb, the detection rate 
was greatly influenced by the sequencing depth, which 
was less obvious when the CNV size ranged between 6 
and 70 kb. However, BreakDancer provided a better per-
formance for deletion detection for all CNV sizes. These 
results suggested that clinical scientists should pay more 
attention to the selection of CNV tools when focusing on 
different CNV sizes.

The selection of CNV call set and CNV detection tools 
may influence the sensitivity of CNV detection, mak-
ing the assessment of the recommended depth for CNV 
detection of proband-only WGS difficult. To investigate 
the minimum requirement of mean DP for CNV detec-
tion in proband-only WGS, using 3 CNV call sets (CNV 
call set 1, 2, 3) and the detection results of 3 CNV tools 
(CNVnator, BreakDancer and LUMPY), we defined a 
“miss detection index” (MDI) value in this study. The 
MDI value for a specific mean DP is defined as the fre-
quency when the specific mean DP shows the “lowest” 
sensitivity for a different CNV size in a CNV call set. 
Without regard to selection of the CNV call set and CNV 
detection tools, MID can be used to evaluate the recom-
mended depth for CNV detection of proband-only WGS.

In the formula, M indicates the number of times when 
mean depth i shows the “lowest” sensitivity of CNV 
detection, and N indicates the total number of times for 
all depths showing the “lowest” sensitivity of CNV detec-
tion. To obtain qualified CNV sizes in a CNV call set for 
evaluation, some criteria must be fulfilled for a CNV size 
(Additional files 1, 2). Detailed criteria and examples of 
the calculation of MDI can be found in the Additional 
files 1, 2.

As a result, the MDI value at a depth of 10X, 20X, 30X 
and 40X ranked first in the down-sampling samples of 
NA12878-1 (Fig.  3d–f). The 10X–40X accounted for 
more than 71.98% of the total depth. Taking together 
the sensitivity of detecting CNVs and sequencing costs, 
a sequencing depth of ~ 40X provided the best value for 
CNV detection, as indicated by the trends in the sensitiv-
ity curves (Fig. 3a–c).

Depth and breadth of coverage for disease‑associated 
genes and CNVs
Although WGS is better than WES for variation detec-
tion in patients with genetic disorders, the coverage of 
coding exons in key disease-associated genes of WGS 
has not been fully evaluated. To investigate the breadth 
of coverage of proband-only WGS for disease-associated 
genes, the breadth of coverage of 6 gene sets for the 12 
down-sampling samples of NA12878-1 (10X-150X) and 
YH with increasing mean depth were evaluated. For 

each exon of the coding genes, we calculated the percent 
of exonic bases covered at more than 10X depth, which 
was reported to provide 95% sensitivity for heterozygous 
SNVs in WES [4]. None of the 12 down-sampling sam-
ples of NA12878-1 and YH covered 100% of the coding 
exons in the 6 gene sets except for the ACMG59 gene 
set (Additional file 2: Table S2). The results obtained for 
the down-sampling samples of NA12878-1 appeared 
slightly better than down-sampling samples of YH, prob-
ably because of the total sequencing depth of NA12878-1 
(~ 197) and YH (~ 151). Across the 6 gene sets, a limited 
range of variation was found in the down-sampling sam-
ples when the mean depth was more than 40X (Addi-
tional file 2: Table S2).

Regarding the ACMG 59 genes, we also observed a 
range of variation in the breadth of coverage for the 12 
down-sampling samples. Thus, a mean depth of more 
than 70X for YH and 90X for NA12878-1 covered 100% 
for all the ACMG 59 genes. A mean depth of 30X to 50X 
has been most widely used for WGS [19, 20]. The pro-
portion of genes in the ACMG59 gene set covering 100% 
at ≥ 10X was 93.22%, 98.31% and 96.61% for NA12878-
1_30X, NA12878-1_40X and NA12878-1_50X (with 
mean depths of ~ 30X, ~ 40X and ~ 50X). For a mean 
depth of ~ 30X, ~ 40X and ~ 50X for YH, we observed that 
86.44%, 93.22% and 98.31% of the genes covered 100% at 
≥ 10X. The breadths of coverage were significantly better 
when the average sequencing depth was more than 40X 
(Fig. 4a). The sites of all genes covered more than 99.9% 
when the sequencing depth was ~ 40X. Interestingly, we 
also observed poorly covered RYR1 and TGFBR1 genes 
in this study (Fig. 4a) in comparison to a previously pub-
lished paper measuring the sensitivity and coverage of 
clinical WES [4], indicating that the poor coverage of 
RYR1 and TGFBR1 might be caused by the features of 
the gene regions and not the sequencing methods used. 
Clinical scientists must pay more attention to these genes 
when performing clinical WGS. Considering the cost of 
sequencing, a sequencing depth of ~ 40X provides the 
best value for the coverage of the ACMG 59 gene set, as 
indicated by the trends in breadth of coverage value of the 
ACMG 59 genes. We observed similar patterns for down-
sampling samples of YH (Additional file 2: Table S3). We 
also examined the percentage of genes at ≥ 20X coverage 
in the ACMG 59 gene set, which could provide 99% sen-
sitivity for heterozygous SNVs [4]. We found that 81.36% 
and 59.32% of the genes covered 100% for NA12878-1 
and YH when the mean DP was ~ 40X.

CNVs are another major part of human genetic varia-
tion, which are often found to be associated with human 
diseases. For the CNVs in the DECIPHER database, most 
CNVs could be well covered (more than 95% coverage) at 
a depth > 10X when the sequencing depth was 40X-50X 
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Fig. 4  Depth and breadth of coverage for disease-associated genes and CNVs. a Depth and breadth of coverage for disease-associated genes; b 
depth and breadth of coverage for CNVs
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for NA12878-1 (Fig.  4b). Clinical scientists should pay 
more attention to 22q11.2 distal deletion syndrome, Cat-
Eye Syndrome Type I and Miller-Dieker syndrome, which 
showed a coverage of 88.96%, 4.54% and 84.43% even 
with a sequencing depth of 100X. Similar patterns were 
also observed for down-sampling samples of YH (Addi-
tional file 2: Table S4).

Sensitivity and PPV among trios
The purpose of the analysis of trios was to test the sensi-
tivity and PPV when taking advantage of the family-based 
trio information in clinical WGS. Although the sequenc-
ing depth of the Chinese trio was more than 100, here 
we used down-sampling samples with a mean depth of 
44.00X, 43.77X and 43.05X for NA24631, NA24694 and 
NA24695, respectively. We concentrated on the depth 
of ~ 40X because the ~ 40X depth is the most widely used 
and recommended depth for WGS, which is also consist-
ent with some of our previous results, especially for CNV 
detection.

In this study, we took advantage of the family-based 
trio design (Fig. 5a) to calculate the sensitivity and PPV in 
high confidence regions (NISTv3.3.2/GRCh37) [32]. The 
analysis was restricted to variants with DP ≥ 10X and 
GQ ≥ 20 (Fig. 5a). We focused on the loci where one par-
ent was homozygous for the alt allele and the other was 
homozygous for the reference allele. For these variants, 
the offspring should be heterozygous, thus providing a 
new “gold standard set” for NA24631 (the offspring). In 
comparison to the high-confidence calls of NA24631 
provided by NIST (the high-confidence call set), the new 
gold standard set could be used to test the sensitivity and 
PPV for trio-based WGS. Figure 5b shows the results of 
the sensitivity and PPV of the “gold standard set” and the 

high-confidence call set for NA24631. As a result, the 
sensitivity of the “gold standard set” for SNP and indel 
detection was > 99.48% and > 96.36%, respectively, and 
the PPVs were 99.86% and 97.93%. Trio-based analysis 
showed great improvement for the PPV of indel detec-
tion (Fig. 5b), and PPV for indel detection improved from 
89.68% (using the high-confidence call set) to 97.93% 
(using the “gold standard set”).

WGS and WES
Here we evaluated the performance of WES (MGIEasy 
Exome FS Library Prep Set) and WGS (MGIEasy PCR-
Free DNA Library Prep Set) using DNA samples of 
NA12878. NA12878-1_40X and NA12878-2_120X for 
the evaluation. NA12878-1_40X was the down-sampling 
sample of NA12878-1 with a mean DP of 40X. NA12878-
2_120X was a down-sampling sample of NA12878-2 
with a mean DP of 120X, which is typical and the current 
standard for clinical WES [45]. Two quality parameters 
for variation detection (DP and GQ), sensitivity for SNV/
indel detection, and the breadth of coverage of the list of 
8394 putative disease-associated genes and CNVs were 
compared in this section.

DP and GQ are two main parameters assessing the 
quality of variant calls, which are often used to filter out 
variants with erroneous variant calls [27, 33]. First, we 
investigated the GQ and DP distribution of NA12878-
1_40X and NA12878-2_120X in the regions of the human 
genome covered by WES (59,082,036 bp). We found sim-
ilar results to those obtained in a previous WES study 
[10]. The distribution of DP for the variants had a wider 
range in NA12878-2_120X than in NA12878-1_40X 
(Additional file  1: Figure  S11), with a median depth of 
94X but a mode at 63X and 58X for SNPs and indels, 
respectively, indicating low levels of coverage for a sub-
stantial proportion of variants. In contrast, the distribu-
tion of DP was nearly normal for NA12878-1_40X, with 
a median at 42X and coinciding mode at 41X for both 
SNPs and indels (Additional file 1: Figure S11). The vast 
majority of variants called by NA12878-2_120X had a 
GQ close to 100 and fluctuated along with the GQ scores. 
The distribution of GQ for variants in NA12878-1_40X 
showed a mode in low GQ area (with a peak value close 
to GQ 41), which was probably caused by insufficient 
variant calls in the WES regions.

For the detection of SNVs and indels, “true posi-
tive” calls were further restricted to the regions of the 
human genome covered by WES (59,082,036  bp). A 
total of 44,726 variants were used for evaluation. DP 
and GQ filtering were not used in this part. In general, 
the sensitivity and PPV of WGS (NA12878-1_40X) were 
higher than WES (NA12878-2_120X) for the 44,726 
variants (Additional file 2: Table S5), except for the PPV 
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for homozygous indel detection. For 90.39% of the gold 
SNPs, WES and WGS yielded the same genotype. More 
than 63.41% of these concordant SNVs were identified 
as heterozygous, which was similar to those obtained in 
previous WES studies [4, 20, 46].

Then, we investigated the breadth of coverage of 
NA12878-1_40X and NA12878-2_120X in the 8394 
putative disease-associated genes and CNVs (DECIPHER 
database). As a result, WGS showed better coverage of 
both putative disease-associated genes and CNVs. More 
than 99.77% of the exon region sites of the 8394 putative 
disease-associated genes were covered with a depth ≥ 10 
for NA12878-1_40X, while NA12878-2_120X covered 
99.46% of the exon regions. NA12878-2_120X was poorly 
covered for CNVs in the DECIPHER database (Addi-
tional file  2: Table  S6). More than 69.69% of the CNVs 
showed a coverage less than 10%.

Analysis of 8 clinical cases with known disease‑causing 
variants
In this study, samples of 8 clinical cases with known vari-
ants of various types were recruited and reanalyzed using 
our WGS pipeline. All 12 variants (Additional file  2: 
Table  S7) were validated previously by methods other 
than MPS technology, including 8 SNVs, 3 indels and 1 
CNV. Seven and five variants were classified as patho-
genic and likely pathogenic, respectively, according to the 
ACMG guidelines for variant classification [22, 23].

Focusing on SNVs, indels and CNVs, we applied our 
method to the 8 clinical cases using singleton WGS. Vari-
ants were manually assessed for quality and interpreted 
according to the American College of Medical Genetics 
and Genomics (ACMG) guidelines for variant classifica-
tion [22, 23]. All the previously validated variants (Addi-
tional file  2: Table  S7) were successfully detected using 
our WGS pipeline, which further demonstrated the sen-
sitivity of the method.

Based on the sequencing DP, the average cost for the 
WGS approach was ~ $490 per sample for the 8 clini-
cal cases in the current study. The overall cost (from 
DNA extraction to reporting) for a single case with a 
mean sequencing depth of ~ 40X was approximately 
$600, including ~ $280 for chemicals (DNA extraction, 
library construction and sequencing), ~ $220 for labor, 
and ~ $100 for depreciation expenses.

Discussion
Thus far, more than 8000 Mendelian diseases have been 
recorded by OMIM (Online Mendelian Inheritance 
in Man), more than 5000 of which have a phenotype 
description and molecular basis. The rapid development 
of massively parallel sequencing (MPS) technology has 
revolutionized the field of genetic diagnosis in the clinical 

setting, making it possible for MPS to be a routine part 
of clinical care. The emergence of MPS technology makes 
multigene sequencing, exome level sequencing, and 
even genome level sequencing possible, which have been 
increasingly widely used in clinical diagnoses for genetic 
diseases. In this study, we performed a comprehensive 
analysis of the sensitivity and coverage of clinical WGS 
as a diagnostic test for genetic disorders. First, we ana-
lyzed the sensitivity and PPV value of high-confidence 
SNPs/indels, as well as the sensitivity of CNV detection, 
using down-sampled NA12878 and YH. A new MDI 
value was defined for the evaluation of CNV detection; 
then, we investigated the depth and breadth of cover-
age for disease-associated genes and CNVs in down-
sampling samples of NA12878 and YH. A new gene set 
and a CNV call set were generated during this process. 
Next, we compared the performance of WES and WGS 
for DNA samples of NA12878. We also tested the sen-
sitivity and PPV of variant calls when taking advantage 
of the family-based trio design in clinical WGS. Finally, 
we analyzed 8 clinical cases with known disease-causing 
variants using our WGS pipeline. The results suggested 
that WGS can be used in the detection of SNVs/indels/
CNVs with high sensitivity, and the current standard of a 
mean depth of ~ 40X may be a cost-effective sequencing 
depth for SNV/indel detection and the identification of 
most CNVs. WGS is likely to be widely used and become 
a routine part of clinical care in the near future.

Although a mean depth of 40X was recommended for 
clinical WGS in this study, certain disease-causing vari-
ants may be detected with low depth (Additional file  2: 
Table S7, 3 out of 12 variants with 17X). In real clinical 
setting, these variants will be caught and should be fur-
ther validated using methods other than MPS. Using 
the 12 down-sampling samples of NA12878-1, we found 
that a mean depth of 40X could provide a percentage of 
more than 99.05% for sites covering more than 20X in the 
high confidence region, which means that, even reach-
ing a mean depth of 40X, there are still sites with a depth 
of less than 20X. Variants called at these sites with low 
depth may be false positives, however, they will still be 
caught. Further interpretation of these variants should be 
conducted combined with the phenotype of the patient. 
If disease related or known diseasing causing mutations 
are found with low depth, further validation is recom-
mended to be conducted using methods other than MPS.

During the analysis of the PPV of indels in the high 
confidence regions, we detected a slight decline for het-
erozygous indels in the 12 down-sampling samples of 
NA12878 with the increase in DP. One reasonable expla-
nation is that with the increase in depth, both true posi-
tives and false positives increased. We found, however, 
that the false positives increased a little bit faster than the 
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true positives, and as a result, PPV declined. A massive 
scale p population-based polymorphism database and 
further filtering of the variants may be useful to solve this 
problem.

In addition to SNVs and indels, another major part 
of human genetic variation is copy number variation. 
According to clinical requirements, choosing suitable 
methods and tools for accurate and reliable detection 
of CNVs is important for clinical diagnostics. WGS can 
detect nearly all known genetic variations. However, 
our results indicated that, although CNV calling was 
reliable with increasing DP, the performance of CNV 
tools varied immensely. Finding the right tool for CNV 
detection is difficult for clinical scientists. Our results 
suggested that read pair methods (BreakDancer in par-
ticular) showed the best performance for the identifica-
tion of deletions of more than 1 kb. Moreover, although 
some “gold standard” CNV call set has been widely used 
in published papers [40–42], with the lack of validation of 
various methods, some CNVs may be false positives with 
inaccurate or low-resolution boundaries. Factors (such 
as CNV size and the selected “gold standard” set) may 
also influence the sensitivity of CNV detection, making 
it difficult to determine the sufficient DP for CNV detec-
tion. In this study, we introduced the concept of MDI to 
solve this problem. The MDI value for a specific mean DP 
is defined as the frequency when the specific mean DP 
shows the “lowest” sensitivity for different CNV size in a 
CNV call set, which was defined to evaluate the recom-
mended depth for CNV detection. Finally, we found that 
the current standard of a mean depth of 40X might be 
sufficient for the identification of most CNVs. Based on 
the results already obtained, MDI can be used to reflect 
the performance of CNV detection for certain CNV call 
sets and CNV tools. However, there are limitations of our 
analysis. First, MDI has not been validated elsewhere. 
Based on the definition of MDI, we can see that MDI is 
an objective value for the assessment of recommended 
depth for CNV detection. Lacking validation may block 
the application of MDI. Second, we only sampled a small 
number of CNV callers (CNVnator, BreakDancer and 
LUMPY). In a real clinical setting, the application of more 
than one CNV calling algorithm should be considered to 
improve the sensitivity of CNV detection. Analysis of the 
sensitivity of CNV detection with all available CNV tools 
would be an interesting research topic. In addition, we 
found that additional coverage is associated with an over-
all increase of the sensitivity for CNV detection; however, 
this is less obvious as the CNV size is more than 100 kb, 
as described in another published paper [26].

There is no perfect "gold standard" CNV dataset for 
benchmarking. Thus, in this study we compiled a list of 
2022 “likely true positives” from the 3 most commonly 

used CNV call sets of NA12878 from published papers 
[40–42] for benchmarking (Additional file  2: Table  S8), 
including 1912 deletions and 110 duplications. This new 
set represents a combination of the 3 CNV call sets after 
evaluation. For this new CNV call set, we defined true 
positives as the variants detected by at least one CNV 
tool (CNVnator, BreakDancer and LUMPY) with more 
than 50% reciprocal overlap and confirmed by visualiza-
tion of the copy ratio using an in-house script. This new 
set is an ideal “gold standard” CNV call set of NA12878 
for clinical WGS benchmarking.

When comparing the GQ and DP distribution of 
NA12878-1_40X (WGS) and NA12878-2_120X (WES), 
the regions were restricted to the human genome cov-
ered by WES (59,082,036 bp). In this region, NA12878-
2_120X detected 54,290 SNPs and 7918 indels, while 
NA12878-1_40X identified 53,107 SNPs and 6577 indels. 
High depth based WES method (NA12878-2_120X) 
detected more SNPs and indels than WGS based method 
(NA12878-1_40X). As is shown in Additional file 1: Fig-
ure S11, low levels of coverage for a substantial propor-
tion of variants were detected in NA12878-2_120X. 
Higher sensitivity for WGS (NA12878-1_40X) were 
also detected for the 44,726 variants (Additional file  2: 
Table  S5). One reasonable explanation for the differ-
ent "variation count" in NA12878-1_40X (WGS) and 
NA12878-2_120X (WES) is that, in the sites with low lev-
els of coverage in NA12878-2_120X, more false positives 
were called.

The turn-around time and cost of WGS are two 
key points for the clinical application of WGS. The 
entire workflow of this method lasts approximately 
11–12 days from the recruitment of sample to clinical 
reporting for one sample. BGI produced MegaBOLT 
(MegaBOLT bioinformatics analysis accelerator) along 
with the sequence platform MGISEQ-2000, which is an 
MGI self-developed and MPS-concentrated hardware 
accelerating system for bioinformatics analysis. Meg-
aBOLT supports the analysis of WGS and WES, and it 
is 20 times faster than the traditional GATK approach, 
which can be used to shorten the bioinformatics pro-
cess. Along with the development of automated diag-
nostic tools [47, 48], which could be used to prioritize 
patient phenotypes and expedite genetic disease diag-
nosis, the turn-around time of WGS could be further 
reduced. The overall cost, including chemicals, labor, 
and depreciation expenses for the WGS approach was 
$600 per sample (~ 40X depth). Sequencing accounted 
for nearly half of the total cost. In general, variant call-
ing is more reliable with increasing DP. However, there 
is a detection ceiling for some genes and/or regions 
(such as regions related to Miller-Dieker syndrome), 
which cannot be solved by increasing the sequencing 
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depth. The cost and sensitivity of WGS must be bal-
anced. Our results suggest that the current standard of 
a mean depth of 40X may be sufficient for the identifi-
cation of most SNVs and CNVs. Reduction of the cost 
and turn-around time would further improve the clini-
cal application of WGS.

Conclusions
In summary, the successful application of WGS as a 
diagnostic test for genetic disorders in the real clini-
cal setting requires a comprehensive assessment of the 
depth and breadth of coverage and the sensitivity of 
WGS. In this study, we observed variation in the detec-
tion of SNV/indel/CNV and substantial variation in 
the coverage of medically implicated genes and CNVs. 
In the real clinical setting, it would be advisable for 
clinical scientists to determine the range of sensitivity 
and PPV for different classes of variants for a particu-
lar WGS pipeline, which would be useful when inter-
preting and delivering clinical reports. We believe that 
WGS is likely to change the clinical diagnosis of rare 
and undiagnosed diseases in the near future.
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