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Abstract 

Background:  Tumor molecular profile analysis by Next Generation Sequencing technology is currently widely 
applied in clinical practice and has enabled the detection of predictive biomarkers of response to targeted treatment. 
In parallel with targeted therapies, immunotherapies are also evolving, revolutionizing cancer therapy, with Pro‑
grammed Death-ligand 1 (PD-L1), Microsatellite instability (MSI), and Tumor Mutational Burden (TMB) analysis being 
the biomarkers employed most commonly.

Methods:  In the present study, tumor molecular profile analysis was performed using a 161 gene NGS panel, 
containing the majority of clinically significant genes for cancer treatment selection. A variety of tumor types have 
been analyzed, including aggressive and hard to treat cancers such as pancreatic cancer. Besides, the clinical utility of 
immunotherapy biomarkers (TMB, MSI, PD-L1), was also studied.

Results:  Molecular profile analysis was conducted in 610 cancer patients, while in 393 of them a at least one bio‑
marker for immunotherapy response was requested. An actionable alteration was detected in 77.87% of the patients. 
54.75% of them received information related to on-label or off-label treatment (Tiers 1A.1, 1A.2, 2B, and 2C.1) and 
21.31% received a variant that could be used for clinical trial inclusion. The addition to immunotherapy biomarker to 
targeted biomarkers’ analysis in 191 cases increased the number of patients with an on-label treatment recommenda‑
tion by 22.92%, while an option for on-label or off-label treatment was provided in 71.35% of the cases.

Conclusions:  Tumor molecular profile analysis using NGS is a first-tier method for a variety of tumor types and 
provides important information for decision making in the treatment of cancer patients. Importantly, simultaneous 
analysis for targeted therapy and immunotherapy biomarkers could lead to better tumor characterization and offer 
actionable information in the majority of patients. Furthermore, our data suggest that one in two patients may be eli‑
gible for on-label ICI treatment based on biomarker analysis. However, appropriate interpretation of results from such 
analysis is essential for implementation in clinical practice and accurate refinement of treatment strategy.
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burden, PD-L1, Microsatellite instability

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
In recent years, technological advances and active 
research have permitted extensive tumor molecular char-
acterization and have revealed a variety of tumorigenic 
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pathways presenting tumor-specific alterations. These 
distinctive molecular characteristics of cancer cells can 
be targeted as they represent the malignant cell’s Achille’s 
heel, without affecting the healthy ones. To this regard, 
of great importance was the previous knowledge gained 
by large scale studies that used various, advanced tech-
nologies to obtain a comprehensive understanding of the 
tumor molecular profile [1].

Tumor molecular profile is nowadays becoming a 
reality mainly due to the increased availability, with 
concomitant reduction of cost of the Next Generation 
Sequencing technology (NGS) technology. The term per-
sonalized medicine in anticancer treatment has emerged, 
indicating the need to treat each patient based on his/her 
tumor’s specific characteristics [2]. The individualization 
of treatment strategy entails the use of biomarkers that 
are those quantifiable characteristics that can be related 
to cancer prognosis and prediction of treatment response 
[2–4].

Currently, NGS analysis of more than 35 genes is 
mandatory for approved targeted treatment selection in 
several neoplasias [4]. Furthermore, over 200 ongoing 
clinical trials are investigating the clinical utility of novel 
biomarkers, leading to additional biomarker approval 
each year (www.​clini​caltr​ials.​org). Various studies have 
also shown the clinical benefit obtained using gene-
directed treatment in comparison to unselected treat-
ment assignment for patients with metastatic tumors 
[5–7]. Thus, the abundance of treatments with approved 
gene targets available alongside the often low tissue avail-
ability, entails the simultaneous analysis of biomarkers 
using multigene panels for various tumor types such as 
lung cancer, colorectal, gastrointestinal, ovarian, breast 
prostate cancer and others [3, 4, 8]. Besides, tumor 
agnostic therapies approvals, with biomarkers associated 
independently form tumor type, have also boosted the 
number of genes that should be analyzed when targeted 
treatment is considered [9]. It is thus apparent that in the 
era of personalized treatment, single or few gene analysis 
is no longer recommended, leading to missing treatment 
options for cancer patients.

Moreover, even in the absence of biomarkers associ-
ated with on-label treatments, a broad molecular profile 
analysis could lead to the detection of an approved bio-
marker for a different tumor type, giving the option of 
off-label treatment selection or enrolment in an ongoing 
clinical trial. To this regard, the contribution of active 
research for the identification of actionable alterations is 
enormous and has led to the discovery of new agents tar-
geting genes previously known for their important role in 
oncogenesis but without predictive utility. A major para-
digm of such gene is KRAS that has been considered for 
decades not targetable, while recent studies have shown 

that certain frequently detected KRAS alterations, such 
as the G12C mutation, can be targeted efficiently lead-
ing to an eventual upcoming FDA approval of new inves-
tigational treatments showing efficiency at this regard 
[10–12].

The number of laboratories applying high throughput 
sequencing analysis is continuously increasing, in parallel 
with the increased request by the clinicians for such anal-
ysis. The frequently insufficient amount of good quality 
tissue specimen, coupled with the increasing number of 
approved targeted agents, make the simultaneous analy-
sis of multiple biomarkers using multigene panels imper-
ative. Thus, advanced technology solves one of the most 
significant limitations of tissue testing. It is nevertheless 
noteworthy that, the optimal paraffin embedding proce-
dure remains crucial for obtaining accurate NGS results 
[13, 14].

Currently, in parallel with targeted therapies, an 
increasing armamentarium of immunotherapy agents is 
also emerging, revolutionizing cancer therapy. The high 
cost and toxicity that often accompanies immunothera-
peutic agents mandate the use of appropriate biomarkers 
for selecting patients more likely to benefit from them.

The most widely used biomarker is currently PD-L1 
expression, assessed by Immunohistochemistry (IHC) 
[15]. However, it is well known that this is not an ideal 
biomarker since it is not related to treatment response in 
many tumor types, while it is clearly not the sole predic-
tor of response to check point inhibition. Moreover, even 
for those tumors with a proven utility for PDL-1 IHC 
testing, such as lung cancer, several questions regarding 
methodology and cut offs remain [15, 16].

Additionally, microsatellite instability (MSI) has also 
been associated with response to anti-PD-L1 treatment 
with pembrolizumab receiving approval for MSI-H 
tumors [17–19]. Of note, MSI was the first tumor agnos-
tic biomarker that had ever shown efficiency regardless of 
tumor type. However, the presence of MSI varies among 
tumor types with the rate of MSI-H tumors ranging from 
10 to 15% for colon cancer to 0% in others such as lung 
cancer [20]. Thus, still, the majority of responders will not 
be identified by it. Hence, the enrichment of biomarkers 
for the identification of patients eligible for immunother-
apy administration is required.

Several additional biomarkers of immune response 
have been proposed and are currently under investigation 
while it seems that their combined use could increase the 
predictive value of the information obtained [21, 22]. 
Among the most studied ones is the analysis of Tumor 
Mutational Burden (TMB) that measures the number 
of somatic mutations present in a tumor sample. It has 
been shown in several studies and clinical trials that the 
greater the number of somatic alterations identified the 
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greater the probability of response to immune treatment 
[23–25]. It has been reported that TMB cutoff values 
associated with improved survival from immunotherapy 
treatment vary significantly between cancer types [25]. 
Nevertheless, in the majority of studies and clinical trials, 
a cut off of 10 muts/MB is used [26–28]. Furthermore, 
the clinical utility of TMB as a predictive biomarker for 
anti-PD1 treatment administration has been shown in 
the KEYNOTE 158 study leading to the tumor agnostic 
approval by the USA FDA of pembrolizumab for meta-
static untreatable solid tumors with tissue TMB value 
of ≥ 10 muts/MB [29].

The present study aimed to reveal the applicability 
and utility of tumor profile analysis in clinical practice, 
using a pan-cancer NGS panel for cancer treatment 
selection. The panel used in this study analyses 161 sin-
gle genes using the Oncomine Technology (Thermo Fis-
cher Scientific) and was selected based on the amount of 
actionable information contained, the robustness of the 
assay and its relatively low cost, which enables its use 
in clinical practice. A variety of tumor types have been 
analyzed, including aggressive and hard to treat cancers 
such as pancreatic cancer. Moreover, the clinical utility of 
immunotherapy biomarkers (TMB, MSI, PD-L1) was also 
explored.

Methods
Patients
In the present study, 629 cancer patients were referred by 
their treating oncologist for extensive molecular profile 
analysis from November 2017 to April 2020. All patients 
participating in the study provided written informed 
consent. Information concerning sex, age, and tumor 
histology was accessible, while the pathology report was 
available in all cases. In addition to molecular analysis 
for targeted treatment selection, analysis for at least one 
immunotherapy biomarker (PDL-1, MSI, TMB) was also 
requested in 395 patients. The analysis was performed 
using the most recent tissue specimen available.

Tissue selection and nucleic acid isolation
Genomic DNA and RNA were isolated from formalin-
fixed and paraffin-embedded (FFPE) tumor biopsies 
using the MagMAX™ Total Nucleic Acid Isolation Kit 
(Thermo Fischer Scientific) according to the Manufac-
turer’s instructions. The nucleic acid isolation was con-
ducted in the areas of the FFPE block with the majority 
of tumor cell content (TCC), as indicated by experienced 
pathologists in Hematoxylin and eosin-stained sections. 
Minimum required TCC was over 20%, in a tumor area 
of > 4mm2.

Next Generation Sequencing
Whenever tumor molecular profile analysis for targeted 
therapies was requested, the Oncomine Comprehensive 
Assay v3 (OCAv3) (Thermo Fischer Scientific) was per-
formed, which is an amplicon based targeted NGS assay. 
This assay allows the identification of various muta-
tion types such as Single nucleotide Variants (SNVs), 
insertion-deletions (indels), Copy Number Variations 
(CNVs), and gene fusions, from 161 unique genes. Run 
metrics were accessed in the Torrent Suite™ software, 
using the coverage analysis plugin v5.0.4.0. NGS data 
analysis was completed with the Ion Reporter™ 5.10.1.0 
software (Thermo Fisher Scientific) using the manufac-
turer’s provided workflow (Oncomine Comprehensive 
v3-w3.2-DNA and Fusions-Single Sample). Furthermore, 
the analysis software Sequence Pilot (version 4.3.0, JSI 
medical systems, Ettenheim, Germany) was used for vari-
ant annotation. Sequencing data were aligned against the 
human reference assembly GRCh37/hg19.

Tumor Mutational Burden analysis was carried out 
using the Oncomine Tumor Mutation Load Assay 
(Thermo Fischer Scientific). This is a targeted NGS assay, 
with 1.65 MB of genomic coverage (1.2 MB exonic) that 
analyzes 409 genes to provide accurate quantitation of 
somatic mutations used for tumor mutation burden cal-
culation, in FFPE tissues.

TMB was calculated using the Ion reporter pipeline 
that utilizes a custom variant calling and germline vari-
ant filtering to accurately calculate the number of exonic 
somatic mutations per MB (Oncomine Tumor Mutation 
Load-w2.0-DNA-Single Sample).

Microsatellite analysis was conducted using the Ion 
AmpliSeq™ Microsatellite Instability Panel (Thermo Fis-
cher Scientific) which is an NGS based assay analyzing 76 
markers to assess Microsatellite Instability (MSI) status 
in tumor-only and tumor-normal samples as indicated 
by the manufacturer. Analysis of the sequencing out-
put from this panel was carried out using the “MSICall” 
plugin in the Torrent Suite.

Variant classification
Variants were classified according to their predictive 
value using the four-tiered system jointly recommended 
by the Association for Molecular Pathology (AMP), the 
American College of Medical Genetics (ACMG), the 
American Society of Clinical Oncology (ASCO) and the 
College of American Pathologists (CAP) for the classifi-
cation of somatic variants [30]. The Joint consensus rec-
ommendation system proposed by these major scientific 
institutions classifies the variants based on their clinical 
significance in 4 tiers 1–4. Tier 1 variants are of the most 
substantial clinical significance and are subdivided to 
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those related to sensitivity or resistance to FDA approved 
treatments (Tier 1A.1), those proposed by professional 
guidelines to have predictive value (Tier 1A.2), and those 
with a strong consensus concerning their predictive sig-
nificance (Tier 1B). The Tier 2 class involves biomarkers 
with potential clinical relevance. It can be subdivided in 
variants related to an approved treatment for a different 
tumor type (Tier 2C.1), variants related to investigational 
treatments that can be used as an inclusion criterion for 
patients’ enrollment in clinical trials (Tier 2C.1), and 
variants that have shown predictive value in preclinical 
studies (Tier 2D). Finally, the 3 and 4 Tiers, include bio-
markers of unknown clinical significance and the benign 
or likely benign ones respectively [30, 31].

Gene panel comparison
The clinical utility of the 161-gene panel used in this 
study was assessed by comparison with gene panels com-
prising a smaller number of genes. For this purpose, we 
selected two hotspot panels of 24 and 50 genes, respec-
tively, that have been previously used both in our labo-
ratory and in several publications for routine access to 
predictive biomarkers in various tumor types [32–36]. 
Thus, we compared the alterations that would have been 
detected in our cohort if the analysis was performed by 
these panels instead of the broader panel used. (Addi-
tional file 1: Table S1). Both smaller panels also included 
the analysis of 6 fusion driver genes (ALK, ROS1, RET, 
NTRK1, NTRK2 and NTRK3) analyzed at the RNA level.

Furthermore, in order to  investigate  if the number of 
genes analyzed is adequate for implementation in clinical 
practice, or if by increasing the number of genes tested 
a more informative result could be retrieved, we com-
pared the actionability of the results obtained from this 
panel to those obtained using a more comprehensive 
tumor panel that utilizes the same NGS technology. The 
panel implemented for this evaluation was the Oncomine 
Comprehensive plus assay (Thermo Fischer Scientific) 
that analyses the full coding sequence of 313 genes, hot-
spot analysis of 169 genes, CNV of 313 genes (most of 
them also analyzed for SNV and indels). Furthermore, 
it includes RNA analysis for 51 fusion driver genes (38 
of them also analyzed at the DNA level), adding up to a 
total of 514 unique genes present in this panel. The intra-
panel comparison was performed through a retrospective 
analysis of genomic data from The Pan-cancer Analysis of 
Whole Genomes (PCAWG) study [37].

The web-based Xena Browser  was used for visualiza-
tion and exploration of the data [38, 39]. More specifically 
available data sets from specimens with coding driver 
alterations information, including single nucleotide vari-
ations (SNVs) and small insertions-deletions (indel) and 
with consensus whole-genome copy number data as well 

as consensus fusion calls were downloaded and explored. 
The 990 specimens with information concerning all 
three types of alterations available were selected. Subse-
quently, we simulated the results that would have been 
obtained if this analysis had been performed using the 
gene sets included in the aforementioned panels and we 
explored the magnitude of the clinically actionable infor-
mation obtained in each case. Variant classification and 
biomarker interpretation were performed as described 
above. For the copy number variation analysis, only the 
43 genes of the Oncomine Comprehensive Panel v3 and 
the 333 of the Oncomine comprehensive plus panel with 
focal Copy Number Variations were included. In order 
to resemble the cutoff values used in everyday practice 
in our laboratory, a threshold of > 7 copies was used for 
considering a sample positive for copy number amplifi-
cation and a threshold of < 1 copy for considering a gene 
loss [40].

PD‑L1 expression by immunohistochemistry
For the majority of tumors analyzed (such as lung, colo-
rectal, pancreatic and ovarian cancer) as well as for 
tumors of unknown primary origin, the level of PD-L1 
protein expression was defined as the percentage of via-
ble tumor cells (TC) showing partial or complete mem-
brane staining at any intensity. Furthermore, in some 
cases, the percentage of tumor Infiltrating Immune Cells 
(IC) showing staining at any intensity was also calculated 
[41–43]. In case of bladder, urothelial, and cervical car-
cinomas, PD-L1 was calculated through the Combined 
Positive Score (CPS) which is the percentage of positive 
cells (tumor, lymphocytes, and macrophages) showing 
partial or complete membrane staining at any intensity 
[44, 45]. In case of Head and Neck Squamous Cell Carci-
noma, both CPS and TC values were calculated [46]. The 
analysis was conducted using the Immunohistochemis-
try (IHC) assay VENTANA PD-L1 (SP263) Assay (Roche 
Diagnostic) that utilizes the Monoclonal Mouse Anti-
PD-L1, Clone SP263 accompanied by OptiView DAB 
IHC Detection Kit on a VENTANA BenchMark Series 
automated staining instrument.

For breast cancer patients, the VENTANA Monoclonal 
Mouse Anti-PD-L1, Clone SP142 antibody was used. The 
level of expression of the PD-L1 protein was defined as 
the percentage of tumor-infiltrating Immune Cells show-
ing staining at any intensity [47].

Physicians survey
In order to investigate the utility of a multi-biomarker 
analysis in clinical practice and if the results obtained 
from such approach have an impact in clinical decision 
making, a questionnaire was given to the referring oncol-
ogists, asking whether based on their experience, they 
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consider such analysis useful for patients with the follow-
ing tumor histological type:

Lung, Colorectal, Breast, Ovarian, Prostate, and rare 
or unknown origin tumors. It was a multichoice survey 
with the following options of response: (a) Useful, (b) in 
the metastatic setting only (c) not useful and (d) I do not 
know/not respond.

Statistical analysis
Fisher’s Exact Test was used to compare the median TMB 
values and the percentages of TMB positivity of selected 
groups of patients (PD-L1 positive/negative, MSI-high/
MSS) with SPSS (version 20. IBM SPSS STATISTICS). 
The p-values were based on Fisher’s Exact Test. A p 
value < 0.05 was considered to be statistically significant. 
Box plots were created using the Plotly.js charting library.

Results
Molecular analysis for targeted therapy
In the present study, 629 tumor tissues were subjected to 
targeted treatment biomarkers’ analysis, using a 161 gene 
NGS panel. Successful molecular analysis was achieved 
in 610 of the 629 patients analyzed, while in 19 (3.03%) 
cases, no results could be obtained due to low DNA/RNA 

quality or quantity. The tumor types analyzed included 
common tumor types with targeted treatment available, 
such as lung, breast and colorectal cancer, but also vari-
ous hard to treat diseases such as pancreatic, ovarian, 
prostate, brain cancers, sarcomas, cholangiocarcinomas, 
and others (Fig. 1).

In total, 936 pathogenic variants in 112 genes were 
detected in 472 patients (Additional file 2: Table S2). Of 
those, 85.15% were single nucleotide Variants (SNVs) or 
a small insertions-deletions (indels) detected at the DNA 
level, while 3.31% of the variants concerned gene fusions 
and 11.54% Copy Number Variations (CNVs). 11.22% 
of the 936 variants identified were classified as Tier 
1, 86.65% of them as Tier 2 and 2.14% as Tier 3 (Fig. 2, 
Additional file  3: Table  S3). At least one variant was 
detected in 78.52% of the cases. 34.98% of the individu-
als analyzed carried one genomic alteration, while 23.81% 
and 19.87% carried two and three or more mutations 
respectively. The main reason for multigene test request 
was the assignment of the appropriate treatment based 
on patients’ molecular profile. Thus, patients were appor-
tioned based on the clinical significance of the altera-
tions detected. In the case of multiple mutations present 
in the same patient, the variant with the highest level of 

Fig. 1  Tumor histological types analyzed by NGS
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evidence (LoE) was used for establishing the patient’s 
category. Using this biomarker-defined categorization, 
54.75% of the patients analyzed received information that 
is related to on-label or off-label treatment (Tiers 1A.1, 
1A.2, 1B, and 2C.1). Additionally, the variant detected 
could be used as a criterion for inclusion in clinical tri-
als (2C.2) or is under investigation in preclinical stud-
ies (2D) in 21.48% and 1.80% of the cases respectively. 
Furthermore, 5.90% of the patients harbored a variant 
associated with resistance to treatment (1A.1R, 1A.2R) 
(Fig. 3). As expected, the most frequently mutated gene 
in this cohort was the gatekeeper TP53 gene, followed by 
the KRAS and PIK3CA genes. These genes were mutated 
in 36.39%, 24.75% and 10.98% of the patients, respectively 
(Fig.  4). Furthermore, 7.05% of the patients carried an 
alteration in a gene involved in the homologous recom-
bination pathway. This type of alterations could be used 
as predictive biomarkers of response to PARP inhibitors 
(PARPi) treatment [48, 49].

Tissue specific tumor molecular profile
In order to evaluate if molecular profile analysis is more 
useful in specific tumor types compared to others, the 
mutation frequency and clinical significance of the vari-
ants detected were calculated for the most common 
tumor types analyzed in our cohort (Additional file  4: 
Table S4).

Pancreatic cancer
In the present study, 118 patients undertaking tumor 
molecular analysis had a diagnosis of pancreatic cancer. 
KRAS mutation was the prevalent mutated gene in this 
tumor type, with a mutation frequency of 74.57%. In 
64.41% of the patients, an alteration in this gene was the 
finding with the higher LoE. However, other gene altera-
tions with predictive value (2C.1) coexisted in 10.16% of 
the KRAS mutant patients. Moreover, in 6 cases (5.08%), 
the mutation detected was in an HR gene (1 ATM, 2 
PALB2, 1 CDK12, 1 FANCA, 1 NBN) with evidence of 

Fig. 2  Tier Classification of the 936 pathogenic variants identified in the 610 tumors analyzed based on their predictive value. 1A.1: Biomarkers 
related to on-label treatment, 1A.2: biomarkers included in guidelines, 1B: biomarkers with strong evidence of correlation to treatment, 2C.1: 
biomarkers related to off-label treatment, 2C.1: biomarkers related to clinical trials, 2D: biomarkers with preclinical evidence of actionability, 3: 
biomarkers with unknown actionability
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response to PARPi. Additional variants with associated 
off-label treatments were detected in FGFR1 & 4, HER2, 
MET, PIK3CA and POLE genes (Fig. 5, Additional file 5: 
Figure S1).

Furthermore, 2 patients (1.69%) carried a somatic 
mutation related to an on-label drug or with strong evi-
dence of actionability. These mutations were detected 
in genes of the mismatch repair complex (MLH1 and 
MSH2) and were indicative of microsatellite instability 
and thus response to immunotherapy.

Lung cancer
In the 67 Lung cancer, patients tested an altera-
tion was detected in 86.57% of the cases (Fig.  5). The 
variant identified was related to an FDA approved 
treatment in 20.89% of the patients. These variants con-
cerned  EGFR,  BRAF  (p.V600) and  HER2  mutations in 
percentages of 8.96%, 4.48% and 1.49%, respectively. 
Moreover,  ALK  and RET translocations were detected 
in 1.49% and 4.48% of the cases, respectively. EGFR TKI 
resistance conferring KRAS  mutations (Tier 1A.2) were 
detected in 26.87% of the cases. Apart from these estab-
lished biomarkers, the expanded gene panel analysis was 
able to detect additional mutations in multiple other 
genes with 2C.1 evidence of predictive value in 16.42% of 
the cases (Additional file 6: Figure S2). Unexpectedly, 6 of 
the patients (8.95%) carried a mutation in a gene related 
to PARP inhibitor therapy.

Breast cancer
In the 62 Breast Cancer Patients included in our cohort, 
a pathogenic variant was found in 80.65% of the cases. 

Fig. 3  Patients categorization in the entire cohort based on the 
most clinically significant variant detected. In the case of multiple 
mutations present in the same patient, the variant with the higher 
level of evidence was used for establishing patient’s category. 1A.1: 
Biomarkers related to on-label treatment, 1A.1R: biomarkers related 
to resistance to an on-label treatment, 1A.2: biomarkers included 
in guidelines, 1A.2R: biomarkers related to resistance in a treatment 
included in guidelines, 1B: biomarkers with strong evidence of 
correlation to treatment, 2C.1: biomarkers related to off-label 
treatment, 2C.1: biomarkers related to clinical trials, 2D: biomarkers 
with preclinical evidence of actionability, 3: biomarkers with unknown 
actionability, no biomarker: patients with no biomarker available. In 
the case of colorectal cancer patients, the clinical significance of the 
RAS wild type phenotype was not considered in this figure

Fig. 4  The Top 20 most frequently altered genes in the cohort analyzed
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A Tier 1 variant was detected in 41.94% of the patients, 
while in 9.68% a Tier 2C.1 variant, related to off-label 
treatment, was identified. The most prevalent altered 
gene in these patients was the PIK3CA gene, with 33.87% 
mutation rate. Additionally, an HR gene alteration was 
present in 9.68% of the tumors analyzed (Additional 
file 7: Figure S3).

Other cancers
In the 44 patients with Colorectal cancer, the muta-
tion rate was  84.09% (Fig.  5, Additional file  8: Figure 
S4). Eighteen patients (40.91%) carried a mutation in 
one of the RAS genes which are biomarkers of resist-
ance to EGFR antibodies treatment [50, 51]. Additionally, 
three patients carried a  targetable BRAF  somatic muta-
tion. One PMS2 positive tumor mutation was proven to 
be of germline origin, and thus it was considered eligible 
for immunotherapy treatment. Tumor analysis is essen-
tial for patients with colorectal carcinoma, because it 
provides Tier 1 information on treatment strategy in all 
cases. Thus, treatment can be directed toward EGFR anti-
body therapy in the presence of a wild-type KRAS/NRAS 
gene finding or toward alternative treatment options if a 
mutation is detected.

Among the 35 patients with prostate cancer, at least 
one somatic alteration was identified in 74.29% of them 
(Fig. 5). In 6 cases, the mutation detected was in an HR 
gene (17.14%). Furthermore, 87.88% of the 33 patients 
with ovarian cancer, carried at least one somatic altera-
tion. Four patients carried a mutation in BRCA1/2 genes, 
which are biomarkers of response to PARPi therapy, 
while in four patients, somatic mutations in off-label 
biomarkers were identified. Concerning brain tumors, 
the mutation rate was 83.33%. An alteration with asso-
ciated potentially significant predictive biomarker was 
detected in 13 patients (72.22%) (Fig. 5). However, in this 
tumor histology, the multigene analysis seems to confer 
not only predictive but also prognostic/diagnostic infor-
mation  [52, 53]. Genes with diagnostic significance are 
used by the World Health Organization Classification 
of Tumors of the Central Nervous System. For example, 
IDH1 and IDH2 mutations are used for distinguishing 
primary from secondary gliomas, while the simultaneous 
presence of IDH1/2 and TP53 alterations are distinctive 
of the diffuse astrocytoma histology [52].

Concerning the other histological types, even if the 
number of patients tested is small, it seems that in 
tumors of the endometrium (18 cases), esophagus (8 
cases) and cholangiocarcinoma (25 cases) the mutation 

Fig. 5  Mutation Rate and patients’ categorization based on the Tier classification of the most clinically significant variant for each tumor histology. 
The following categories were used: 1A/1B: patients harboring alterations that are biomarkers for on-label treatments or with strong evidence 
of predictive value for an on-label treatment (Tier 1), 2C.1: patients with biomarkers related to off-label treatment, 2C.2: patients with biomarkers 
related to clinical trials, 2D: patients with biomarkers with preclinical evidence of predictive value, 3: patients harboring alterations with conflicting 
evidence of cancer association. B. Percentage of patients with On-label and off-label mutations identified and the type of alterations detected. 
Genes of the homologous recombination complex are labeled in blue.
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rate is relatively high (94.44%, 75.00% and 72.00% respec-
tively). On the contrary low mutation rates are observed 
in gastric tumors (35 cases), hepatocellular carcinomas 
(10 cases) as well as in the 34 sarcomas analyzed (65.71%, 
50.00% and 47.06% respectively).

Panel comparison
The genetic information obtained by the 161 gene panel 
used in this study compared to that obtained from pan-
els containing fewer genes was evaluated. At this regard, 
we conducted a comparison of the alterations that would 
have been detected if two smaller hotspot panels, of 
24 and 50 genes respectively, had been used in the 610 
patients analyzed (Additional file 9: Table S5).

If the 24 gene panel had been used in our cohort, a 
clinically significant variant (Tier 1 and 2) would have 
been detected in 58.85% of the cases. In comparison, 
this percentage would have been 62.62% by using the 50 
gene panel. However, these rates are much lower than 
the 77.87% obtained by the 161 gene panel. Furthermore, 
considering the on-label and off-label biomarkers, the 
larger panel managed to detect 13.94% and 10.98% more 
on/off-label treatment-related biomarkers compared to 
the 24 and 50 gene panel respectively (Fig. 6).

In order to evaluate if the number of genes analyzed is 
adequate for implementation in clinical practice, or if by 
increasing the number of genes tested a more informa-
tive result would have been obtained, we compared the 
actionability of our panel with a more comprehensive 
panel containing 501 DNA genes and 51 fusion drivers 
genes (38 of them also analyzed at the DNA level), for 
a total of 514 unique genes present in this panel (Addi-
tional file 10: Table S6, Additional file 11: Table S7).

Among the 990 patients with DNA sequencing results 
available, an SNV or indel alteration to a driver gene was 
obtained in 90.4% (895/990) of the cases using the whole 
genome sequencing approach of the study. In comparison 
the 161 gene panel would have detected such alterations 
in 72.12% of the patients and the larger panel 83.03%. 
At least one Copy Number Variations would have been 
detected in 29.09% and 47.37% of the cases by the smaller 
(161 genes) and bigger panel (500+ genes) respectively. 
Both panels would have detected a fusion driver gene in 
7.68% of the cases.

Considering all type of alterations (SNV, indel, CNV, 
gene fusion), at least one actionable alteration would have 
been identified in 80.00% of the samples if the 161 gene 
panel was used and in 90.10% of them if the 514 gene 
panel was implemented for the analysis (Fig. 7). Further-
more, at least one clinically relevant biomarker, related 
to on/off-label treatment or to clinical trials would have 
been detected in 78.28% and 85.56% of the cases by the 
161 and the 514 gene panels respectively.

Thus, the increase in the number of genes analyzed 
seems to increase the yield of patients who could benefit 
from targeted treatments.

Physicians survey
Additionally, in order to investigate the implementation 
of tumor molecular profile analysis among physicians, 
a questionnaire was sent to referral oncologists asking 
whether they consider useful, such analysis for treat-
ment decision making in various tumor types. 61 physi-
cians responded to the survey. By far, the tumor type with 
the majority of positive responses was lung cancer, with 
100% of the physicians responding that multigene panel 
should be performed for such tumor type (Table 1).

Fig. 6  Simulation of patients’ biomarker-defined categorization based on their most clinically significant variant when the analysis is performed 
using either the 161 or the 50 or the 24 gene panels. The following categories were used: 1A/1B: patients carrying Tier 1 alterations, 2C.1: patients 
with 2C.1 alterations, 2C.2/2D Patients with 2C.2 or 2D alterations
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For colorectal cancer patients, a multigene analysis was 
considered useful in the primary or metastatic setting by 
95.08% of the participants. For breast, ovarian, prostate 
and pancreatic cancers, the NGS utility was recognized 
by 80.33%, 80.32%, 90.16% and 95.08% of the participants 
respectively.

Immunotherapy biomarkers analysis
Tumor testing can give information for the selection 
of both appropriate targeted treatment and immuno-
therapy. The most known immunotherapy biomarkers 
are TMB, PD-L1 and MSI analysis. In the cohort of 610 
patients with successful NGS testing for targeted therapy, 
395 also requested TMB analysis. PD-L1 testing was per-
formed in 198 cases, and MSI analysis in 206 patients. 
In 204 cases, all three immunologic biomarkers were 

analyzed (Additional file  12: Table  S8) with successful 
analysis for all of them achieved in 191 cases.

Tumor Mutation Burden
Among the 395 patients with TMB analyzed, 14 cases 
(3.54%) could not receive a result due to the low quality of 
the genetic material analyzed. In these cases a high pro-
portion (> 60) of variants consistent with de-amination 
artifacts was detected, and thus these sequencing result 
could not be evaluated for TMB analysis, as indicated by 
the manufacturer [54]. A successful TMB calculation was 
obtained for the remaining 381 patients.

The TMB value ≥ 10 muts/MB has been employed to 
separate high and low TMB values as indicated by the 
results of the open-label, phase 2 KEYNOTE-158 study 
that led to the recent FDA approval of Pembrolizumab 
for metastatic solid tumors [29]. The median TMB value 
obtained was 5.60 (min 0; max 134), with 96 samples 
showing a TMB value higher than 10 muts/Mb and 285 
samples with a lower than 10 muts/Mb value. The tumor 
type with the highest TMB median value in our cohort 
was colorectal cancer (median TMB = 8.02), with 11 
samples showing TMB > 10 and 21 samples TMB < 10 
muts/Mb, followed by lung cancer (median TMB = 7.72, 
25 samples with TMB > 10 and 22 with TMB < 10 muts/
Mb (Fig. 8). The tumor types with the lowest TMB values 
were sarcomas, ovarian and pancreatic cancers (median 
TMB 3.43, 4.44 and 4.63 muts/Mb respectively). Accord-
ingly, the positivity rates varied by tumor type with 
lung cancer showing the highest (42.55%) and soft tis-
sue tumors displaying the lowest positivity rate (3.70%) 
(Fig. 9).

PD‑L1 expression
Among the 206 patients referred for PD-L1 analy-
sis by immunohistochemistry, a successful analysis 
was achieved in 198 cases. PD-L1 positivity (> 1%) was 
observed in 38.89% of them (77/988). Moreover, an 
intense PD-L1 expression was observed in 9.09% of the 
patients, exhibiting TPS values greater than 50% or CPS 
greater than 50.

Fig. 7  Simulation of the 990 PCAWG samples’ categorization based 
on their most clinically significant variant when the analysis is 
performed using either the 161 the 514 gene panels. The following 
categories were used: Tier 1 variants: patients carrying at least one 
Tier 1 alteration, 2C.1: patients whose most clinically significant 
variant is classified as 2C.1, 2C.2: patients with 2C.2 alterations, 2D: 
patients with 2D alterations, Tier 3: patients carrying Tier 3 alterations

Table 1  Oncologists responses concerning the clinical utility of NGS multigene analysis in various tumor types

Oncologists responses Tumor histology

Lung (%) Colorectal (%) Breast (%) Ovarian (%) Pancreas (%) Prostate (%) Rare/
unknown 
(%)

Useful 60.66 65.57 45.90 65.57 50.82 50.82 85.25

Useful in the metastatic setting 39.34 29.51 34.43 14.75 44.26 39.34 14.75

Not useful 0.00 4.92 9.84 9.84 0.00 0.00 0.00

No opinion/response 0.00 0.00 9.84 9.84 4.92 9.84 0.00
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Fig. 8  Box plots showing the median TMB values in various tumor types. Three samples with TMB values > 60 were omitted from the plot for 
visualization purposes

Fig. 9  TMB positivity rate in various histological tumor types
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In the 26 lung cancer patients tested 69.23% had a TPS 
value > 1, with 19.23% showing an intense (> 50%) PD-L1 
expression. The positivity rate in various tumor types is 
illustrated in Fig. 10. Among the 77 PD-L1 positive cases 
identified in our cohort 26 patients (33.77%) showed con-
comitant TMB positivity (> 10muts/MB).

In accordance to previous studies, no association of 
TMB and PD-L1 values was observed (Fig. 11) [55, 56].

Microsatellite instability
Microsatellite instability was detected in 8 out of the 206 
tumors tested (3.88%), while for one tumor the analy-
sis failed due to the low quality of the genetic material 
obtained. Patients with tumors showing MSI high status 
had a diagnosis of Ovarian cancer, Pancreatic cancer, 
Colorectal cancer, Prostate cancer, Gastric cancer and 
Sarcoma. In 2 cases, the tumor instability was linked 
to hereditary mutations in MMR genes (MSH2 and 
PMS2). TMB analysis data were also available in 7 of 
these patients with 6 of them showing high TMB value 
(> 13.46muts/MB). Thus a strong correlation between 
TMB and MSI was observed with MSI high tumors 
showing higher median TMB values, in accordance with 
previous studies [57, 58]. However, it should be noted 
that among the 193 MSI stable patients with TMB data 
available, high TMB values were also observed in 42 
cases (Fig. 11).

MSI is known to be caused by impairment of the MMR 
gene system, leading to increased neo-antigen burden 
and thus elevated TMB. However, this represents only 
one of the oncogenic processes related to elevated TMB 
values. Several other mechanisms, such as environmen-
tal carcinogens and specific gene alterations are known 
to induce mutagenesis and thus TMB increment, result-
ing in higher positivity rates for this biomarker in several 
tumor types [59, 60]. Given its compelling evidence of 
predictive value; TMB is superior to MSI analysis, iden-
tifying more patients eligible for PD-1/PD-L1 blockade 
compared to MSI.

Immunotherapy biomarkers’ comparison
Among the 191 patients with all three immunotherapy 
biomarkers tested, ICIs option based on TMB result 
could be considered in 44 patients (23.04%), 26 of them 
with simultaneous PD-L1 positivity. Furthermore, 51 
additional patients showed PD-L1 positivity and 1 MSI-
high result. Collectively, positivity to one of these bio-
markers and thus a possibility of benefit from ICIs 
treatment was observed in 50.26% (96/191) of these 
patients.

Furthermore, the analysis of both targeted treatment 
and immunotherapy biomarkers, revealed an actionable 
finding (Tier 1 or 2) in 83.25% of the cases. Moreover, the 
addition of the immunotherapy biomarkers to the molec-
ular profile analysis increased the number of patients 

Fig. 10  PD-L1 positivity rate in various tumor histological types
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with an on-label treatment recommendation by 22.92% 
(Fig.  12). TMB analysis increased the LoE of treatment 
recommendations to 1A.1 in 36 cases, with 23 of them 
showing concomitant PD-L1 positivity.

The value of ICI biomarker analysis was also observed 
in tumor types that are highly represented in this cohort, 
such as lung and pancreatic cancer. In the 26 lung can-
cer patients analyzed for both types of biomarkers, 
an increase in on-label treatment recommendation of 
61.54% was observed after targeted therapy biomark-
ers were supplemented with immunotherapy biomark-
ers, with 96.15% of these patients having an on-label or 
off-label biomarker detected. In addition, among the 29 
pancreatic cancer patients with comprehensive tumor 
analysis of ICI and targeted therapy biomarkers, a bio-
marker associated with on-label treatment was detected 
in 10.34% of cases, whereas this percentage would be 
reduced to 3.45% if ICI biomarkers were excluded from 
the analysis.

Discussion
Molecular profile analysis
In the present study, 629 cancer patients have been 
referred by their treating physician for biomarkers’ analy-
sis using a 161 gene NGS panel. In 610 of them, a suc-
cessful tumor molecular profile was obtained with at 

least one actionable variant (Tier 1–2) being detected in 
77.87% of the cases. All pathogenic variants were catego-
rized based on their clinical significance, and only Tier 1 

Fig. 11  TMB-MSI and TMB-PD-L1 correlation

Fig. 12  Patients’ categorization based on the level of evidence of 
the most clinically significant variant associated with response, with 
and without the use of immunotherapy biomarkers. Biomarkers 
associated with resistance were excluded from this analysis
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and 2 variants were reported since variants of unknown 
significance, and the benign/likely benign ones were con-
sidered confusing rather than useful for the treatment 
course information. In 54.75% of the patients, the infor-
mation obtained could be used for on-label or off-label 
treatment reception (Tiers 1A.1, 1A.2, 1B, and 2C.1) 
while 21.31% of the cases received a variant that could be 
used for clinical trials inclusion.

Tests offering comprehensive tumor molecular profil-
ing are currently being requested by a steadily increasing 
number of oncologists, especially for patients with lim-
ited treatment options available. A good implementa-
tion of tissue analysis in treatment decision making was 
observed in the survey conducted in this study among 
oncologists. More than 80% of the participating physi-
cians consider clinically useful the tissue NGS analysis 
for a variety of common tumor types. This percentage 
was increased to 100% for tumors with many targeted 
treatment options available such as lung cancer and for 
tumors with few treatments available such as tumors of 
unknown origin or rare tumors.

Advances in sequencing technologies and NGS plat-
forms throughput have permitted simultaneous analy-
sis of multiple tumor biomarkers at an adequate time 
frame to be tailored fit in the design of the treatment 
plan and at an affordable cost for the patients. The infor-
mation obtained can be used to address targeted treat-
ment, immunotherapies or in case of negative results 
traditional treatment approaches. Various studies have 
shown the efficacy of gene-directed treatment com-
pared to the unselected treatment assignment [5, 61, 62]. 
In the IMPACT (Initiative for Molecular Profiling and 
Advanced Cancer Therapy) study the overall response 
rate (ORR), and the time-to-treatment failure (TTF) 
were higher in patients with a molecular aberration 
that received a matched treatment compared to those 
who received unmatched treatment [6]. Similarly, in the 
IMPACT/COMPACT trial, the response rate of patients 
treated according to their genotype had an overall 
response rate superior compared to those treated on gen-
otype unmatched clinical trials (19% VS 9% respectively) 
[7]. Accordingly, the National Comprehensive Cancer 
Network (NCCN) guidelines outline the contribution 
of broad molecular profile analysis in the improvement 
of patients’ care in various tumor types. Likewise, the 
European Society for Medical Oncology (ESMO) rec-
ommends routine utilization of tumor NGS analysis for 
NSCLC, prostate cancer, ovarian cancer and cholangio-
carcinoma [63].

Furthermore, more than 200 ongoing clinical tri-
als are currently investigating the impact of molecu-
lar directed treatment and the eventual benefit of 
this approach in patients with several advanced solid 

tumors and hematological malignancies (www.​clini​caltr​
ials.​org). Among these, several tumor-agnostic rand-
omized (NCT02152254, NCT03084757) and non-rand-
omized (NCT02465060, NCT03155620, NCT02693535, 
NCT02290522, NCT03297606, NCT02029001) trials 
are expected to provide evidence of the clinical benefit 
of such approach in multiple solid tumor types. Hence, 
several pharmaceutical companies are focusing on the 
development of treatments with pan-cancer efficacy 
[9]. The first tumor agnostic therapy with a biomarker 
included receiving FDA approval was the PD-1 inhibitor 
Pembrolizumab, which was approved for patients with 
MSI unstable tumors [9]. Subsequently, TRK inhibitor 
therapy gained approval in NTRK fusion-positive can-
cers independently from the tumor’s histology [64–66]. 
Even though the clinical value of these biomarkers can-
not be disputed, the percentage of patients positive for 
these biomarkers is relatively small. For example, in our 
study, only 8 out of the 198 patients analyzed presented 
microsatellite instability. This biomarker seems to be 
more significant for colorectal cancer patients, where it 
is present in 10–15% of the cases, while it is of no use for 
other tumor types, where it is rarely detected [20]. Simi-
larly, the frequency of  NTRK  fusions in solid tumors of 
adults is extremely rare in certain tumor types [64, 67]. 
Consequently, no positive NTRK  tumor was detected in 
our cohort.

On the other hand, there are agents, with associ-
ated biomarkers, that have shown activity in a variety of 
tumor types. PARP inhibitors are a typical example of 
such agents having already received approval for Ovar-
ian, Breast, Pancreatic and Prostate cancer patients har-
boring BRCA1/2 mutations (https://​www.​fda.​gov). Apart 
from  BRCA1/2 mutations, other genes involved in the 
same pathway of homologous recombination seem to 
be adequate biomarkers of response to such agents, with 
several clinical trials investigating the expansion of PARPi 
targeting biomarkers [48, 68–71] (www.​clini​caltr​ials.​
org). These efforts led to the recent approval of the PARP 
inhibitor Olaparib for metastatic castrate-resistant pros-
tate cancer patients with mutations in other HR genes 
besides  BRCA1/2, increasing the percentage of patients 
with a potential predictive biomarker result who could 
benefit from that treatment [69, 72]. Thus, multigene 
analysis providing comprehensive information about the 
mutational status of HR genes should be used for bet-
ter identification of responders to such therapy. In our 
cohort, 7.05% of the patients carried an alteration in an 
HR gene, with certain tumors showing increased levels of 
these alterations, such as breast cancer (9.68%), ovarian 
cancer (20%) and prostate cancer (17.14%). Moreover, the 
majority (74.42%) of the HR-positive patients, carried an 
HR gene mutation in a non BRCA1/2 gene, indicating the 

http://www.clinicaltrials.org
http://www.clinicaltrials.org
https://www.fda.gov
http://www.clinicaltrials.org
http://www.clinicaltrials.org


Page 15 of 21Özdoğan et al. BMC Med Genomics          (2021) 14:105 	

necessity of gene panel analysis for the identification of 
patients eligible for PARPi treatment.

An important issue when a multigene analysis is 
requested is the number of genes that should be included 
in such analysis and whether analyzing so many genes is 
offering more solutions in the physicians’ search for an 
appropriate targeted treatment option for their patients. 
Therefore, we compared our 161 gene panel with two 
smaller ones of 24 and 50 genes. The genes included in 
these panels have been widely used in our laboratory and 
others to identify clinically relevant mutations in various 
tumor types [32–36]. However, recent advances in the 
discovery of predictive biomarkers seem to be forcing 
the analysis of more genes that could provide more treat-
ment options for these patients. Nevertheless, there is 
still skepticism among some oncologists about the clini-
cal utility of broader gene analysis. However, our results 
showed that if the analysis had been performed with the 
24 and 50 gene panels, the percentage of positive cases 
would have been reduced to 58.85% and 62.62%, respec-
tively, compared to the 77.87% obtained with the 161-
gene panel. On the contrary, for lung cancer patients, the 
use of 24 gene panel seems acceptable for analysis since 
it could identify all biomarkers related to on-label treat-
ments’ sensitivity or resistance (46.97%). Thus, our results 
indicate that the 24 and 50 gene panels are not adequate 
for pan-cancer analysis since drug approvals of the recent 
years recommend the analysis of more biomarkers, with 
the exception of lung cancer.

A panel analyzing 514 single genes has been recently 
implemented for tumor analysis in our laboratory. Since 
we have observed an increase in the rate of patients 
with a positive tumor finding of at least 10% in the first 
50 samples analyzed, we decided to compare it with the 
panel used in this study in order to evaluate if it could 
increase the actionable information obtained by tumor 
testing analysis. Thus, 990 samples with known genetic 
profile from PCAWG database were used in order to 
simulate the percentage of tumor alterations that could 
be obtained using different size of cancer panels. Among 
these samples, if the 161 gene panel was used, an SNV 
or indel alteration in a driver gene would have been 
detected in about 72% of the cases. The utilization of a 
larger panel slightly increases the number of actionable 
alterations obtained to 83%.

A result related to on/off-label treatment or to a clini-
cal trial would be obtained in 85.56% of the cases if the 
514 gene panel was used compared to 78.28% obtained 
by the 161 gene panel. Thus, both panels seem to give 
comparable results in terms of the actionable informa-
tion obtained with the 514 gene panel, including the 
most actionable biomarkers. The main limitation of this 
comparison is that the variant calling, and copy number 

methodologies vary between the targeted assays and 
the whole genome methodology used in the PCAWG 
project. Nevertheless, the increase in the number of 
clinically significant variants identified when a larger 
panel is used, reflects what is usually observed in clini-
cal practice.

Despite all the advantages, there is much skepticism 
concerning the use of a personalized selection of appro-
priate treatment. A first difficulty in using broad tumor 
molecular profile analysis for treatment selection is the 
unavailability in some cases of appropriate tumor tis-
sue to perform the analysis. This could be due to the low 
quantity/quality of the tissue available or to its inacces-
sibility in some inoperable tumor types [73, 74]. It has 
been shown that among patients enrolled in tumor-
directed treatments, only 70–90% of them had adequate 
tissue quantity/quality to achieve a successful molecular 
profile [75]. The technology used in our study permits 
tumor molecular profile analysis from a limited quantity 
of genetic material. Hence, in our cohort more than 97% 
of the tumor samples were successfully analyzed.

Furthermore, such analysis can provide an immense 
quantity of genetic data that needs to be appropriately 
analyzed and interpreted. Thus, the role of bioinformatics 
analysis is becoming major to provide accurate molecu-
lar analysis results [76]. Moreover, standardization of 
variant annotation and reporting could facilitate the 
understanding of the results obtained and increase their 
reliability. In our experience, in the majority of cases with 
findings associated to off-label treatments recommenda-
tions, the long lasting procedures required for the off-
label approval of the suggested treatment from the local 
National  Drug  Organization for  Medicines  (“EOF”), or 
for clinical trial enrollment, often challenged the utiliza-
tion of the results, especially in cases with advanced dis-
ease, requiring immediate management.

While, it is standard practice to perform accurate pre- 
and post-test counseling prior to a genetic testing for 
hereditary cancer susceptibility, this is not the case for 
somatic mutation analysis [77]. However, it is critical that 
patients referred for genetic tumour analysis to be accu-
rately informed of the need for and potential outcomes 
of such testing. In addition, patients should be informed 
of the possibility that a variant in a gene with known 
germline mutations may be identified and that variants 
detected in a high percentage (> 40%) are considered ger-
mline suspicious. Since this analysis cannot distinguish 
between germline and somatic variants, clarification of 
the origin of a variant requires analysis of the patient’s 
healthy tissue, usually blood or saliva.

In our cohort, 17 patients with a family history of can-
cer, requested blood analysis for suspicious germline 
variant identified in tissue. In 14 of them (82.35%) the 



Page 16 of 21Özdoğan et al. BMC Med Genomics          (2021) 14:105 

germline origin of the tissue alteration was confirmed 
(Additional file 13: Table S9).

Immunotherapy biomarkers
Analysis of the tumor’s molecular profile useful as it is, it 
seems to be just another piece of the puzzle, since com-
prehensive tumor profile should include both biomark-
ers to guide treatment decision making for both targeted 
therapy as well as for immunotherapy. Thus, the physi-
cian having more biomarkers in his disposition could bet-
ter comprehend the tumor’s biology and decide whether 
targeted therapy or immunotherapy matches better in 
each case. In our cohort analysis of biomarkers for both 
immunotherapy and targeted therapy, was requested in 
395 patients, with TMB being the most common immu-
notherapy biomarker requested. All three biomarkers’ 
analysis was successful in 191 cases.

25.20% of the 381 patients tested had a TMB 
value > 10muts/MB and thus were eligible for ICI treat-
ment. The median TMB values observed in our popula-
tion were slightly increased compared to those observed 
in previous studies [57, 78]. This could be attributed to 
methodological differences and to the fact that in the 
majority of cases the patients analyzed have received 
more than one treatment lines, commonly chemother-
apy, which is known to increase tumor’s mutation load 
[79]. Similarly, to our study a TMB positivity rate of 
21.1% was observed in a recent study analyzing immu-
notherapy biomarkers in 48.782 clinical samples [80]. 
TMB has emerged as a promising biomarker of response 
to such treatments, and several clinical trials have shown 
that both blood and tissue samples TMB can effectively 
be used [23, 25, 27, 81]. Moreover, the recent approval of 
anti-PD1 treatment Pembrolizumab for metastatic can-
cer patients harboring a TMB value > 10mut/ΜΒ renders 
the analysis of such biomarker indispensable for treat-
ment selection strategy.

However, this biomarker has also limitations since 
TMB calculation methods can differ between different 
assays, while the gene content of the methodology used 
seems to affect the TMB values obtained [82–84]. Fur-
thermore, the cut-off values for this marker are not yet 
fully established. All these issues are addressed from the 
International harmonization initiatives led by Friends of 
Cancer Research (FOCR) and the Qualitätssicherungs-
Initiative Pathologie (QuIP) [82–84].

Concerning the other immunotherapy biomarkers, 
analyzed in this study (PD-L1 and MSI), they could assist 
in a more accurate patients’ selection for treatment with 
checkpoint inhibitors. PD-L1 expression, measured by 
immunohistochemistry methods is the most widely 
used biomarker and the first to be approved for treat-
ment with checkpoint inhibitors [15]. Nevertheless, it 

is not applicable in many tumor types, and its sensitiv-
ity and specificity in identifying patients eligible for 
immunotherapy have also been questioned [15, 16, 27, 
85–87]. Moreover, while MSI analysis seems to be an 
appropriate biomarker, its low incidence in the major-
ity of tumor types limits its clinical utility in the major-
ity of neoplasms. In our cohort microsatellite instability 
was observed in just 3.88% of the cases; thus, it cannot 
stand alone as an immunotherapy biomarker, render-
ing the addition of other biomarkers indispensable to 
increase the number of patients who could benefit from 
such treatments.

The incidence of TMB positivity is superior to that 
of MSI (25.20% compared to 3.88%). Furthermore, in 
21.88% (42/193) of the MSI stable cases, a TMB value 
of > 10muts/MB was observed; thus, these patients could 
receive ICI based on the TMB result only. Moreover, 
no association between TMB and PD-L1 values was 
observed. This is in agreement with previous studies, 
indicating lack of association between median values of 
these biomarkers. However, in accordance to a recent 
study, a higher TMB positivity rate was observed in 
the PD-L1 positive group [80]. The TMB positivity rate 
among the PD-L1 positive patients was 33.77% (26/77) 
compared to 15.79% (18/114) in the PD-L1 negative 
group (p = 0.005). Importantly, it has been reported that 
patients with positive values for both TMB and PD-L1 
could have greater benefit from such treatment com-
pared to those showing positivity for only one of these 
biomarkers [55, 56]. Collectively, among the 191 patients 
with all three immunotherapy biomarkers tested, ICIs 
option based on TMB result could be considered in 44 
patients (23.04%), 26 of them with simultaneous PD-L1 
positivity.

As it can be seen in the Venn diagram (Fig. 13) showing 
the correlation among these biomarkers in 191 patients 
tested for all three biomarkers, 50.26% of the cases had 
at least one positive biomarker. A positive result for both 
PD-L1 and TMB was seen in 13.61% of the cases (with 
simultaneous MSI high result in 3 cases). In 2 patients 
concomitant TMB and MSI high values were observed 
(1.05%). An additional 35.60% % of the patients could 
receive immunotherapy-based one either TMB or PDL-1 
or MSI positivity (8.38%, 26.70%, 0.52% respectively).

The analysis of immunotherapy biomarkers, though, 
does not seem to be the only determinant of response to 
ICI, since the tumor mutational status also seems to have 
a significant influence on the probability of response. 
For example, several studies have shown the reduced 
efficacy of ICIs in Non-Small Cell Lung cancer patients 
harboring  EGFR  mutations and  ALK  rearrangements 
[55, 88, 89]. The absence of such targetable alteration 
could direct the treatment strategy to immunotherapy in 
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these malignancies. In addition, it has been shown that 
alterations in certain genes, such as  KRAS, TP53, MET, 
ARID1A  and others are enriched in immunotherapy 
responsive patients. Thus, their identification could lead 
to such treatment option [90–92].

Moreover, alterations in DNA repair genes such as 
the MMR genes, POLE and HR genes have been shown 
to have a positive predictive effect and are correlated to 
increased TMB values [93–96]. In contrast, other gene 
alterations such as JAK1/2 and  STK11/LKB1, KEAP1 
and PTEN mutations are related to resistance to PD-1 
Blockade [90, 97–99]. Interestingly, in our study, 2 of 
the patients with TMB high values and one patient with 
PD-L1 positive result also harbored an STK11 mutation. 
In none of these cases, immunotherapy response was 
achieved.

Thus, the addition of immunotherapy biomarkers to 
tumor molecular profiling seems to be a one-way road in 
order to achieve a comprehensive tumor characterization 
and provide the right treatment option for each patient. 
Moreover, the simultaneous analysis of such biomarkers, 
leads to the increase of patients with an on-label treat-
ment recommendation by 22.92%. By combining immu-
notherapy and targeted therapy biomarkers, 71.35% of 
the patients analyzed received information related to on-
label or off-label treatments. This is obviously improved 
compared to the 50.52% of on/off-label biomarkers 

achieved by analyzing only the molecular profile of the 
tumor in the same patient cohort.

Nowadays it seems that the tissue is not the issue any-
more, since NGS technological advantages permit the 
simultaneous analysis of many targets from limited tis-
sue material, achieving to analyze up to 97% of the tissue 
samples as in the present study. The challenge, though, 
when these analyses are performed is their implementa-
tion in clinical practice. Thus, the results obtained must 
be appropriately comprehended and adopted for the des-
ignation of the treatment selection strategy, which can 
be achieved through inter-discipline collaboration. To 
this regard, of great use would be the presence of a mul-
tidisciplinary Molecular Tumor Board that could assist 
in the accurate interpretation of the findings obtained 
from such complex NGS analysis and provide therapeutic 
recommendations based on all available clinical data for 
each individual patient [100–102].

Conclusions
The NGS analysis conducted in this study offered action-
able information (Tier1 and 2) in 77.87% of the 610 
patients with tumor molecular profile analysis available. 
Moreover, simultaneous analysis for targeted therapy 
and immunotherapy biomarkers resulted in a better 
tumor characterization and provided actionable infor-
mation in 83.25% of the 191 patients tested, with one to 

Fig. 13  Venn Diagram showing the correlation among the three immunotherapy biomarkers tested (PD-L1, TMB, MSI)
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two patients being eligible for ICI treatment based on the 
biomarkers’ analysis. Thus, the comprehensive analysis of 
these biomarkers increased the number of patients with 
a treatment-related finding and contributed to a more 
individualized approach for cancer treatment. In conclu-
sion, the present study has shown that the implementa-
tion of molecular profiling using appropriate pan-cancer 
panels in clinical practice is feasible. Of significance, is 
the appropriate comprehension of the molecular results 
obtained from such analysis and their proper utilization 
for designing the treatment selection strategy, which can 
be achieved through inter-discipline collaboration.
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