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Abstract 

Background:  Studies on the XRCC3 rs1799794 polymorphism show that this polymorphism is involved in a variety 
of cancers, but its specific relationships or effects are not consistent. The purpose of this meta-analysis was to investi-
gate the association between rs1799794 polymorphism and susceptibility to cancer.

Methods:  PubMed, Embase, the Cochrane Library, Web of Science, and Scopus were searched for eligible studies 
through June 11, 2019. All analyses were performed with Stata 14.0. Subgroup analyses were performed by cancer 
type, ethnicity, source of control, and detection method. A total of 37 studies with 23,537 cases and 30,649 controls 
were included in this meta-analysis.

Results:  XRCC3 rs1799794 increased cancer risk in the dominant model and heterozygous model (GG + AG vs. AA: 
odds ratio [OR] = 1.04, 95% confidence interval [CI] = 1.00–1.08, P = 0.051; AG vs. AA: OR = 1.05, 95% CI = 1.00–1.01, 
P = 0.015). The existence of rs1799794 increased the risk of breast cancer and thyroid cancer, but reduced the risk of 
ovarian cancer. In addition, rs1799794 increased the risk of cancer in the Caucasian population.

Conclusion:  This meta-analysis confirms that XRCC3 rs1799794 is related to cancer risk, especially increased risk for 
breast cancer and thyroid cancer and reduced risk for ovarian cancer. However, well-designed large-scale studies are 
required to further evaluate the results.
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Background
Cancer is the leading cause of death worldwide, and the 
number of patients with cancer is increasing [1]. The 
occurrence of cancer is related to many factors, includ-
ing environmental, lifestyle, genetic and other factors. 
Among them, gene mutation is a kind of genetic factor, 
which has a great influence on cancer risk [2]. The muta-
tion in BRCA1 and BRCA2 is related to the increase risk 

of breast cancer [3]. XPF rs2276466 polymorphism is 
related to neurogenic cancer [4].

X-ray repair cross-complementing group 3 (XRCC3), 
functions in the homologous recombination (HR) repair 
of DNA crosslinks [5] and double-strand breaks [6]. 
Based on the function of XRCC3, XRCC3 gene muta-
tions are related to the occurrence and development of 
many diseases. For example, XRCC3 241Thr/Met geno-
type promotes left ventricular hypertrophy by inhibit-
ing DNA damage repair [7]. Mutations in the XRCC3 
gene affect mitochondrial DNA integrity [8]. XRCC3 
rs861539 polymorphism is associated with poor progno-
sis of breast cancer patients [9]. The mutation sites that 
have been studied more about the relationship between 
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XRCC3 gene and cancer are rs861539, rs1799794 and 
rs1799796 [10]. However, results remain fairly conflict-
ing rather than conclusive. A number of meta-analyses 
have investigated the relationship between rs861539 and 
susceptibility to various cancers [11–33]. However, there 
have been few meta-studies on rs1799794 and suscep-
tibility to cancer [28, 30, 31, 33, 34]. Therefore, we con-
ducted this meta-analysis to analyze the relationship 
between rs1799794 and susceptibility to cancer on the 
basis of more data.

Methods
Search strategies
We comprehensively searched five databases (PubMed, 
Embase, the Cochrane Library, Web of Science, and Sco-
pus) for research published as of June 11, 2019, using 
relevant MeSH terms and entry terms. The keywords 
of XRCC3 included X-ray repair cross complementing 
3, rs1799794, 4541A/G, XRCC3. The MeSH term and 
entry terms of polymorphism were genetic polymor-
phism [MeSH terms]; polymorphisms, genetic; genetic 
polymorphisms; genetic polymorphism; polymorphism 
(genetics); polymorphisms (genetics); polymorphism, 
single nucleotide; nucleotide polymorphism, single; 
nucleotide polymorphisms, single; polymorphisms, sin-
gle nucleotide; single nucleotide polymorphisms; poly-
morphisms; polymorphism; variant; mutation; single 
nucleotide polymorphism; SNP. The MeSH term and 
entry terms of cancer were neoplasm [MeSH terms], neo-
plasms, neoplasia, neoplasias, neoplasm, tumors, tumor, 
cancer, cancers, carcinoma, carcinogenesis, tumour. Fur-
thermore, we refined the search results of related stud-
ies by looking at the list of references included in each 
article.

Selection criteria
Relevant studies were included in accordance with the 
inclusion criteria and exclusion criteria, which were 
similar to those described in the previous study (PMID: 
30867406). Original case–control study focused on the 
relationship between rs1799794 and cancer risk with the 
frequency of XRCC3 rs1799794 mutant genotypes were 
included. While conference abstracts or reports, reviews 
or meta-analyses, republished articles, and studies with 
insufficient data were excluded.

Data extraction and quality assessment
The following data from each selected article were col-
lected: the surname of the first author, the publication 
year, country, ethnicity, cancer types, and methods of 
genotyping XRCC3 rs1799794 polymorphism. The qual-
ity of eligible case–control studies was estimated using 
the Newcastle–Ottawa Scale [35].

Statistical analysis
The relationship between XRCC3 rs1799794 polymor-
phisms and cancer risk were evaluated using odds ratios 
(ORs) and 95% confidence intervals (CI) under five 
genetic models (G vs. A, GG vs. AA, GG + GA vs. AA, 
GG vs. GA + AA, GA vs. AA).as previous study. If P < 0.05 
or the 95% CI did not include 1, the result was consid-
ered statistically significant. Cochran’s Q with chi-square 
(with PQ) and the Higgins I2 test were used to determine 
heterogeneity in between-study variability. When PQ < 0.1 
or I2 > 25% indicated significant heterogeneity [36–38], 
we analyzed the data using a random effects model [39]. 
If the opposite held, a fixed effects model was chosen. 
We also performed subgroup analyses and a sensitivity 
analysis to explore sources of heterogeneity. Subgroup 
analyses stratified studies by cancer type (ovarian cancer, 
acute lymphoblastic leukemia, breast cancer, thyroid can-
cer, bladder cancer, lung cancer, other), ethnicity (Ara-
bian, Asian, Caucasian, mixed), sample size (< 100, > 100), 
the publication year (≤ 2010, > 2010), detection method 
(PCR–RFLP, sequencing, TaqMan, PCR, ND, other), and 
source of control (HB, PB, mixed, nested). We assessed 
publication bias using funnel plots and Egger’s test 
(P < 0.05). Statistical calculations were performed with 
Stata 14.0.

Results
Literature search and study characteristics
Finally, 3,467 potentially relevant published works were 
identified (997 in PubMed, 27 in the Cochrane library, 
855 in Embase, 696 in Scopus, and 889 in Web of Sci-
ence). Of these, duplicates (1959) and works not related 
to cancer and rs1799794 polymorphism (1451) were 
excluded. Then 23 of these studies were excluded after 
reviewing full texts. The remaining 37 works (43 studies) 
were included in this meta-analysis [10, 40–75]. Because 
two studies in Auranen et  al. [10] were duplicated in 
Quaye et al. [62], we only extracted data from these stud-
ies from Auranen et  al. [10] to avoid duplication; thus, 
one article included four studies [66], and three articles 
included two studies each [10, 68, 70]. The flow chart of 
the literature selection process is shown in Fig. 1.

There were a total of 23,537 cases and 30,649 controls 
in these 37 works, and 3 were conducted among Arabians 
[40, 48, 55], 14 among Asians [41, 42, 45–47, 49, 50, 53, 
54, 56, 58, 59, 66, 67], and 24 among Caucasians [10, 43, 
44, 51, 52, 57, 60–62, 64, 66, 69–75]; 2 were conducted 
among mixed populations [63, 65]. In addition, in terms 
of cancer type, ovarian cancer (n = 4) [10, 40, 62], acute 
lymphoblastic leukemia (n = 3) [41, 52, 57], breast cancer 
(n = 13) [44, 48, 49, 55, 61, 66, 68, 72, 74], thyroid can-
cer (n = 4) [42, 46, 47, 67], bladder cancer (n = 4) [45, 63, 
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65, 69], lung cancer (n = 3) [53, 59, 71], and other can-
cer (hepatocellular cancer, leiomyoma, nasopharyngeal 
carcinoma, osteosarcoma, oral cancer, glioma, head and 
neck cancer, myeloma, endometrial cancer, colorectal 
adenoma, melanoma skin cancer) [43, 50, 51, 54, 56, 58, 
60, 64, 70, 73, 75] were studied. The basic information of 
each study is presented in Table 1. And we took sensitiv-
ity analysis for studies that do not conform to HWE.

Meta‑analysis and subgroup analyses
The value of I2 in the five genetic models was greater than 
25%, and PQ < 0.10, so pooled ORs for the five genetic 
models were calculated with a random effects model. 
There was no obvious correlation between rs1799794 and 
cancer risk (PZ > 0.05; Table 2).

Subgroup analyses were then performed based on can-
cer type, ethnicity, detection method, the publication 
year, source of control, and sample size to investigate 
sources of heterogeneity (Table 3). In the subgroup analy-
sis based on cancer type, a significantly increased risk 
for thyroid cancer was observed in the five models (G vs. 
A: OR = 1.27, 95% CI = 1.01–1.61, I2 = 71.2%; GG + AG 
vs. AA: OR = 1.36, 95% CI = 1.15–1.61, I2 = 55.4%; GG 
vs. AA + AG: OR = 1.38, 95% CI = 1.09–1.75, I2 = 29.8%; 

GG vs. AA: OR = 1.50, 95% CI = 1.17–1.93, I2 = 45.7%; 
AG vs. AA: OR = 1.27, 95% CI = 1.05–1.53, I2 = 33.2%), 
a significantly increased risk for breast cancer was found 
in the heterozygous model (OR = 1.08, 95% CI = 1.02–
1.13, I2 = 42.3%), and a decreased risk for ovarian can-
cer was found in the recessive model and homozygous 
model (GG vs. AA + AG: OR = 0.69, 95% CI = 0.51–0.93, 
I2 = 0.0%; GG vs. AA: OR = 0.71, 95% CI = 0.53–0.96, 
I2 = 0.0%).

In the subgroup analysis based on ethnicity, rs1799794 
was associated with increased cancer risk in the Cauca-
sian population according to the heterozygous model 
(AG vs. AA: OR = 1.05, 95% CI = 1.01–1.10, I2 = 0.0%). 
In the subgroup analysis based on source of control, 
we found a significantly increased risk for PB (popula-
tion based) in the dominant model and heterozygous 
model (GG + AG vs. AA: OR = 1.06, 95% CI = 1.01–1.12, 
I2 = 0.0%; AG vs. AA: OR = 1.09, 95% CI = 1.03–1.15, 
I2 = 0.0%). In the subgroup analysis based on detection 
method, sequencing was associated with a significantly 
increased cancer risk in the allele model, dominant 
model, and heterozygous model (G vs. A: OR = 2.60, 95% 
CI = 1.37–4.94, I2 = 0.0%; GG + AG vs. AA: OR = 4.00, 
95% CI = 1.82–8.80, I2 = 0.0%; AG vs. AA: OR = 4.00, 95% 

Fig. 1  Flow chart of study selection
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CI = 1.79–8.94, I2 = 0.0%). In the subgroup analysis based 
on sample size, AG carriers were 2.82 times more likely 
to develop cancer than AA carriers (95% CI = 1.42–5.57, 
PZ = 0.003). In the subgroup analysis based on the pub-
lication year, studies published before 2010 showed that 
AG carriers were 1.05 times more likely to develop can-
cer than AA carriers (95% CI = 1.00–1.10, PZ = 0.047).

Publication bias
The shape of the funnel plots (Fig.  2) and Egger’s 
test (allele: P = 0.108, dominant: P = 0.177, reces-
sive: P = 0.240, homozygous: P = 0.132, heterozygous: 
P = 0.177) showed no publication bias.

Sensitivity analysis
Eight studies [41, 42, 48–50, 53, 54, 56] had PHWE < 0.05, 
but for two studies [51, 63] PHWE was not available. We 
compared the combined results before and after exclud-
ing these 10 studies and there were slight changes in 
the results. When the subgroup analysis was performed 
according to cancer type, there were no significant 
associations between rs1799794 polymorphism and 
increased risk for thyroid cancer in the recessive model, 
homozygous model, or heterozygous model (GG vs. 
AA + AG: OR = 1.16, 95% CI = 0.87–1.55, I2 = 0.0%; GG 
vs. AA: OR = 1.24, 95% CI = 0.90–1.69, I2 = 0.0%; AG 
vs. AA: OR = 1.22, 95% CI = 0.98–1.51, I2 = 49.4%), and 
rs3116496 was related to a decreased risk for lung can-
cer in the five models (A vs. G: OR = 0.80, 95% CI = 0.70–
0.92, I2 = 18.1%; GG + AG vs. AA: OR = 0.76, 95% 
CI = 0.62–0.93, I2 = 4.9%; GG vs. AA + AG: OR = 0.75, 
95% CI = 0.59–0.96, I2 = 0.0%; GG vs. AA: OR = 0.65, 
95% CI = 0.49–0.87, I2 = 0.0%; AG vs. AA: OR = 0.80, 95% 
CI = 0.64–0.99, I2 = 0.0%); no changes were observed for 
the other cancers. No significant changes were found in 
the subgroup analyses by ethnicity and source of control.

Discussion
Our study shows that XRCC3 rs1799794 is irrelevant 
to cancer risk. In addition, the risk for thyroid cancer 
and breast cancer increase significantly in patients with 

rs1799794, and Caucasian populations are more likely to 
develop these cancers while having a decreased risk for 
ovarian cancer. We excluded articles that did not con-
form to HWE and reanalyzed the data. Compared to the 
previous results, rs3116496 was related to a decreased 
risk for lung cancer in the five models, although the other 
results were not much changed (data not shown).

Moderate heterogeneity was found in this meta-analy-
sis. First, we used random models when significant het-
erogeneity. Second, we performed subgroup analyses to 
explore sources of heterogeneity. As shown in Table  3, 
in the subgroup analysis based on ethnicity, heterogene-
ity increased in Arabian/Asian populations but was 0% 
in Caucasian populations, which suggests that ethnicity 
may be a factor in heterogeneity. Furthermore, we ana-
lyzed studies stratified by cancer type, detection method, 
source of control, and sample size. Ethnicity, cancer type, 
source of control, and sample size may be the source of 
inter-research heterogeneity. In addition, a sensitivity 
analysis suggested that the current findings were reliable.

To date, five meta-analyses of the impact of rs1799794 
on cancer risk have been performed [28, 30, 31, 33, 34] 
on rs1799794 and susceptibility to pan-cancer [28], 
breast cancer [30, 34], bladder cancer [33], and ovarian 
cancer [31]. To the best of our knowledge, ours is cur-
rently the most comprehensive meta-analysis of corre-
lations between rs1799794 polymorphisms and cancer. 
There are many differences between the results of this 
study and previous studies. According to Qiu et  al.’s 
research on rs1799794 and susceptibility to breast cancer, 
which included four studies in three papers, rs1799794 
was associated with a statistically significant increase in 
cancer risk in the dominant model (GG + AG vs. AA: 
OR = 1.09, 95% CI = 1.01–1.17, PH = 0.15), whereas our 
results showed an increased risk for breast cancer in AG 
carriers, different from the protective effect found previ-
ously [48]. In addition, our study found that the G allele 
might be a dominant gene and found an increased risk 
for thyroid cancer.

Our study included a large number of samples and 
conducted a stratified analysis, which played an impor-
tant role in the reliability of the research results. At the 
same time, there are problems that cannot be ignored: 
the presence of heterogeneity that may due to ethnicity, 
source of control, status, or cancer type; the lack of rel-
evant data published in other languages and evaluation of 
the interaction between cancer-related factors.

Conclusion
In conclusion, this meta-analysis found no associa-
tion between XRCC3 rs1799794 and cancer risk, but 
XRCC3 rs1799794 was associated with breast can-
cer and thyroid cancer as well as with Caucasian 

Table 2  The results of the meta-analyses under different genetic 
models for all studies

Genetic model Number I2 (%) PH OR (95% CI) PZ

G VS A 40 47.50 0.001 1.02(0.98–1.07) 0.377

GG VS AA 40 30.20 0.039 0.98(0.89–1.08) 0.713

GG + GA VS AA 43 40.0 0.004 1.04(0.98–1.09) 0.207

GG VS GA + AA 40 34.10 0.02 0.98(0.90–1.07) 0.696

GA VS AA 40 39.40 0.006 1.04(0.99–1.11) 0.134
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Table 3  Results of meta-analysis for polymorphisms in different subgroups and cancer susceptibility

Comparison Subgroup Number I2 PH PZ OR  (95% CI)

G VS A Ethnicity

 Arabian 3 84.9% 0.001 0.752 0.86 (0.33–2.23)

 Asian 14 64.8% P < 0.001 0.255 1.05 (0.96–1.15)

 Caucasian 22 0.0% 0.661 0.502 1.01 (0.98–1.05)

 Mixed 1 NA NA 0.940 0.99 (0.80–1.23)

Cancer type

 Ovarian cancer 4 0.0% 0.547 0.848 0.99 (0.90–1.09)

 Acute lymphoblastic leukemia 2 0.0% 0.887 0.979 1.00 (0.85–1.18)

 Breast cancer 13 58.6% 0.004 0.494 1.03 (0.95–1.10)

 Thyroid cancer 4 71.2% 0.015 0.043 1.27 (1.01–1.61)

 Bladder cancer 3 0.0% 0.921 0.815 0.98 (0.85–1.13)

 lung cancer 3 60.1% 0.082 0.166 0.88 (0.74–1.05)

 Others 11 0.0% 0.902 0.822 1.01 (0.91–1.08)

Method

 PCR–RFLP 12 22.3% 0.225 0.657 0.99 (0.93–1.05)

 Sequencing 2 0.0% 0.828 0.004 2.60 (1.37–4.94)

 TaqMan 13 0.0% 0.886 0.475 1.02 (0.97–1.07)

 PCR 4 82.4% 0.001 0.913 1.02 (0.78–1.33)

 ND 6 14.6% 0.321 0.663 1.01 (0.96–1.06)

 Others 3 68.3% 0.043 0.089 1.32 (0.96–1.82)

Source of control

 HB 23 66.0% P < 0.001 0.445 1.03 (0.95–1.13)

 PB 12 0.0% 0.892 0.135 1.03 (0.99–1.08)

 Mixed 1 NA NA 0.442 0.89 (0.67–1.19)

 Nested 4 0.0% 0.874 0.294 0.95 (0.86–1.05)

Sample size

  < 100 3 77.1% 0.013 0.419 1.54 (0.54–4.43)

  > 100 37 43.7% 0.003 0.424 1.02 (0.98–1.07)

Year

  ≤ 2010 20 0.0% 0.910 0.700 1.01 (0.97–1.04)

  > 2010 20 69.5% 0.000 0.272 1.06 (0.96–1.17)

GG + AG VS AA Ethnicity

 Arabian 3 79.8% 0.007 0.739 1.21 (0.39–3.76)

 Asian 14 64.4% P < 0.001 0.547 1.04 (0.91–1.20)

 Caucasian 24 0.6% 0.453 0.119 1.03 (0.99–1.08)

 Mixed 2 0.0% 0.620 0.765 1.03 (0.85–1.24)

Cancer type

 Ovarian cancer 4 0.0% 0.887 0.439 1.05 (0.93–1.17)

 Acute lymphoblastic leukemia 3 24.4% 0.267 0.397 0.90 (0.75–1.12)

 Breast cancer 13 47.0% 0.031 0.037 1.06 (0.98–1.15)

 Thyroid cancer 4 55.4% 0.081 0.033 1.36 (1.15–1.61)

 Bladder cancer 4 59.1% 0.062 0.370 0.89 (0.70–1.14)

 Lung cancer 3 51.2% 0.129 0.207 0.85 (0.66–1.09)

 Others 12 0.0% 0.910 0.597 1.03 (0.93–1.13)

Method

 PCR–RFLP 13 0.0% 0.965 0.840 1.01 (0.92–1.11)

 Sequencing 2 0.0% 0.956 0.001 4.00 (1.82–8.80)

 TaqMan 15 29.2% 0.137 0.269 1.04 (0.97–1.10)

 PCR 4 81.0% 0.001 0.862 1.03 (0.72–1.48)
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Table 3  (continued)

Comparison Subgroup Number I2 PH PZ OR  (95% CI)

 ND 6 28.0% 0.225 0.360 1.03 (0.97–1.09)

 Others 3 16.0% 0.304 0.051 1.45 (1.15–1.82)

Source of control

 HB 23 58.4% P < 0.001 0.397 1.05 (0.94–1.18)

 PB 15 0.0% 0.656 0.015 1.06 (1.01–1.12)

 Mixed 1 NA NA 0.461 0.88 (0.63–1.24)

 Nested 4 0.0% 0.979 0.190 0.92 (0.82–1.04)

Sample size

  < 100 3 65.8% 0.054 0.179 2.23 (0.69–7.21)

  > 100 40 32.9% 0.025 0.234 1.03 (0.98–1.09)

Year

  ≤ 2010 21 0.0% 0.815 0.166 1.03 (0.99–1.08)

  > 2010 22 62.0% 0.000 0.322 1.07 (0.94–1.22)

GG VS AA + AG Ethnicity

 Arabian 3 73.9% 0.022 0.218 0.28 (0.04–2.13)

 Asian 14 52.7% 0.011 0.253 1.08 (0.95–1.23)

 Caucasian 22 0.0% 0.806 0.056 0.91 (0.82–1.00)

 Mixed 1 NA NA 0.987 0.99 (0.44–2.23)

Cancer type

 Ovarian cancer 4 0.0% 0.678 0.014 0.69 (0.51–0.93)

 Acute lymphoblastic leukemia 2 0.0% 0.698 0.818 1.04 (0.75–1.45)

 Breast cancer 13 35.7% 0.097 0.101 0.92 (0.83–1.02)

 Thyroid cancer 4 29.8% 0.234 0.007 1.38 (1.09–1.75)

 Bladder cancer 3 52.3% 0.123 0.303 1.35 (0.76–2.37)

 Lung cancer 3 5.5% 0.347 0.062 0.83 (0.69–1.01)

 Others 11 0.0% 0.893 0.993 1.00 (0.88–1.13)

Method

 PCR–RFLP 12 18.3% 0.265 0.421 0.96 (0.86–1.06)

 Sequencing 2 0.0% 0.818 0.621 1.63 (0.23–11.46)

 TaqMan 13 41.3% 0.059 0.462 0.95 (0.84–1.08)

 PCR 4 44.2% 0.146 0.211 0.88 (0.71–1.08)

 ND 6 8.8% 0.360 0.363 0.94 (0.81–1.08)

 Others 3 60.9% 0.078 0.121 1.54 (0.89–2.64)

Source of control

 HB 23 55.0% 0.010 0.614 1.04 (0.90–1.20)

 PB 12 0.0% 0.862 0.111 0.91 (0.81–1.02)

 Mixed 1 NA NA 0.674 0.84 (0.38–1.02)

 Nested 4 0.0% 0.536 0.967 1.00 (0.80–1.24)

Sample size

  < 100 3 0.0% 0.537 0.339 0.64 (0.26–1.59)

  > 100 37 36.9% 0.014 0.766 0.99 (0.90–1.07)

Year

  ≤ 2010 20 0.0% 0.928 0.068 0.94 (0.83–1.01)

  > 2010 20 58.0% 0.001 0.374 1.08 (0.92–1.27)

GG VS AA Ethnicity

 Arabian 3 75.4% 0.017 0.338 0.33 (0.04–3.15)

 Asian 14 47.8% 0.024 0.279 1.08 (0.93–1.26)

 Caucasian 22 0.0% 0.812 0.083 0.91 (0.82–1.01)

 Mixed 1 NA NA 0.981 0.99 (0.44–2.23)
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Table 3  (continued)

Comparison Subgroup Number I2 PH PZ OR  (95% CI)

Cancer type

 Ovarian cancer 4 0.0% 0.705 0.028 0.71 (0.53–0.96)

 Acute lymphoblastic leukemia 2 0.0% 0.836 0.961 0.99 (0.67–1.47)

 Breast cancer 13 37.7% 0.082 0.311 0.94 (0.85–1.05)

 Thyroid cancer 4 45.7% 0.137 0.001 1.50 (1.17–1.93)

 Bladder cancer 3 0.0% 0.860 0.773 1.06 (0.72–1.55)

 Lung cancer 3 53.1% 0.119 0.019 0.79 (0.56–1.11)

 Others 11 0.0% 0.884 0.798 1.02 (0.88–1.19)

Method

 PCR–RFLP 12 10.7% 0.340 0.591 0.96 (0.85–1.10)

 Sequencing 2 0.0% 0.837 0.264 3.09 (0.43–22.45)

 TaqMan 13 0.0% 0.701 0.297 0.93 (0.81–1.07)

 PCR 4 73.8% 0.010 0.937 0.98 (0.61–1.58)

 ND 6 2.7% 0.399 0.436 0.94 (0.82–1.09)

 Others 3 0.0% 0.409 P < 0.001 1.97 (1.36–2.87)

Source of control

 HB 23 52.8% 0.002 0.628 1.04 (0.88–1.24)

 PB 12 0.0% 0.911 0.185 0.92 (0.82–1.04)

 Mixed 1 NA NA 0.604 0.81 (0.36–1.80)

 Nested 4 0.0% 0.553 0.737 0.96 (0.76–1.21)

Sample size

  < 100 3 18.0% 0.295 0.796 0.87 (0.31–2.48)

  > 100 37 32.5 0.031 0.733 0.98 (0.89–1.08)

Year

  ≤ 2010 20 0.0% 0.961 0.070 0.91 (0.82–1.01)

  > 2010 20 55.2% 0.002 0.356 1.06 (0.96–1.17)

AG VS AA Ethnicity

 Arabian 3 54.9% 0.109 0.174 1.76 (0.78–3.95)

 Asian 14 65.7% P < 0.001 0.906 1.01 (0.86–1.18)

 Caucasian 22 0.0% 0.631 0.023 1.05 (1.01–1.10)

 Mixed 1 NA NA 0.937 0.99 (0.77–1.27)

Cancer type

 Ovarian cancer 4 0.0% 0.998 0.145 1.09 (0.97–1.22)

 Acute lymphoblastic leukemia 2 0.0% 0.747 0.893 0.98 (0.78–1.24)

 Breast cancer 13 42.3% 0.054 0.006 1.08 (1.02–1.13)

 Thyroid cancer 4 33.2% 0.213 0.012 1.27 (1.05–1.53)

 Bladder cancer 3 87.1% P < 0.001 0.038 0.71 (0.41–1.23)

 Lung cancer 3 26.7% 0.255 0.132 0.87 (0.73–1.04)

 Others 11 0.0% 0.935 0.710 1.02 (0.92–1.13)

Method

 PCR–RFLP 12 0.0% 0.981 0.590 1.03 (0.93–1.14)

 Sequencing 2 0.0% 0.946 0.001 4.00 (1.79–8.94)

 TaqMan 13 57.1% 0.006 0.696 1.02 (0.92–1.14)

 PCR 4 72.9% 0.011 0.780 1.05 (0.76–1.44)

 ND 6 35.1% 0.173 0.205 1.04 (0.98–1.11)

 Others 3 0.0% 0.577 0.089 1.25 (0.97–1.63)

Source of control

 HB 23 56.0% 0.001 0.421 1.05 (0.93–1.18)

 pb 12 0.0% 0.803 0.002 1.09 (1.03–1.15)
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populations. In addition, detection method, source of 
control, and sample size played a role in heterogeneity 
and in the results. Well-designed large-scale studies are 
required to further evaluate the results.
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Table 3  (continued)

Comparison Subgroup Number I2 PH PZ OR  (95% CI)
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Sample size
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Fig. 2  Funnel plots for the test of publication bias for the five genetic models
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