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Abstract 

Background:  Older aged adults and those with pre-existing conditions are at highest risk for severe COVID-19 asso-
ciated outcomes.

Methods:  Using a large dataset of genome-wide RNA-seq profiles derived from human dermal fibroblasts 
(GSE113957) we investigated whether age affects the expression of pattern recognition receptor (PRR) genes and 
ACE2, the receptor for SARS-CoV-2.

Results:  Extremes of age are associated with increased expression of selected PRR genes, ACE2 and four genes that 
encode proteins that have been shown to interact with SAR2-CoV-2 proteins.

Conclusions:  Assessment of PRR expression might provide a strategy for stratifying the risk of severe COVID-19 dis-
ease at both the individual and population levels.
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Background
Most people infected with SARS-CoV-2 will have mild to 
moderate cold and flu-like symptoms, or even be asymp-
tomatic [1]. Older aged adults, and those with underly-
ing conditions such as diabetes mellitus, chronic lung 
disease and cardiovascular disease are at highest risk for 
severe COVID-19 associated outcomes [2]. The high-
est case fatality rates are in the 80  years and older age 

group (7.8%), with the lowest in the 0–9 years age group 
(0.00161%) [3]. Age greater than 80 years has more than 
twenty times the risk of COVID-19-related death com-
pared to people aged 50–59  years [4]. The reasons for 
these markedly different outcomes at the extremes of age 
and for the occasional death that occurs in apparently 
healthy younger patients remain poorly understood.

Pattern recognition receptors (PRRs) play crucial 
roles in the innate immune response by recognizing 
pathogen-associated molecular patterns (PAMPs) and 
molecules derived from damaged cells, referred to as 
damage-associated molecular patterns (DAMPs) [5, 6]. 
PRRs are coupled to intracellular signaling cascades that 
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control transcription of a wide spectrum of inflammatory 
genes [7]. Humans have several distinct classes of PRRs, 
including Toll-like receptors (TLRs), NOD-like receptors 
(NLRs), RIG-like receptors (RLRs), C-type lectin recep-
tors (CLRs) and intracellular DNA sensors [8]. PRRs play 
a critical role in the inflammatory response induced by 
viruses and are important determinants of outcome 
[9–12].

In this study, we examined whether extremes of age 
affect the expression of PPR genes, ACE2 and proteins 
that have been shown to interact with SARS-CoV-2. We 
found extremes of age are associated with differences in 
the expression of PRR genes, ACE2 and several genes that 
encode proteins known to interact with SAR2-CoV-2.

Methods
Human dermal fibroblast dataset
Our analysis was done using RNA-seq data (GSE113957) 
from the National Center for Biotechnology Informa-
tion (NCBI, Bethesda, MD, USA). Normalized TMM 
gene counts per million for the individual dermal fibro-
blast cell lines were downloaded from the GEO RNA-seq 
Experiments Interactive Navigator (GREIN) [13, 14].

Identification of differentially expressed genes 
and enrichment analysis
Limma-Voom [15, 16] was used to identify differentially 
expressed genes between the oldest (≥ 80 years, N = 33) 
and youngest (≤ 10  years, N = 14) age groups. Differ-
entially expressed genes were defined as those with an 
Adjusted P value < 0.05 after multiple testing correction 
and an absolute log2Fold Change > 1.0. Enrichment anal-
ysis of the differentially expressed genes was performed 
with ToppGene [17].

Correlation analysis
Pairwise Pearson correlation coefficients were calcu-
lated between the normalized gene counts of the 21 PRR 
genes, ACE2 and age, over all 133 samples using Graph-
Pad Prism version 8.0.

Age related interactions with SARS‑CoV‑2 proteins
Protein–protein interactions linking differentially 
expressed genes and SARS-CoV-2 proteins were identi-
fied by overlaying differentially expressed genes in the 
oldest and youngest age groups on to the SARS-CoV-2 
human protein–protein interaction map reported by 
Gordon, et al. [18]. Network visualization was performed 
using Cytoscape [19] the NDEx v2.4.5 [20].

Results
Dermal fibroblast RNA‑seq data set
Dermal fibroblast cultures retain age-dependent pheno-
typic, epigenomic, and transcriptomic changes [21–24]. 
As such, fibroblast cultures have been proposed as a 
model for studying aging and related diseases [25]. We 
leveraged this approach to investigate the affect aging 
has on PRR and ACE2 gene expression. For our analy-
sis we used a large dataset of genome-wide RNA-seq 
profiles derived from human dermal fibroblasts (GSE 
113,957) that was previously used to develop an ensem-
ble machine learning method that could predict chrono-
logical age to a median error of 4 years [25]. The dataset 
includes samples from 133 “apparently healthy individu-
als” aged between 1 to 94  years. Given that COVID-19 
disease has markedly different outcomes at the extremes 
of age, we first examined the gene expression differences 
between the oldest (≥ 80 years, N = 33) and the youngest 
(≤ 10 years, N = 14) age groups (see “Methods” section). 
After filtering out genes with low expression (cpm > 0.5 in 
at least two samples), a total of 1252 genes were differen-
tially expressed between the oldest relative to the young-
est age group (Fig. 1a, Additional file 1: Suppl Table 1a). 
Differentially expressed genes were enriched in KEGG 
pathways involved in Cell Cycle and DNA replication, 
among others (Fig. 1b, Additional file 2: Suppl Table 2).

Age is associated with broad changes in PRR gene 
expression
We next focused on whether the expression of indi-
vidual PRR genes change with age. Between the oldest 
(≥ 80 years) and the youngest (≤ 10 years) age groups we 
found three differentially expressed PRR genes (TLR3, 
TLR4, and IHIF1) that had a log2FC > 1.0 (Fig. 1c,d, Addi-
tional file  1: Suppl Table  1b). Age was correlated with 
the expression of 20 out of 21 PRR genes (Fig. 2a, Addi-
tional file 3, Suppl Table 3a-c). Normalized gene counts 
for TLR3, TLR4 and IHIF1 expressed as a function of 
age are shown in Fig. 2b. Of these, TLR4 had the greatest 
fold change increase (log2FC = 2.6) and the highest cor-
relation coefficient with age (Pearson r 0.60, Adj. P Value 
2.05E-14) (Additional files 1 and 3: Suppl Tables 1b and 
3a-c). Plots of the other TLR genes counts are provided in 
Additional file 4: Suppl Figure 1.

The expression of two PRR genes were negatively cor-
related with age, Nucleotide-binding oligomerization 
domain-containing protein 1 (NOD1) (log2FC = -0.27; 
Adj. P Value = 0.01; Pearson r -0.18, Adj. P Value 0.04) 
and Cyclic GMP-AMP Synthase (CGAS) (log2FC = -0.56, 
Adj. P Value 7.89E-05; Pearson r -0.34, Adj. P Value 6.6E-
5). Both genes encode proteins that activate the immune 
response to viruses [26, 27].
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To explore our findings further, we performed a dif-
ferential gene expression analysis on the dermal fibro-
blast cell lines that had high (> 75th percentile) and low 
(< 25th percentile) expression of TLR4 (Additional file 5: 
Suppl Table 4). Curiously, enrichment analysis of the 789 
differentially expressed genes showed cell cycle (KEGG: 
hsa04110) to be the canonical pathway with the great-
est enrichment (FDR 1.55E-06), similar to the enrich-
ment of the differentially expressed genes between oldest 
and youngest groups (Fig.  1b,c, Additional file  6: Suppl 
Table 5). TLR4 is known to act via the adaptor molecule 
TRIF to regulate the expression of type I interferons. 
TLR activation of TRIF can also induce the cell cycle, 
an effect which is antagonized by type I interferons [28]. 
Our finding of both high levels of TLR4 and elevated cell 
cycle could thus imply changes in the expression of type 
I interferons.

ACE2 expression increases with age
We then examined whether the expression of ACE2, 
the receptor for SARS-CoV-2, changes with age. ACE2 
expression was detected in 35 of the 133 cell lines (26.3%) 
and showed a marked increase in the 80 + age group 
(Fig.  2b right). ACE2 expression was correlated with 
the expression of 19 of the 21 PRR genes (Fig.  2a and 
Additional file: Suppl Table  3a-c). Of note, ACE2 was 
expressed at much lower levels than TLR4, with variable 
expression in the 80  year and over age group. Whether 
the latter reflects the biological state of the individu-
als who donated the skin samples or is a consequence of 
ex vivo culture will require further study.

Age‑related interactions with SARS‑CoV‑2 proteins
We also asked the question if the differentially expressed 
genes between the oldest and youngest age groups 
encode proteins that interact with SARS-CoV-2 (see 
“Methods” section). Our analysis revealed eleven differ-
entially expressed genes between the oldest and youngest 
age groups that encode proteins known to interact with 
SARS-CoV-2 (Fig.  2d). Four of these genes (ADAM9, 
FBLN5, FAM8A1, CLIP4) have increased expression in 
the older compared to the younger age groups and are 
known to interact with four SARS-CoV-2 proteins (NsP9, 
Nsp13, M, and Orf8). Interestingly, the SARS-CoV-2 pro-
teins to which they bind relate to lipid modifications and 

vesicle trafficking. Host interactions of Orf8 (endoplas-
mic reticulum quality control), M (ER structural mor-
phology proteins), and NSp13 (golgins) may facilitate the 
dramatic reconfiguration of ER/Golgi trafficking during 
coronavirus infection [18]. Orf8 has also been suggested 
to promote immune evasion by downregulating antigen 
presentation in SARS-CoV-2 infected cells [29]. Whether 
age-related increases in the expression of host proteins 
that bind SARS-CoV-2 protein predispose to COVID-
19 disease or change its clinical course deserves further 
study.

Discussion
The COVID-19 (Coronavirus Disease-2019) pandemic 
is presenting unprecedented challenges to health care 
systems and governments worldwide. As of February 
6, 2021 there have been 105,866,930 confirmed cases 
worldwide, resulting in 2,311,227 [30]. COVID-19 dis-
ease is caused by the novel Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is 
a single-stranded enveloped RNA virus, with viral entry 
depending upon binding of its spike protein to Angio-
tensin Converting Enzyme II (ACE2), a transmembrane 
protein present on the surface of multiple types of cells 
[31]. Infection of cells by SARS-CoV-2 disrupts cellular 
metabolism and compromises cellular survival by trig-
gering apoptosis. Given the rapid spread of the virus and 
its associated mortality, there is a critical need to better 
understand the biology of the SARS-CoV-2 infection.

In this study, we used RNA-seq data from a large col-
lection of dermal fibroblasts to demonstrate that PRR 
genes and ACE2 vary with extremes of age. Further, we 
show that advanced age is associated with increased 
expression of several genes that encode proteins known 
to bind to SARS-CoV-2. Whether these gene expression 
differences contribute to the epidemiology of SARS-
CoV-2 infection will require further study. Neverthe-
less, overexpression of PRR genes, TLR4 in particular, 
is an intriguing mechanism to explain the relationship 
between age and SARS-CoV-2 infection, and poten-
tially the TLR-mediated cytokine storm that character-
izes the morbidity and mortality in COVID-19 disease.

TLR4 has been previously suggested to have a role in 
the damaging responses that occurs during viral infec-
tions, acting via both PAMPs and DAMPs [9, 10]. 

Fig. 1  Gene expression differences between dermal fibroblast cell lines derived from the oldest (≥ 80 years) and youngest (≤ 10 years) age 
groups. a Volcano plot showing gene expression differences between oldest and youngest age groups. b KEGG pathways enriched in differentially 
expressed genes between the oldest and youngest age groups. c Heatmap of differentially expressed pattern recognition receptor genes between 
the oldest and youngest age groups. d Violin plots of the pattern recognition receptor genes that had an Adjusted P Value < 0.05 and a log2FC > 1.0 
between the oldest and youngest age groups

(See figure on next page.)
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Diabetes, obesity and coronary artery disease are some of 
the conditions in which increased TLR4 expression has 
been reported [32, 33]. Notably, when blood from indi-
viduals with stable coronary artery disease and obese 
patients with atherosclerosis are stimulated with TLR 
ligands there is an increased cytokine response [34, 35]. 
Platelet TLR4 also has an important role in thrombo-
sis [36], thus potentially linking toll-receptor expres-
sion to the hypercoagulability observed in COVID-19 
patients [37]. Perhaps the best evidence that TLR4 has 
a role in SARS-CoV-2 infection is the observation that 
TLR4 mediated inflammatory signaling molecules are 
upregulated in peripheral blood mononuclear cells from 
COVID-19 patients, compared with healthy controls 
[38]. Among the most highly increased inflammatory 
mediators in severe/critically ill patients is S100A9, an 
alarmin and TLR4 ligand. Recombinant S2 and nucle-
ocapsid proteins of SARS-CoV-2 significantly increased 
pro-inflammatory cytokines/chemokines and S100A9 
in human primary PBMCs [38]. Considered together, 
changes in the expression of TLRs and other PRRs could 
have a key role in mediating the age-related inflamma-
tory response during SARS CoV-2 infection.

We recognize that dermal fibroblasts are not the pri-
mary entry site of SARS-CoV-2 into the human body. 
Nevertheless, the SARS-CoV-2 virus has been found at 
sites outside the respiratory tract [39]; ACE2 is highly 
expressed in the granulosum of the skin [40], and fibro-
blast have been used to investigate host antiviral defenses 
during other Coronavirus infections [41]. The pressing 
question is how closely fibroblasts simulate the biology of 
cells within the respiratory system, and if they could be a 
useful model for studying SARS-CoV-2 infection. Limited 
data suggests there are biological similarities between the 
age-related changes that occur in dermal fibroblast and 
within the lung. Chow et al. [42] analyzed 578 lung RNA 
seq transcriptomes from donors of varying ages (21–
70 years old) available from the Genotype-Tissue Expres-
sion (GTEx) project [43]. After correcting for sex, age, 
smoking status and Hardy scale, age was an independent 

predictor of ACE2 expression, with increasing age asso-
ciated with higher expression of ACE2—similar to that 
observed in our dermal fibroblast model. Interestingly, 
Cell Cycle was the most highly enriched DAVID gene 
ontology pathway in the age-down gene expression group 
in the GTEx dataset and the most highly enriched KEGG 
pathway in our ≤ 10 and ≥ 80  years age group compari-
son. Further, the dermal fibroblast model was similar to 
the GTEx lung dataset in that it predicted three of the 
four age-related protein–protein SARS-CoV-2 interac-
tions (Nsp9, Nsp13, Orf8).

To explore this further, we tested the hypothesis that 
PRR gene expression was associated with age using the 
lung transcriptome data in the GTEx dataset. To do so, 
we queried Supplementary Table  6 of the Chow et  al. 
manuscript [42] for the 21 PRR genes used in our study. 
We found no association between age and PRR gene 
expression using the GTEx data set. Nevertheless, an 
important caveat of the analysis is that the donors in the 
GTEx dataset were between 21–70  years of age. It thus 
does not include samples at the extremes of age which 
are likely to be biologically different.

Our study does have other limitations. Foremost, is 
that health information was not available for the indi-
viduals donating skin samples to the dermal fibroblast 
collection. Although, the skin samples are reported to 
be from “apparently healthy individuals”, we believe it 
is unlikely that individuals in the oldest age group were 
completely free of chronic diseases. Another limitation 
was that minority groups are inadequately represented in 
the collection. The dermal fibroblast collection includes 
samples from one American Indian (< 1%), one Hispanic 
(< 1%), two Asians (1.5%), and nine Blacks (6.7%)—way 
too few to draw any meaningful conclusions on the eth-
nic groups that have been the hardest hit by the COVID-
19 pandemic.

Finally, as the scientific community continues its 
research on the COVID-19 pandemic, the dermal fibro-
blast model provides another potential tool for inves-
tigating SARS-CoV-2 biology. The strength of the 

(See figure on next page.)
Fig. 2  Effect of age on the expression of pattern recognition receptor genes, enrichment results of high and low TLR4 expressors, and predicted 
interactions with SARS-CoV-2 proteins. a Correlation matrix comparing the relationships between age, ACE2 and 21 pattern recognition receptor 
genes. Pearson r, P values, and Confidence intervals of r are provided in Additional file 3: Suppl Table 3a-c. Age refers to the age of the individual 
from which the dermal fibroblast cell line was derived. b Normalized gene counts for TLR3, TLR4, IHIF1 and ACE2 expressed as a function of age. c 
Enriched KEGG pathways in differentially expressed genes (absolute log2FC > 1.0 and Adjusted P Value < 0.05) between dermal fibroblast cell lines 
with high (> 75th percentile) and low (< 25th percentile) expression of TLR4. Based on differentially expressed genes with an absolute log2FC > 1.0 
and Adjusted P Value < 0.05). d Protein–protein interactions linking differentially expressed genes between oldest (≥ 80 years) and youngest 
(≤ 10 years) age groups and SARS-CoV-2 proteins. SARS-CoV-2 viral proteins are represented at the center of each module, with interacting human 
host proteins represented with circles. Differentially expressed gene color is proportional to logFC. Physical interactions among host and viral 
proteins are noted as thin black lines. Four genes (ADAM9, FBLN5, FAM8A1, CLIP4) that encode proteins that interact with SARS-CoV-2 had increased 
expression in the oldest compared to youngest age groups (shades of red)
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dermal fibroblast model is that skin samples can be eas-
ily obtained from donors of different ages, sex, and eth-
nicities, and those with varying comorbidities such a high 
blood pressure and diabetes, and from smokers and non-
smokers. This approach could be especially valuable in 
children were invasive procedures to collect tissue is less 

acceptable and post-mortem collection of tissue is less 
common. Such a model would also have an advantage 
over transfection models as these cells would not only 
have increased expression of ACE2 and TLR4, but also 
have an aged transcriptome which could be important for 
the infectivity and outcome of the SARS-CoV-2 infection. 
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The critical role PRRs play in mediating host–pathogen 
interactions, and their increased expression in some co-
morbidities associated with poor COVID-19 outcomes, 
make them a potential target for developing tools to pre-
dict risk for and outcomes of SARS-CoV-2 infection at 
both the individual and population levels.

Conclusions
Using a large dataset of genome-wide RNA-seq profiles 
derived from human dermal fibroblasts we show that 
expression of PRR genes and ACE2, the receptor for 
SARS-CoV-2 vary with extremes of age. Advanced age 
was also associated with increased expression of several 
genes that encode proteins which interact with SARS-
CoV-2. Given that PRRs function as a critical inter-
face between the host and invading pathogens, further 
research is needed to better understand how changes 
in PRR expression affects the susceptibility to and out-
come of SARS-CoV-2 infection.
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