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Abstract 

Background:  Today, there are a lot of markers on the prognosis and diagnosis of complex diseases such as primary 
breast cancer. However, our understanding of the drivers that influence cancer aggression is limited.

Methods:  In this work, we study somatic mutation data consists of 450 metastatic breast tumor samples from cBio 
Cancer Genomics Portal. We use four software tools to extract features from this data. Then, an ensemble classifier (EC) 
learning algorithm called EARN (Ensemble of Artificial Neural Network, Random Forest, and non-linear Support Vector 
Machine) is proposed to evaluate plausible driver genes for metastatic breast cancer (MBCA). The decision-making 
strategy for the proposed ensemble machine is based on the aggregation of the predicted scores obtained from 
individual learning classifiers to be prioritized homo sapiens genes annotated as protein-coding from NCBI.

Results:  This study is an attempt to focus on the findings in several aspects of MBCA prognosis and diagnosis. First, 
drivers and passengers predicted by SVM, ANN, RF, and EARN are introduced. Second, biological inferences of predic‑
tions are discussed based on gene set enrichment analysis. Third, statistical validation and comparison of all learning 
methods are performed by some evaluation metrics. Finally, the pathway enrichment analysis (PEA) using Reactome‑
FIVIz tool (FDR < 0.03) for the top 100 genes predicted by EARN leads us to propose a new gene set panel for MBCA. 
It includes HDAC3, ABAT, GRIN1, PLCB1, and KPNA2 as well as NCOR1, TBL1XR1, SIRT4, KRAS, CACNA1E, PRKCG, GPS2, 
SIN3A, ACTB, KDM6B, and PRMT1. Furthermore, we compare results for MBCA to other outputs regarding 983 primary 
tumor samples of breast invasive carcinoma (BRCA) obtained from the Cancer Genome Atlas (TCGA). The comparison 
between outputs shows that ROC-AUC reaches 99.24% using EARN for MBCA and 99.79% for BRCA. This statistical 
result is better than three individual classifiers in each case.

Conclusions:  This research using an integrative approach assists precision oncologists to design compact targeted 
panels that eliminate the need for whole-genome/exome sequencing. The schematic representation of the proposed 
model is presented as the Graphic abstract.
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Background
The mutations induce small changes to the genes. If 
they cause damage and remain untreated, it drives mul-
tifactorial anomalies which are called complex diseases. 
Cancers are one kind of these complex diseases which 
are induced by defective driver genes and can cause 
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malignant transformation [1]. Among cancers, primary 
breast cancer as a complex disease is the most commonly 
diagnosed carcinoma in women worldwide and will be 
fatal if it progresses towards the secondary-stage. It is the 
most common and the second most common cause of 
cancer death in women in developing regions and devel-
oped regions, respectively [2]. Over the last 10  years, 
the incidence of breast cancer has increased almost 
10 times [3]. The concern about this growing trend has 
prompted oncologists to seek early detection. Nowadays, 
the molecular technique of next-generation sequencing 
(NGS), including whole-exome sequencing could gen-
erate a large amount of data related to mutated genes 
called mutation data [4]. The analysis of this massive data 
requires the use of robust computational approaches to 
exploit the information effectively. Precision oncology 
by focusing on targeted clinical panel sequencing can be 
helpful in new treatment targets [5], i.e., a breast cancer-
specific NGS panel, including 79 genes has been vali-
dated to use in identifying primary and metastatic breast 
cancer [6]. In this way, the advent of bioinformatics tools 
in parallel with the development of molecular techniques 
could lead to discovering biomarkers that are efficient in 
cancer diagnosis and prognosis [7]. The machine learning 
algorithms as one of the computational approaches can 

be trained with data from countless patients whereas it is 
too difficult for human physicians and biologists to gain 
such experience in an entire career or their researches. 
These models equip experts to make better decisions [8]. 
Some of them are the ensemble classifier (EC) machine 
learning methods that combine two or several models 
to optimize the performance of the base components in 
order to improve data analysis. In previous studies, it has 
been mentioned that committee approaches can outper-
form even powerful individual models in many cases [9]. 
Investigations show using ensemble models (a.k.a fusion 
systems) is widely increasing in many fields of inquiry, 
including the detection of cancers and their subtypes 
and especially in the area of breast cancer detection. In 
medical researches, ECs have accurately succeeded to 
improve patients’ diagnosis [10]. In 1996, a breast cancer 
dataset, including 699 samples, were analyzed by bagging 
nearest neighbor classifiers as a fusion system [11]. Since 
then, many ensemble classification methods have been 
applied to breast cancer prognosis [12]. In this regard, 
we reviewed 42 ensemble methods related to 18 cancers 
[13]. Among these, 22 approaches have been reported for 
analyzing breast cancer data in the literature (Table 1).

In some of these studies, ECs have been used for intro-
ducing driver genes associated with breast cancer and the 

Table 1  22 ensemble learning methods concerned with the detection of breast cancer

a Some methods that are proposed to discover genomic markers related to breast cancer

Method name Publication year

1 Bayesian networks-based model integration [14, 15] 2006 and 2019

2 RSS-SCS method [16] 2016

3 Collective approach (correlation, color palette, color proportion, and SVM) [17] 2016

4 Kernel-based Data Fusion Method for Gene Prioritization [18] 2015

5 DECORATE methoda [19] 2015

6 HyDRA methoda [20] 2015

7 GenEnsemble methoda (NBS-IB3-SVM-C4.5 DT) [21] 2014

8 NB (Naïve Bayes) combiner method [22] 2014

9 Evolutionary Ensemble Model [23] 2014

10 smoothed t-statistic SVM (stSVM) [24] 2013

11 SVM Classifiers Fusion (three SVM) [25] 2013

12 COMBINER (Core Module Biomarker Identification)a [26] 2012

13 Ensembles of BioHEL Rule Set [27] 2012

14 Stacking IB3-NBS-RF-SVM method [28] 2012

15 REIS-based ensemble method [29] 2011

16 MRS method [30] 2010

17 Boosting-TWSVM method [31] 2009

18 Bagging and boosting-based TWSVM [32] 2009

19 Feature Subsets Method [33] 2008

20 BNCE method [34] 2007

21 Bayesian Network Classifier [35] 2006

22 enSVM (200 SVM) [36] 2006
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evaluation of genomic biomarkers regarding this cancer. 
However, little attention has been paid to compare driv-
ers of primary and metastatic tumors in an analytical 
framework. In this work, we propose the EC learning 
approach called EARN (Ensemble of Artificial Neural 
Network, Random Forest, and non-linear Support Vector 
Machine). It is used to find candidate drivers in primary 
breast invasive carcinoma (BRCA) and metastatic breast 
cancer (MBCA) samples from mutation data available in 
the Cancer Genome Atlas (TCGA) (https://​portal.​gdc.​
cancer.​gov) and cBioPortal (http://​cbiop​ortal.​org). The 
candidate genes introduced by the EC mechanism may 
already be known as cancers causing genes in databases 
or can be novel. The candidate genes have the potential to 
be presented as genomic risk biomarkers after complet-
ing the steps of clinical trials [37] and used for personal-
ized targeted therapy [38]. Furthermore, there is evidence 
that driver genes that effectively prognose cancers could 
be used in therapeutic applications to access more effec-
tive therapies [39]. The proposed EC method combines 
decisions of three base classifiers, including non-linear 
Support Vector Machine (NLSVM) [40], Artificial Neural 
Network (ANN) [41], and Random Forest (RF) [42]. The 
features for these three classifiers were extracted from 
four software tools: MutSigCV v.1.4 [43], Oncodrive-
CLUST 0.4.1 [44], OncodriveFM [45], and NetBox  1.0 
[46]. Overall, we aim to focus on the findings in five steps 
of BRCA and MBCA prognosis and diagnosis. 1. A list of 
mutated genes ranked by four software tools based on p 
value is presented as the features. 2. Driver and passen-
ger genes predicted by three individual machine learn-
ing methods and EARN are introduced and compared. 
3. Biological validation of predictions based on gene set 
enrichment analysis is done and discussed. Indeed, we 
evaluate the top genes predicted by EARN and three base 
classifiers for BRCA and MBCA by searching these genes 
in the list of cancer-associated genes in the public data-
bases, including the Online Mendelian Inheritance in 
Man (OMIM) (http://​www.​omim.​org/), the Cancer Gene 
Census (CGC) [47], the Network of Cancer Genes (NCG) 
[48, 49], and the human cancer metastasis database 
(HCMDB) [50]. 4. The performance of all machine learn-
ing methods is evaluated by monitoring some statistical 
metrics. 5. Finally, a targeted driver gene panel for MBCA 
diagnosis based on pathway enrichment analysis (PEA) of 
top 100 predicted by EARN (EARN100) is proposed.

Methods
In this study, an ensemble method as a synergistic com-
bination of computational  tools has been designed and 
proposed to find the putative cancer drivers. This fusion 
system can help to analyze the Whole-Exome Sequencing 
(WES) data. It consists of four steps: selection of dataset, 

feature extraction, feature integration, and decision inte-
gration (Fig. 1). We have also shared Python source code 
and other requirements for the implementation of the 
proposed ensemble machine learning algorithm as the 
protocol via GitHub (https://​github.​com/​lmirs​adeghi/​
EARN/).

Selection of dataset
In this study, to identify candidate driver genes based on 
mutations that occur in genes, breast cancer primary and 
metastasis data have been analyzed.

For primary breast cancer, an open-access mutation 
annotation format (.maf) file was downloaded from 
TCGA data set regarding BRCA [51]. This file includes 
90,969 masked somatic mutations identified in 17,990 
genes from 983 tumor samples of BRCA patients that 
their whole exome had been sequenced by Illumina 
Genome Analyzer II [see this mutation file in Additional 
file 1: Table S1]. Also, for processing of sequences, a bio-
informatics  pipeline  framework called "MuSE Variant 
Aggregation and Masking" in TCGA has been used. For 
MBCA, two files (.txt) were downloaded from the cBio 
Cancer Genomics Portal [52, 53]. The first mutation file 
includes WES of 213 tumor samples from 213 MBCA 
patients by Illumina HiSeq. It is associated with 22,949 
somatic mutation counts that occurred among 10,791 
genes [54]. The second file consists of WES of 237 metas-
tasis tumor samples by Illumina GAIIx from 180 patients 
regarding 24,027 somatic mutations identified in 10,273 
genes [55]. Clinical data shows that 86 samples were 
taken when patients were in the metastatic disease stage, 
and other samples had been taken less than 4  months 
prior to the metastatic disease is diagnosed [56]. After 
selecting two initial datasets concerning MBCA [see 
these mutation files in Additional file  2: Table  S2 and 
S3], they augmented to build a comprehensive mutation 
data file, including 46,928 somatic mutations identified 
among 14,293 genes from 450 MBCA tumor samples 
(393 patients).

Selection of software tools for feature extraction
After preparing mutation files, four software tools 
including MutSigCV v.1.4, OncodriveCLUST 0.4.1, 
OncodriveFM, and NetBox 1.0 were used to extract the 
convenient numerical features. The selection of tools 
for feature extraction was a crucial step to achieve bet-
ter performance on the final algorithm of the proposed 
ensemble learning model. We select the four software 
tools based on evidences of a paper in 2015 on identifi-
cation and ranking of plausible drivers for BRCA and 
ovarian (OV) cancer [19]. It had been demonstrated that 
among ten tools for extracting features, OncodriveFM 
and NetBox generate high sensitivity, especially about 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://cbioportal.org
http://www.omim.org/
https://github.com/lmirsadeghi/EARN/
https://github.com/lmirsadeghi/EARN/
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BRCA. Also, the sensitivity of OncodriveCLUST tool is 
high concerning the OV cancer. On the other hand, in 
both cancers, it had been shown that the positive predic-
tive value (PPV) for NetBox and OncodriveFM is high. 
MutSigCV was able to propose a large number of drivers 
in the top 50 genes for OV, where at least five other meth-
ods had also predicted them as top genes. These advan-
tages led us to use these tools. Practically, these four tools 
evaluate original mutation files from different aspects 
and assign a score (p value) to genes to show their rel-
evance to disease according to that software’s logic. Mut-
SigCV gets data concerning point mutations and small 
insertions and deletions (INDELs) from the WES file. 
After analyzing and estimating mutation frequency, it can 
identify and introduce a significant list of mutated genes 
for cancers [43]. OncodriveClust software tool is able to 
identify mutations that generate oncogenes and leads to 
changes in the function of the proteins. For this purpose, 
it analyzes synonymous mutations and protein-affecting 

mutations, including non-synonymous, stop, and splice-
site mutations [44]. Also, this tool uses data from the 
Cancer Gene Census (CGC) database [47]. for selecting 
known drivers associated with cancers. OncodriveFM 
is our next tool which can detect driver genes across 
tumor samples, identify pathways in cancers, and dis-
cover gene modules by using information that is available 
in the WES file. This data is provided by three methods, 
including SIFT, PolyPhen2, and MutationAssessor [45]. 
The fourth tool is NetBox, and it can detect driver muta-
tions based on a network. First, a global human interac-
tion network is constructed by this tool. Then, it finds the 
linker genes between mutated genes for module discov-
ery and identification of candidate drivers [46]. Indeed. 
the concept and criteria of selecting these four software 
tools are based on the study in 2015 where the perfor-
mance metrics of ten methods for prediction of plausible 
driver genes of BRCA and ovarian OV were compared 
[19].

Fig. 1  The proposed fusion system workflow for prediction of driver genes in cancers
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Feature extraction and feature vector construction
In this step, the four software tools explained above are 
used for the extraction of features from primary and 
metastasis mutation data files. After running the tools, 
all genes are ranked based on p value as output data, and 
each method assigns a number (0 ≤ p value ≤ 1) to genes 
as numerical features. Therefore, a four-dimensional fea-
ture vector is constructed for each gene (Fig.  2a). Since 
the genes with lower p value play a more critical role 
in the development of cancer, we decided to use "1 − p 
value" as the final numerical feature for each gene. With 
this plan, the genes that are more important in the occur-
rence of BRCA and MBCA will also get higher feature 
values. Different and independent logics behind the rank-
ing mechanisms in the exploited tools guarantee enough 
diversity between inputs of the ensemble system which is 
an essential property for efficient fusion methods.

Classifier model selection
Three supervised machine learning methods, including 
non-linear SVM to learn non-linear functions to separate 
the classes, ANN, and RF are used as individual classifi-
ers. For selecting these methods, the literature and pre-
vious studies were surveyed. We did a comprehensive 
review regarding fusion systems and the results showed 
that SVM has been used as a base classifier in many stud-
ies or applied as a baseline for comparison between the 
performance of the different machine learning meth-
ods [57–60]. Since in this case, the positive and nega-
tive training gene set for the implementation of learning 
algorithms are highly imbalanced, 40 positive genes ver-
sus 2151 negative genes (refer to 2.4), a solution must be 
found. It has been demonstrated the SVM classifier can 
be a robust method for generating optimal results with 
imbalanced positive and negative datasets [61], espe-
cially when an Instance-weighted SVM algorithm is used 
[62]. So, we weighed this algorithm to get better results. 
On the other hand, RF is an ensemble machine learn-
ing method used as one of the individual classifiers. This 
method can partially solve the problem of the unbalanced 
positive and negative training set by bootstrap sam-
pling and can also improve performance, i.e., predictive 
accuracy reached 88.89% using RF for breast cancer risk 
prediction [63]. The ANN classifier is another machine 
learning method with long-lasting profound literature. 
In 1990, Hansen and Salamon integrated multiple neu-
ral networks and improved results [64]. This method is 
also widely used in biology studies and has achieved high 
performance. In 2017, it was shown that ANN could 
be used for the diagnosis of lung cancer [65]. Mean-
while, in this study, the positive training set is small, and 
recent researches have revealed that ANN may improve 

performance for problems with small training set sizes 
and give better performance, especially for problems 
with time-series data category [66]. All of these reasons 
and criteria led to the selection of these three machine 
learning methods as base classifiers of the final ensemble 
system.

Training and testing
In this study, we train separate models for BRCA and 
MBCA. Some criteria for the selection of training data 
sets are described below and visualized in Fig.  3a. For 
testing the performance of models in terms of evalua-
tion metrics (e.g. recall, precision, etc.), we average over 
100 trials. In each trial, 3-fold cross-validation with ran-
dom shuffles is used to calculate the metrics on all data. 
Finally, the mean and standard deviation of metrics over 
100 trials are obtained. Average outputs for cross-valida-
tion of the estimator of each model on testing data based 
on some metrics, including precision, f1 score, recall, 
accuracy, and Receiver Operating Characteristic-Area 
under Curve (ROC-AUC) are presented in “Results” 
section.

Training data set selection
The positive training set of genes for BRCA and MBCA 
were obtained from searching known genes and men-
tioned drivers concerning these cancers in several data-
bases, including the OMIM, CGC, NCG, HCMDB, and 
the Human Protein Atlas (HPA) (https://​www.​prote​inatl​
as.​org/). Also, about selecting negative training gene set, 
we reviewed a comprehensive list of prior works. Since 
there is no gold and standard database for a negative 
set selection, most researchers have used the bootstrap 
method for resampling, and the negative training genes 
have been mostly selected randomly. In this study, nega-
tive data was selected by counting the occurrence of 
mutations across all samples in the initial mutation data 
file, and the genes with the lowest mutation count were 
used as negative training set [19]. It is crucial to note 
that in both positive and negative training data, we only 
accepted protein-coding genes. [see further details for 
training genes in Additional file  3: Methods and Addi-
tional file 4: Table S4–S7].

Genome‑wide screening
For the genome-wide screening, 20,208 homo sapiens 
genes annotated as protein-coding were downloaded 
from ftp://​ftp.​ncbi.​nlm.​nih.​gov/​gene/​DATA/​GENE_​
INFO/​Mamma​lia/ on February 2019. The proposed 
ensemble model is applied to 18,017 genes for BRCA 
and 16,698 genes for MBCA, after excluding positive 
and negative training sets (Fig. 3b) [see Additional file 4: 
Table S8–S10].

https://www.proteinatlas.org/
https://www.proteinatlas.org/
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/
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Implementation of three machine learning algorithms 
based on feature integration
After adding features to the system, and training and 

testing of learning methods including non-linear SVM, 
ANN, and RF, they are applied to the protein-cod-
ing genes as the unseen data. Each of these methods 

Fig. 2  The Workflow for software tools and machine learning methods. a Feature extraction and Feature vector construction, b feature integration, 
c decision integration
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integrates the features extracted from the initial mutation 
file (refer to “Feature extraction and feature vector con-
struction” section). We use scikit-learn package to imple-
ment our algorithms in python [67]. Since this problem 
is a binary classification of genes based on drivers and 
passengers, they could label genes based on two indexes 
− 1 and + 1 (− 1 means passenger genes and + 1 means 
drivers), and also compute a score for each gene, inde-
pendently (Fig. 2b).

Implementation of proposed ensemble machine based 
on decision integration
Finally, the decision-making strategy for ensemble 
machine is based on aggregation of the predicted scores 
obtained from other machines. We call the proposed 
EC machine learning method EARN (ensemble of ANN, 
RF, and non-linear SVM). EARN uses the average of the 
scores of the outputs of the three base classifiers to assign 
a new score (ranging from 0 to 1) to each gene. The genes 
with higher prediction scores (scores ≥ 0.5) are labeled 

as drivers (+ 1) while the other genes will be passengers 
(− 1). This process has been illustrated in Fig. 2c.

Biological inferences
At this step, all the driver genes introduced for BRCA 
and MBCA, as well as top genes predicted by learning 
machines, are searched in the public databases to deter-
mine which genes have been already known related to 
cancer and which ones are new. Pathway enrichment 
analysis is also performed using ReactomeFIVIz tool 
(FDR < 0.03) [68–70] to identify the biochemical path-
ways associated with the candidate genes and examine 
the biological role of them. It is applied to find biological 
pathways and patterns related to cancer and other com-
plex diseases.

Results
This investigation aims to focus on the information 
achieved from five steps of BRCA and MBCA progno-
sis and diagnosis. (1) A list of mutated genes ranked by 

Fig. 3  The workflows for the selection of training data and unseen data for BRCA and MBCA. a Positive and negative training genes, b 
genome-wide screening
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four software tools is presented as the features based on 
p value. (2) Driver genes and passengers predicted by 
three individual machine learning methods, NLSVM, 
ANN, RF, and the proposed EC are introduced. (3) Bio-
logical validation of predictions is done based on gene set 
enrichment analysis. (4) Statistical validation of all learn-
ing methods is carried out by evaluation metrics. (5) A 
targeted gene panel for MBCA is proposed by  utilizing 
pathway enrichment analysis (PEA).

BRCA​
The description of the results for BRCA is presented in 
Additional file  5: Results and Table  S11 and S12. How-
ever, the comparative results of each algorithm for BRCA 
and MBCA are illustrated in the next section.

MBCA
Investigation of the diversity of features extracted 
from the original mutation file
Four software tools are used to extract and rank the list 
of mutated genes for MBCA as features based on p value 
to be used for the machine learning implementation in 
the next step. The use of multiple tools for generating 
features creates an effective diverse committee for better 
classification. It is known that machine learning method 
can do better discrimination with higher-dimensional 
feature vectors and perform the classification with higher 
accuracy [29]. To illustrate the existence of diversity in 
features and also for comparison between results of the 
tools, we plot the GeneVenn diagram [71] by setting p 
value ≤ 0.05 as the threshold. The plotting Venn diagram 
(p value ≤ 0.05) shows that the results of four software 
tools in the ranking of mutated genes for BRCA and 
MBCA are varied (Fig.  4a). It means that the extracted 
features by these tools from the original mutation file 
are sufficiently diverse and can be applied for machine 
learning implementation step. The comparison shows 
that five genes, C12orf29, OXCT1, PIK3CA, GCNT4, 
and C8orf44, are just common among the outputs. Also, 
PIK3CA has been selected by all software tools in both 
cases of BRCA and MBCA [see the outputs of software 
tools for BRCA and MBCA, and comparison among 
mutated genes (p value ≤ 0.05) extracted by these tools 
for MBCA in Additional file 6: Table S13–S26].

Outputs of three individual classifiers and EARN
The three base classifiers and EARN predicted the labels 
and scores of 16,698 protein-coding genes for MBCA. 
The percentage of the predicted driver and passenger 
genes using the four learning methods for BRCA and 
MBCA has been shown in Fig.  4b. These findings have 
been presented in an extra file [see Additional file  7: 
Table S27–S31].

Investigation of top 100 genes predicted by the four machine 
learning methods
The comparison of the top 100 genes predicted by the 
four methods using GeneVenn diagram tool shows that 
16 genes are predicted by all four machines for MBCA 
(Fig.  4c). The results of the enrichment of these genes 
in public databases are considered in Table  2. Other 
common and unique driver genes predicted by meth-
ods are presented in the extra file [see Additional file 8: 
Table  S32–S41]. Also, among the outputs of EARN100, 
BDNF, PRKCG, TH, PRKCD, and PIP5K1B are just pre-
dicted by this learning machine in the list of top 100 
genes. Among these five genes, BDNF and PRKCG have 
been already introduced regarding metastatic cancers but 
the others are new.

Biological validation of predictions based on gene set 
enrichment analysis
The biological analysis of genes predicted by EARN is 
performed based on two plans; (a) analysis of the results 
based on all predicted driver genes (labeled as + 1) and 
(b) analysis of the findings based on the top-scoring 
genes. To investigate outputs of the EARN for MBCA 
from a biological point of view based on the label, we 
analyzed the results concerning the public databases. 
There is a gene-metastasis association data file (.xls) in 
the HCMDB that lists 2240 genes related to metastatic 
cancers based on experiments performed in various 
studies. 622 genes out of these genes were introduced 
for metastatic breast cancer specifically. It should be 
noted that all 37 genes in the positive training gene set 
have overlap with the gene list of HCMDB in relation to 
both of different metastatic cancers and metastatic breast 
cancer. These 37 genes must be excluded to analyze the 
results. Table 3a, b present the frequency of driver genes 
enriched in the public databases for MBCA and BRCA.

Also, the top 50 genes predicted by all learning meth-
ods for MBCA are searched in the list of metastatic 
cancer-associated genes in the HCMDB. The compari-
son shows the enrichment score of 24%, 22%, and 16% 
for RF, ANN, and NLSVM compared to 24% for EARN. 
Although the value of enrichment in the top 50 is the 
same for EARN and RF, the number of studies that intro-
duce these enriched genes is 59 for the EARN method 
compared to 22 for RF. Table 4 presents these genes and 
also provides more information about them.

Furthermore, 38 genes listed by EARN50 have not been 
introduced in the HCMDB related to any metastatic can-
cers. So, these genes can be considered as new genes for 
more investigations [see Additional file 9: Table S43]. For 
BRCA, the enrichment rate (%) or PPV of the top 50 pre-
dictions of the EARN were compared with PPV of the 
top 50 genes introduced by the four popular software 
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tools, MutSigCV v.1.4, OncodriveCLUST 0.4.1, Onco-
driveFM, and NetBox 1.0. These tools were also applied 
in the feature extraction step. All of them have been 

developed to identify driver genes that are significantly 
involved in cancer. The comparisons show that EARN 
achieves a better outcome. PPV for EARN is calculated 

Fig. 4  Outputs for BRCA and MBCA. a The existence of diversity among features extracted from software tools after setting p value ≤ 0.05, b 
frequency of predicted driver and passenger genes using four learning methods, c the comparison of driver genes predicted by four methods, d 
the comparison of F1 scores as an evaluation metric of methods



Page 10 of 19Mirsadeghi et al. BMC Med Genomics          (2021) 14:122 

52% (26/50). PPVs for MutSigCV, OncodriveCLUST, 
OncodriveFM, and NetBox are determined 34% (17/50), 
20% (10/50), 36% (18/50), and 36% (18/50), respectively. 
[See the details of these comparisons in Additional file 9, 
Table S44].

Statistical validation of three individual classifiers and EARN 
based on evaluation measures
For MBCA, a comparison of the metrics based on 3-fold 
cross-validation on the test data shows that EARN and 
ANN achieve the best precision with zero FPR. The lower 
minimum FPR points that no passenger gene is misdiag-
nosed as drivers. Also, accuracy, F1 score, average preci-
sion, and recall for EARN and ANN are better than the 
others, especially compared with NLSVM. It can be also 
observed that EARN has the best ROC-AUC (99.24%). 
Thus, in overall, the proposed EARN outperforms the 
other three learning methods. For comparison, evalua-
tion metrics of learning methods for MBCA and BRCA 
are presented in Table 5a, b.

In Table 5, we have included standard deviation of the 
cross-validation classification metrics for EARN to show 
the confidence interval of the results. It can be observed 
that the standard deviation is always small, suggesting 
that the performance metrics are close to the mean value 
across all experiments. The comparative survey in Table 5 
shows when we use a larger mutation dataset (983 tumor 
samples for BRCA vs. 450 tumor samples for MBCA) 
for feature extraction, where positive set is larger (40 
for BRCA vs. 37 for MBCA), and negative set is smaller 
(2151 for BRCA vs. 3473 for MBCA), EARN achieves 

Table 2  The 16 common genes predicted by all machines in the 
top 100

The confirmed genes as the known genes related to different primary cancers or 
primary breast tumors in OMIM, CGC, and NCG databases have been marked in 
the last two columns

NSCGMCH, number of studies that have cited genes related to different 
metastatic cancers in the HCMDB; NSCGMBH, number of studies that have 
cited these genes related to metastatic breast cancer in the HCMDB; PKGECC, 
predicted known genes by EC associated with different cancers that are 
confirmed in OMIM, CGC, and NCG; PKGEBC, predicted known genes by EC 
associated with Breast cancer that are confirmed in OMIM, CGC, and NCG
a Ten new genes that have not already been introduced in the databases
b KDR is confirmed in HCMDB related to metastatic breast cancer in two studies

Symbol NSCGMCH
(#)

NSCGMBH
(#)

PKGECC PKGEBC

OXCT1a #N/A #N/A #N/A #N/A

KDRb 7 2 ✓ #N/A

APEX1a #N/A #N/A #N/A #N/A

GCM2a #N/A #N/A #N/A #N/A

UNC13Da #N/A #N/A #N/A #N/A

NCOR1 #N/A #N/A ✓ ✓
KRAS 20 #N/A ✓ ✓
THAP3a #N/A #N/A #N/A #N/A

SERPINE2 1 #N/A #N/A #N/A

BATFa #N/A #N/A #N/A #N/A

C8orf44a #N/A #N/A #N/A #N/A

C12orf29a #N/A #N/A #N/A #N/A

ZNF546a #N/A #N/A #N/A #N/A

KDM6B 1 #N/A #N/A #N/A

GCNT4a #N/A #N/A #N/A #N/A

FOXA1 #N/A #N/A ✓ ✓

Table 3  The enrichment rate of driver genes predicted by EARN. (a) MBCA, (b) BRCA​

PGEMCH, predicted genes by EC associated with different metastatic cancers that are confirmed in HCMDB, RGMHP, remained genes related to different metastatic 
cancers in the HCMDB after excluding positive training set, PGEMBCH, predicted genes by EC associated with metastatic breast cancer that are confirmed in HCMDB, 
RGMBHP, remained genes related to metastatic breast cancer in the HCMDB after excluding positive training set, PKGECC, predicted known genes by EC associated 
with different cancers that are confirmed in OMIM, CGC, and NCG, RKGCPP, remained known genes related to different cancers in the public databases after excluding 
positive training set, PKGEBC, predicted known genes by EC associated with breast cancer that are confirmed in OMIM, CGC, and NCG, RKGBPP, remained known 
genes related to breast cancer in the public databases after excluding positive training set
a These 73 genes have been also cited in 108 studies of HCMDB [see Additional file 9: S42]

All different cancers Metastatic breast cancer

HCMDB HCMDB

PGEMCH
(#)

RGMHP
(#)

PGEMCH
(%)

PGEMBCH (#) RGMBHP
(#)

PGEMBCH
(%)

(a) MBCA

 292 2203 13.25 73a 585 12.48

All different cancers Breast cancer

OMIM, CGC, and NCG OMIM, CGC, and NCG

PKGECC
(#)

RKGCPP
(#)

PKGECC
(%)

PKGEBC
(#)

RKGBPP
(#)

PKGEBC
(%)

(b) BRCA​

 1398 2403 58.18 145 201 72.14
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better statistical results. Among all statistical validation 
metrics, F1 score as a measure of combining the preci-
sion and recall has been used to compare performance 
of the learning methods for both BRCA and MBCA 
(Fig. 4d).

Also, the performance of classifier pairs, EARN and 
each base classifier, has been compared using the “K-fold 
cross-validated paired t-test” procedure [72]. This is a 
common test for comparing the performance of two 
models to see if there is a significant difference between 

the two models and reject the null hypothesis. The com-
parisons based on p value show that EARN performs 
significantly better than base classifiers [See Additional 
file 9, Table S45].

BRCA and MBCA
Targeted gene panel discovery for MBCA based on pathway 
enrichment analysis (PEA)
In this section, a pathway-based biological analysis is car-
ried out by ReactomeFIVIz tool [68–70]. For EARN100, 

Table 4  12 driver genes predicted by EARN50 which are confirmed for metastatic cancers in the HCMDB

Also, the rank number, score, and mutation count for these genes are provided in the table. The confirmed genes as the known genes related to any primary cancers 
or primary breast tumors in OMIM, CGC, and NCG databases have been marked in the last two columns

PSMM, Percentage of samples with one or more mutations based on initial mutation file, NSCGMCH, Number of studies that have cited genes related to different 
metastatic cancers in the HCMDB, NSCGMBH, Number of studies that have cited genes related to metastatic breast cancer in HCMDB, MCMGM, Mutation counts for 
mutated genes across 450 metastasis tumor samples based on the initial mutation file, PKGECC, Predicted known genes by EC associated with different cancers that 
are confirmed in OMIM, CGC, and NCG, PKGEBC, Predicted known genes by EC associated with breast cancer that are confirmed in OMIM, CGC, and NCG
a These genes have been specifically introduced concerning metastatic breast cancer

Symbol Prediction score Rank PSMM (%) [54] PSMM (%) [55] NSCGMCH NSCGMBH MCMGM PKGECC PKGEBC

APEX1 0.900511991 5 0.50 1.70 1 #N/A 5 #N/A #N/A

ARID1A 0.895213526 11 2.40 5.10 2 #N/A 24 ✓ ✓
KDM6B 0.894029187 13 1.40 4.60 1 #N/A 16 #N/A #N/A

TBX3 0.893837209 14 2.80 5.10 1 #N/A 21 ✓ ✓
KDRa 0.890079401 17 0.90 1.70 7 2 9 ✓ #N/A

SERPINE2 0.889205475 19 0.90 0.80 1 #N/A 4 #N/A #N/A

TBL1XR1 0.871240171 27 0.90 0.80 2 #N/A 4 ✓ ✓
KRAS 0.868267682 30 1.40 1.70 20 #N/A 7 ✓ ✓
NOS3 0.861560093 31 2.40 2.10 1 #N/A 12 #N/A #N/A

RAPGEF3 0.851947423 42 #N/A 2.50 2 #N/A 6 #N/A #N/A

SELEa 0.847865292 49 0.90 1.30 12 1 5 #N/A #N/A

MMEa 0.847698297 50 0.90 2.50 9 1 9 #N/A #N/A

Table 5  Validation of four learning methods by some evaluation metrics. (a) MBCA, (b) BRCA​

a Receiver Operating Characteristic-Area under Curve
b Standard Deviation

Method name F1 score False Positive 
Rate

Maximum 
Precision

Average-Precision Recall ROC-AUC​a

(a) MBCA

 EARN 0.7961 0 1 0.8266 0.6701 0.9924

SDb: 0.0264 SD: 0.0 SD: 0.0 SD: 0.0162 SD: 0.0338 SD: 0.0008

 RF 0.756 0.0008 0.9069 0.7873 0.6603 0.9418

 ANN 0.799 0 1 0.8074 0.6733 0.968

 NLSVM 0.3972 0.0154 0.3092 0.5852 0.5885 0.977

(b) BRCA​

 EARN 0.9313 0 1 0.9585 0.8749 0.9979

SD: 0.0117 SD: 0.0 SD: 0.0 SD: 0.0079 SD: 0.0193 SD: 0.0005

 RF 0.8864 0.0019 0.9061 0.9171 0.8774 0.9719

 ANN 0.8996 0 1 0.9417 0.8225 0.9873

 NLSVM 0.5441 0.0279 0.446 0.859 0.8422 0.9926
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we find 63 (FDR < 0.03) such pathways for BRCA and 42 
(FDR < 0.03) such pathways for MBCA. It is observed that 
14 (FDR < 0.03) enriched pathways are common among 
BRCA and MBCA (Fig. 5a), [see these specific and com-
mon pathways and the genes involved in each pathway in 
Additional file  10: Table  S46]. These enriched pathways 
for BRCA are a subset of the other seven main pathways: 
Extracellular matrix organization, Signal Transduc-
tion, Gene expression (Transcription), Immune System, 
Hemostasis, Developmental Biology, and Metabolism of 
RNA. Also, the main pathways of MBCA include Gene 
expression (Transcription), Signal Transduction, Chro-
matin organization, Circadian Clock, Organelle biogene-
sis and maintenance, Neuronal System, and Metabolism. 
The common and specific main pathways (FDR < 0.03) of 
BRCA and MBCA, and the frequency of genes involved 
in these main pathways are compared in Fig.  5b and 

Table 6. Given this, it can be found two (FDR < 0.03) such 
common main pathways consist of Signal Transduc-
tion and Gene expression (Transcription) for BRCA and 
MBCA, and 5 (FDR < 0.03) such specific main pathways 
for each of them.

Further investigation in Table  6 shows that 16 genes 
contribute to five enriched specific main pathways of 
MBCA. Among them, four genes are involved in more 
than one main pathway. In particular, NCOR1 and 
HDAC3 are engaged in four pathways. In three out of 
five pathways TBL1XR1 is active, and GPS2 gets involved 
in two pathways. Table  7 introduces 16 genes that are 
enriched in these five main pathways and provides more 
information about them.

Introducing plausible driver genes confirmed by pub-
lic databases indicates that EARN has relatively good 
performance. Thus, other candidate genes in this list 

Fig. 5  PEA for BRCA and MBCA in top 100 of EARN. a The common enriched pathways and the comparison of frequency of top 100 genes 
predicted by EARN in these pathways. The pathways [1–14] are listed in the guideline box, b the common/specific enriched main pathways
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have the potential to be considered as a targeted bio-
marker panel in the case of metastatic breast cancer 
to examine more in the next molecular and clinical 
analysis phase. More investigations on these genes can 
hopefully be helpful in MBCA prognosis and diagnosis. 
Table 7 shows that five genes, HDAC3, ABAT, GRIN1, 
PLCB1, and KPNA2 are new and not confirmed in the 
public databases for cancer prognosis. However, there 
is some evidence to suggest that these genes play a 
clinical role in cancer progression. HDAC3 contrib-
utes to four pathways alongside NCOR1. The other 
four genes engage in the Neuronal System pathway. 
The recent investigations on Basal-like breast cancer 
(BLBC), the most aggressive subtype of this cancer, 
have documented the expression of ABAT was consid-
erably decreased in this cancer [73]. Besides, alterations 
in the expression levels of ABAT have been reported 
in the promotion of breast cancer [74]. ABAT was also 

identified as a biomarker for endocrine-responsive-
ness breast cancer patients [75]. Furthermore, GRIN1 
encodes GluN1 subunit of N-methyl-D-aspartate 
receptor (NMDAR). It has been shown that this subu-
nit in more than 90% of all breast cancer subtypes is 
uniformly expressed to promote Breast-to-brain metas-
tasis (B2BM) [76]. Recently, the role of HDAC3 in the 
deregulation of P53 pathway in the aneuploid can-
cer cell lines has been analyzed [77]. Also, HDAC3 is 
overexpressed in breast cancer patients. It has been 
illustrated that breast cancer stem cells, which are 
resistant to treatment and are responsible for metas-
tasis, are the target of the histone deacetylase (HDAC) 
inhibitors [78]. PLCB1, Phospholipase C Beta 1, has 
been also reported that lead to breast cancer develop-
ment [79]. There is evidence to indicate that KPNA2 
is upregulated in breast cancer [80]. On the other, 
The results of enrichment in cBioPortal show that the 

Table 6  The common and specific main pathways for BRCA and MBCA

Number Pathways BRCA​ MBCA

Number of genes Name of genes Number of genes Name of genes

The specific main pathways for BRCA​

 1 Extracellular matrix organization 8 DCN, FN1, ICAM1, ITGA4, ITGAM, 
ITGAV, ITGB3, ITGB5

0 None

 2 Immune System 15 FN1, GAB2, ICAM1, IL1RAPL1, IL1RN, 
IL2RB, ITGAM, ITGAV, ITGB5, JAK1, 
MSN, POU2F1, PTPN11, SMARCA4, 
SYK

0 None

 3 Hemostasis 12 EGF, FN1, GRB7, ITGA4, ITGAM, ITGAV, 
ITGB3, PIK3CG, PRKCZ, PTPN11, 
SERPINA1, SYK

0 None

 4 Developmental Biology 9 ACVR1B, GAB1, GAB2, GRB7, PTPN11, 
RELN, SMAD2, SMAD4, VLDLR

0 None

 5 Metabolism of RNA 6 CPSF1, CPSF3, PCF11, PRPF40A, 
SF3A1, SF3B1

0 None

The specific main pathways for MBCA

 6 Chromatin organization 0 None 7 TBL1XR1, NCOR1, HDAC3, GPS2, ACTB, 
KDM6B, PRMT1

 7 Circadian Clock 0 None 2 NCOR1, HDAC3

 8 Organelle biogenesis and maintenance 0 None 4 TBL1XR1, SIRT4, NCOR1, HDAC3

 9 Neuronal System 0 None 7 ABAT, KPNA2, PRKCG, CACNA1E, PLCB1, 
GRIN1, KRAS

 10 Metabolism 0 None 5 TBL1XR1, SIN3A, NCOR1, HDAC3, GPS2

The common main pathways for BRCA and MBCA

 11 Signal Transduction 25 ACVR1B, EGF, ERBB3, FLT1, FN1, GAB1, 
GAB2, GRB7, ITGAV, ITGB3, JAK1, 
NOTCH4, NR4A1, PARD3, PPARG, 
PRKCZ, PTEN, PTPN11, RUNX1, 
SMAD2, SMAD4, SMURF1, SYK, 
TFDP1, TGFBR2

25 ACTB, AR, BDNF, BUB1B, CBFB, COL4A3, 
FOXA1, KDR, KPNA2, KRAS, NCOR1, 
NOS3, PDGFD, PIK3R1, PKN2, PLCB1, 
PRKCD, PRKCG, PRMT1, PTPRJ, RUNX1, 
STAG1, STAT1, WAS, YWHAE

 12 Gene expression (Transcription) 19 ABL1, CBFB, CPSF1, CPSF3, MED23, 
NBN, NOTCH4, NR4A1, PCF11, 
POU2F1, PPARG, PTEN, PTPN11, 
RUNX1, SMAD2, SMAD4, SMARCA4, 
SMURF1, TFDP1

14 AR, BDNF, CBFB, GPS2, HDAC3, KLF4, 
KRAS, NCOR1, PRMT1, RUNX1, SIN3A, 
STAT1, TBL1XR1, YWHAE
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above-mentioned 16 genes are altered in 243 (54%) of 
450 MBCA samples in two studies performed in 2016 
[54] and 2017 [55]. Genomic alterations (Fig.  6) in 
these genes have been visualized using OncoPrint com-
ponent [49, 50]. Among them, the highest percentage 

of somatic mutation frequency (SMF) is observed in 
CACNA1E, NCOR1, KDM6B, and GPS2. Using the 
Needle Plot component [49, 50], we visualize SMF and 
can also map mutations on the linear protein and its 
domains for these four genes (Fig. 7).

Table 7  The plausible driver genes involved in the proposed main pathways related to MBCA

PPDMB, proposed plausible drivers related to metastatic breast cancer; KGCC, known genes related to cancers that are confirmed in OMIM, CGC, and NCG; KGBC, 
known genes related to breast cancer that are confirmed in OMIM, CGC, and NCG; CGMC, confirmed genes related to different metastatic cancers in HCMDB; CGMB, 
confirmed genes related to metastatic breast cancer in HCMDB
a Five new genes that have not been already introduced in the public databases

PPDMB KGCC​ KGBC CGMC CGMB Specific main pathways

Chromatin 
organization

Circadian Clock Organelle biogenesis 
and maintenance

Neuronal 
System

Metabolism

NCOR1 1 1 #N/A #N/A ✓ ✓ ✓ ✓
HDAC3a #N/A #N/A #N/A #N/A ✓ ✓ ✓ ✓
TBL1XR1 1 1 2 #N/A ✓ ✓ ✓
SIRT4 1 #N/A #N/A #N/A ✓
ABATa #N/A #N/A #N/A #N/A ✓
KRAS 1 1 20 #N/A ✓
GRIN1a #N/A #N/A #N/A #N/A ✓
PLCB1a #N/A #N/A #N/A #N/A ✓
CACNA1E 1 #N/A #N/A #N/A ✓
PRKCG 1 #N/A 1 #N/A ✓
KPNA2a #N/A #N/A #N/A #N/A ✓
GPS2 1 1 #N/A #N/A ✓ ✓
SIN3A 1 #N/A #N/A #N/A ✓
ACTB 1 #N/A 1 #N/A ✓
KDM6B #N/A #N/A 1 #N/A ✓
PRMT1 #N/A #N/A 2 #N/A ✓

Fig. 6  Analysis plot of genomic alterations in 16 proposed genes for MBCA using cBioPortal
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Discussion
In this work, we proposed an EC machine learning 
method called EARN, combining three base classifiers 
to predict and estimate the potential of plausible driver 
genes in BRCA and MBCA. Also, the architecture of 
the EARN is such that by availability of the mutation 
data file, it can be employed for prediction of driver 
genes of all cancers and in each stage. Leveraged by 
both feature fusion and decision fusion, the proposed 
ensemble model made better decisions in comparison 
with base classifiers, especially in the list of the top 
genes. Further, we chose EARN which uses the average 
of the scores of the outputs of the three base classifiers. 
Meanwhile, the majority voting method as an ensem-
ble strategy among outcomes of individual classifiers 

was performed. It is a meta-classifier for combining 
machine learning classifiers via plurality or majority 
voting among predicted labels by the base classifiers 
[81]. Next, we compared the results of majority voting 
with our proposed EARN approach. It can be observed 
that EARN with averaging strategy achieves better 
results [See the results of this comparison in Additional 
file  10, Table  S47]. Although EARN uses the simple 
average operator for aggregating the decisions of the 
three base learners to predict the driver genes, it could 
find some new genes in the list of EARN100 which were 
not observed in the top100 of the individual classifiers. 
It can be rational evidence for using the ensemble sys-
tems for gene prioritization. For biological validation 
of outputs and after the enrichment of EARN50 in the 

Fig. 7  Mutations mapping on a linear protein and its domains using MutationMapper in cBioPortal. SMF (%) and the type of these somatic 
mutations for four genes are specified in the guideline box
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public databases, where the ensemble learning method 
uses most of the power to discriminate and predict, 
we could obtain the enrichment rate of 52% for BRCA, 
which outperforms the three individual classifiers. For 
MBCA, the enrichment of EARN50 in the HCMDB 
resulted in an enrichment rate of 24%, which is better 
than the two base classifiers, NLSVM and ANN, while 
being comparable to RF. The results are also analyzed 
using a statistical test with cross-validation. The evalu-
ation of results showed that EARN performs well, espe-
cially for BRCA. In the case of BRCA, the open-access 
mutation annotation format (.maf ) file is large and the 
mutation data is obtained from more samples (983 
BRCA tumor samples vs. 450 MBCA tumor samples). 
Thus, the proper features could be extracted. Finally, 
the performance of EARN for ranking human protein-
coding genes is improved. Further, to evaluate the pos-
sibility of enhancement in the combination of the base 
classifiers results, we tried StackingCVClassifier, an 
effective ensemble-learning meta-classifier for stack-
ing [82, 83]. For BRCA, there was no improvement in 
the results. It could be because the results of the origi-
nally proposed ensemble model were good enough. 
While the metrics such as F1 score (81.31% vs. 79.61%) 
and recall (69.62 vs. 67.02) were slightly improved for 
MBCA. Finally, the existence of specific enriched path-
ways by ReactomeFIVIz (FDR < 0.03) for the top genes 
predicted by EARN for BRCA and MBCA led us to sug-
gest a gene panel regarding metastatic breast cancer. 
In present study, we faced some limitations to find the 
appropriate drivers of MBCA. This fact that the origi-
nal mutation datasets involved in the whole-exome 
sequencing of the tumor samples of the metastatic 
breast cancer patients are small. Also, the lack of defini-
tive driver genes confirmed in the public databases for 
metastatic cancers makes it difficult to select a positive 
training set. These issues decreased the performance of 
EARN for MBCA in comparison with BRCA. Further, 
the result of enriching all predicted genes by EARN for 
BRCA in the OMIM, CGC, and NCG was encouraging 
(72.14%, Please refer to Table 3b). But, the result of the 
enrichment of the predicted genes by EARN for MBCA 
was not satisfactory (12.48%, see Table 3a). This may be 
due to the lack of sufficient studies on metastatic can-
cers, and particularly because of the limited databases 
regarding metastatic cancers to enrich driver genes.

Conclusions
Since using computational methods such as ensemble 
machine learning approaches are less expensive than 
bio-molecular techniques, it can help to significantly 
reduce the search space for bio-molecular and medi-
cal science researchers in the identification of plausible 

driver genes to facilitate prognosis and diagnosis of 
complex diseases. In this work, we mainly focused on 
the use of genomics data. Meanwhile, the changes of 
epigenomic, genomic, transcriptional, and proteomic 
that occur during progression to metastatic encour-
age us to use multi-omics integration [84]. It has been 
demonstrated that multi-Omics data integration can 
improve predictive performance [85] (e.g., it has been 
applied to predict robust biomarkers of drug efficacy 
for targeted therapies in triple-negative breast cancer 
[86]). A direction of future research would be to apply 
a combination of different levels of data, including 
genomics, epigenomics, transcriptomics, proteomics, 
metabolomics, and microbiomics data to optimize the 
ensemble system for introducing Omics-driven mark-
ers. In the end, we strongly emphasize this research 
needs clinical trials to be validated and to evaluate the 
potential of the proposed drivers for discrimination 
between different stages of cancers. By the combina-
tion of computational characterization and experimen-
tal validation, we can narrow down the list of markers 
and assist precision oncologists to design compact tar-
geted panels that eliminate the need for whole-genome/
exome sequencing.

Abbreviations
B2BM: Breast-to-brain metastasis; BLBC: Basal-like breast cancer; BRCA​: Primary 
breast invasive carcinoma; CGC​: Cancer Gene Census; DECORATE: Diverse 
Ensemble Creation by Oppositional Relabeling of Artificial Training Examples; 
EARN: Ensemble of Artificial Neural Network, Random Forest, and non-linear 
Support Vector Machine; EC: Ensemble classifier; FPR: False-positive rate; GSEA: 
Gene set enrichment analysis; HCMDB: Human cancer metastasis database; 
HPA: Human Protein Atlas; HyDRA: Hybrid Distance-score Rank Aggregation; 
INDELs: Insertions and deletions; maf: Mutation annotation format; MBCA: 
Metastatic breast cancer; NCG: Network of Cancer Genes; NGS: Next-gen‑
eration sequencing; NLSVM: Non-linear Support Vector Machine; NMDAR: 
N-methyl-d-aspartate receptor; OMIM: Online Mendelian Inheritance in Man; 
OV: Ovarian; PEA: Pathway enrichment analysis; PPV: Positive predictive value; 
RF: Random Forest; ROC-AUC​: Receiver Operating Characteristic-Area under 
Curve; SMF: Somatic mutation frequency; TCGA​: The Cancer Genome Atlas; 
WES: Whole-Exome Sequencing.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12920-​021-​00974-3.

Additional file 1: Table S1. The original mutation files for primary breast 
tumors

Additional file 2: Table S2 and S3. The original mutation files for metas‑
tasis breast tumors

Additional file 3: Methods: Selection of positive/negative training sets for 
BRCA and MBCA

Additional file 4: Table S4–S7. List of positive/negative gene set for 
BRCA and MBCA. Table S8–S10. Homo_sapiens genes for BRCA and 
MBCA

https://doi.org/10.1186/s12920-021-00974-3
https://doi.org/10.1186/s12920-021-00974-3


Page 17 of 19Mirsadeghi et al. BMC Med Genomics          (2021) 14:122 	

Additional file 5: Results: Results for BRCA. Table S11. Unique driver 
genes predicted by EARN100 for BRCA. Table S12. The list of enriched 
known genes of EARN50 in the public databases for BRCA​

Additional file 6: Table S13–S26. The list of mutated genes extracted by 
software tools for BRCA and MBCA, and comparison among these genes 
(p value ≤ 0.05) for MBCA

Additional file 7: Table S27–S31. The list of driver and passenger genes 
of four learning machines for MBCA

Additional file 8: Table S32–S41. The comparison of drivers predicted by 
all machine learning methods for MBCA

Additional file 9: Table S42. The list of driver genes of EARN for MBCA 
that have been cited in 108 studies of HCMDB. Table S43. The list of novel 
genes predicted by EARN50 for MBCA. Table S44. The comparison of top 
50 predictions of EARN and four software tools for BRCA. Table S45. The 
comparison among the performance of classifier pairs based on K-fold 
cross-validated paired t-test.

Additional file 10: Table S46. The common/specific enriched pathways 
for BRCA and MBCA using ReactomeFIVIz (FDR < 0.03). Table S47. The 
comparison of results among averaging model of EARN and majority 
voting model

Acknowledgements
The authors like to thank Dr. Hossein Hajimirsadeghi (https://​hosse​in-h.​github.​
io/) for his useful advice and invaluable help during this research.

Authors’ contributions
LM and KK developed the concept, designed the research. LM performed the 
required research works and developed the solution under the joint supervi‑
sion of KK, RHH, and AMBM. LM wrote the manuscript and contributed to 
visualize results. LM and KK contributed to the interpretation of the data and 
discussion. All authors read and approved the final manuscript.

Funding
This study was financially supported by grant No: 960903 of the Biotechnol‑
ogy Development Council of the Islamic Republic of Iran.

Availability of data and materials
All required data is available in Additional files 1, 2. We have also shared 
Python source code and other requirements for implementation of the 
proposed ensemble machine learning algorithm as the protocol via GitHub 
(https://​github.​com/​lmirs​adeghi/​EARN/).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biology, Faculty of Science, Payame Noor University, Tehran, 
Iran. 2 Laboratory of Genomics and Epigenomics (LGE), Department of Bio‑
chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, 
Tehran, Iran. 3 Laboratory of Complex Biological Systems and Bioinformatics 
(CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics 
(IBB), University of Tehran, Tehran, Iran. 

Received: 17 December 2020   Accepted: 27 April 2021

References
	1.	 Youn A, Kim KI, Rabadan R, Tycko B, Shen Y, Wang S. A pan-cancer analysis 

of driver gene mutations, DNA methylation and gene expressions reveals 
that chromatin remodeling is a major mechanism inducing global 
changes in cancer epigenomes. BMC Med Genomics. 2018;11(1):98.

	2.	 Kumar A, Singla A. Epidemiology of breast cancer: current figures 
and trends. In: Mehta S, Singla A, editors. Preventive oncology for the 
gynecologist. Springer; 2019. p. 335–9.

	3.	 Zhao D, Qiao J, He H, Song J, Zhao S, Yu J. TFPI2 suppresses breast cancer 
progression through inhibiting TWIST-integrin α5 pathway. Mol Med. 
2020;26:1–10.

	4.	 Sheikine Y, Kuo FC, Lindeman NI. Clinical and technical aspects 
of genomic diagnostics for precision oncology. J Clin Oncol. 
2017;35(9):929–33.

	5.	 Mock A, Murphy S, Morris J, Marass F, Rosenfeld N, Massie C. CVE: an R 
package for interactive variant prioritisation in precision oncology. BMC 
Med Genomics. 2017;10(1):37.

	6.	 Smith NG, Gyanchandani R, Shah OS, Gurda GT, Lucas PC, Hartmaier RJ, 
et al. Targeted mutation detection in breast cancer using MammaSeqTM. 
Breast Cancer Res. 2019;21(1):22.

	7.	 Kulasingam V, Diamandis EP. Strategies for discovering novel cancer 
biomarkers through utilization of emerging technologies. Nat Rev Clin 
Oncol. 2008;5(10):588.

	8.	 Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J 
Med. 2019;380(14):1347–58.

	9.	 Baronti F, Micheli A, Passaro A, Starita A. Machine learning contribu‑
tion to solve prognostic medical problems. Outcome Predict Cancer. 
2006;261:e001554.

	10.	 Moody L, Chen H, Pan Y-X. Considerations for feature selection using 
gene pairs and applications in large-scale dataset integration, novel 
oncogene discovery, and interpretable cancer screening. BMC Med 
Genomics. 2020;13(10):1–20.

	11.	 Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
	12.	 Hosni M, Abnane I, Idri A, de Gea JMC, Alemán JLF. Reviewing ensemble 

classification methods in breast cancer. Comput Methods Programs 
Biomed. 2019;177:89–112.

	13.	 Mirsadeghi L, Banaei-Moghaddam AM, Beh-Afarin SR, Haji R. A post-
method condition analysis of using ensemble machine learning for 
cancer prognosis and diagnosis: a systematic review.

	14.	 Gevaert O, De Smet F, Timmerman D, Moreau Y, De Moor B. Predicting 
the prognosis of breast cancer by integrating clinical and microarray data 
with Bayesian networks. Bioinformatics. 2006;22(14):e184–90.

	15.	 Moriyama T, Imoto S, Hayashi S, Shiraishi Y, Miyano S, Yamaguchi R. A 
Bayesian model integration for mutation calling through data partition‑
ing. Bioinformatics. 2019;35:4247–54.

	16.	 Cheriguene S, Azizi N, Zemmal N, Dey N, Djellali H, Farah N. Optimized 
tumor breast cancer classification using combining random subspace 
and static classifiers selection paradigms. In: Hassanien AE, Grosan C, 
Fahmy Tolba M, editors. Applications of intelligent optimization in biol‑
ogy and medicine. Springer; 2016. p. 289–307.

	17.	 Les T, Markiewicz T, Osowski S, Kozlowski W, Jesiotr M. Fusion of FISH 
image analysis methods of HER2 status determination in breast cancer. 
Expert Syst Appl. 2016;61:78–85.

	18.	 Zakeri P, Elshal S, Moreau Y. Gene prioritization through geometric-
inspired kernel data fusion. In: 2015 IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM). IEEE; 2015. p. 1559–65.

	19.	 Liu Y, Tian F, Hu Z, DeLisi C. Evaluation and integration of cancer gene 
classifiers: identification and ranking of plausible drivers. Sci Rep. 
2015;5:10204.

	20.	 Kim M, Farnoud F, Milenkovic O. HyDRA: gene prioritization via hybrid 
distance-score rank aggregation. Bioinformatics. 2015;31(7):1034–43.

	21.	 Reboiro-Jato M, Díaz F, Glez-Peña D, Fdez-Riverola F. A novel ensemble of 
classifiers that use biological relevant gene sets for microarray classifica‑
tion. Appl Soft Comput. 2014;17:117–26.

	22.	 Kuncheva LI, Rodríguez JJ. A weighted voting framework for classifiers 
ensembles. Knowl Inf Syst. 2014;38(2):259–75.

	23.	 Janghel RR, Shukla A, Sharma S, Gnaneswar A V. Evolutionary Ensemble 
Model for Breast Cancer Classification. In: International conference in 
swarm intelligence. Springer; 2014. p. 8–16.

	24.	 Cun Y, Fröhlich H. Network and data integration for biomarker signature 
discovery via network smoothed t-statistics. PLoS ONE. 2013;8(9):e73074.

https://hossein-h.github.io/
https://hossein-h.github.io/
https://github.com/lmirsadeghi/EARN/


Page 18 of 19Mirsadeghi et al. BMC Med Genomics          (2021) 14:122 

	25.	 Azizi N, Tlili-Guiassa Y, Zemmal N. A computer-aided diagnosis system for 
breast cancer combining features complementarily and new scheme of 
SVM classifiers fusion. Int J Multimed Ubiquitous Eng. 2013;8(4):45–58.

	26.	 Yang R, Daigle BJ, Petzold LR, Doyle FJ. Core module biomarker identifica‑
tion with network exploration for breast cancer metastasis. BMC Bioinfor‑
matics. 2012;13(1):1.

	27.	 Glaab E, Bacardit J, Garibaldi JM, Krasnogor N. Using rule-based machine 
learning for candidate disease gene prioritization and sample classifica‑
tion of cancer gene expression data. PLoS ONE. 2012;7(7):e39932.

	28.	 Reboiro-Jato M, Glez-Peña D, Díaz F, Fdez-Riverola F. A novel ensemble 
approach for multicategory classification of DNA microarray data using 
biological relevant gene sets. Int J Data Min Bioinform. 2012;6(6):602–16.

	29.	 Lederman D, Wang X, Zheng B, Sumkin JH, Tublin M, Gur D. Fusion of 
classifiers for REIS-based detection of suspicious breast lesions. In: SPIE 
medical imaging. International Society for Optics and Photonics; 2011. p. 
79661C-79661C.

	30.	 Zeng T, Liu J. Mixture classification model based on clinical markers for 
breast cancer prognosis. Artif Intell Med. 2010;48(2):129–37.

	31.	 Zhang X. Boosting twin support vector machine approach for MCs 
detection. In: 2009 APCIP 2009 Asia-Pacific conference on information 
processing. IEEE; 2009. p. 149–52.

	32.	 Zhang X, Gao X, Wang M. MCs detection approach using Bagging and 
Boosting based twin support vector machine. In: 2009 SMC 2009 IEEE 
international conference on systems, man and cybernetics. IEEE; 2009. p. 
5000–505.

	33.	 Djebbari A, Liu Z, Phan S, Famili F. An ensemble machine learning 
approach to predict survival in breast cancer. Int J Comput Biol Drug Des. 
2008;1(3):275–94.

	34.	 Alam KMR, Islam MM. Combining boosting with negative correlation 
learning for training neural network ensembles. In: 2007 international 
conference on information and communication technology. IEEE; 2007. 
p. 68–71.

	35.	 Franke L, Van BH, Fokkens L, De JED, Egmont-petersen M, Wijmenga C. 
Reconstruction of a functional human gene network, with an appli‑
cation for prioritizing positional candidate genes. Am J Hum Genet. 
2006;78(June):1011–25.

	36.	 Peng Y. Integration of gene functional diversity for effective cancer detec‑
tion. Int J Syst Sci. 2006;37(13):931–8.

	37.	 Matsui S. Genomic biomarkers for personalized medicine: develop‑
ment and validation in clinical studies. Comput Math Methods Med. 
2013;2013:865980.

	38.	 Huang L, Jiang X-L, Liang H-B, Li J-C, Chin L-H, Wei J-P, et al. Genetic 
profiling of primary and secondary tumors from patients with lung 
adenocarcinoma and bone metastases reveals targeted therapy options. 
Mol Med. 2020;26(1):1–11.

	39.	 Lan Y, Zhao E, Luo S, Xiao Y, Li X, Cheng S. Revealing clonality and 
subclonality of driver genes for clinical survival benefits in breast cancer. 
Breast Cancer Res Treat. 2019;175(1):91–104.

	40.	 Baesens B, Viaene S, Van Gestel T, Suykens J, Dedene G, De Moor B, et al. 
Least squares support vector machine classifiers: an empirical evaluation. 
DTEW Res Rep. 2000;0003:1–16.

	41.	 Maclin PS, Dempsey J, Brooks J, Rand J. Using neural networks to diag‑
nose cancer. J Med Syst. 1991;15(1):11–9.

	42.	 Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
	43.	 Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, 

et al. Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature. 2013;499(7457):214–8.

	44.	 Tamborero D, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUST: exploit‑
ing the positional clustering of somatic mutations to identify cancer 
genes. Bioinformatics. 2013;29(18):2238–44.

	45.	 Gonzalez-Perez A, Lopez-Bigas N. Functional impact bias reveals cancer 
drivers. Nucleic Acids Res. 2012;40(21):e169–e169.

	46.	 Cerami E, Demir E, Schultz N, Taylor BS, Sander C. Automated net‑
work analysis identifies core pathways in glioblastoma. PLoS ONE. 
2010;5(2):e8918.

	47.	 Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A 
census of human cancer genes. Nat Rev cancer. 2004;4(3):177.

	48.	 An O, Pendino V, D’Antonio M, Ratti E, Gentilini M, Ciccarelli FD. NCG 4.0: 
the network of cancer genes in the era of massive mutational screenings 
of cancer genomes. Database. 2014;2014:bau015.

	49.	 Repana D, Nulsen J, Dressler L, Bortolomeazzi M, Venkata SK, Tourna A, 
et al. The Network of Cancer Genes (NCG): a comprehensive catalogue 
of known and candidate cancer genes from cancer sequencing screens. 
Genome Biol. 2019;20(1):1.

	50.	 The experimentally supported gene-metastasis association data. 2017. 
https://​hcmdb.​isang​er.​com/​images/​hcmdb/​gene_​publi​cation.​xls. 
Accessed 22 Jun 2017.

	51.	 TCGA.BRCA.muse.b8ca5856-9819-459c-87c5-94e91aca4032.DR-
10.0.somatic.maf.gz. 2018. https://​portal.​gdc.​cancer.​gov/​files/​b8ca5​856-​
9819-​459c-​87c5-​94e91​aca40​32. Accessed 23 Aug 2018.

	52.	 Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio 
cancer genomics portal: an open platform for exploring multidimen‑
sional cancer genomics data. AACR; 2012.

	53.	 Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Inte‑
grative analysis of complex cancer genomics and clinical profiles using 
the cBioPortal. Sci Signal. 2013;6(269):pl1.

	54.	 Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria J-C, et al. 
Mutational profile of metastatic breast cancers: a retrospective analysis. 
PLoS Med. 2016;13(12):e1002201.

	55.	 Wagle N, Painter C, Anastasio E, Dunphy M, McGillicuddy M, Kim D, et al. 
The Metastatic Breast Cancer (MBC) project: accelerating translational 
research through direct patient engagement. American Society of Clini‑
cal Oncology; 2017.

	56.	 cBioPortal/datahub-study-curation-tools. 2019. https://​github.​com/​
cBioP​ortal/​datah​ubstu​dycur​ation​tools/​tree/​master/​split_​data_​clini​cal_​
sample_​patie​nt. Accessed 11 Jan 2019.

	57.	 García-Díaz P, Sánchez-Berriel I, Martínez-Rojas JA, Diez-Pascual AM. Unsu‑
pervised feature selection algorithm for multiclass cancer classification of 
gene expression RNA-Seq data. Genomics. 2020;112(2):1916–25.

	58.	 Kim S, Park T, Kon M. Cancer survival classification using integrated data 
sets and intermediate information. Artif Intell Med. 2014;62(1):23–31.

	59.	 Dashtban M, Balafar M, Suravajhala P. Gene selection for tumor classifica‑
tion using a novel bio-inspired multi-objective approach. Genomics. 
2018;110(1):10–7.

	60.	 Bhanot G, Alexe G, Venkataraghavan B, Levine AJ. A robust meta-
classification strategy for cancer detection from MS data. Proteomics. 
2006;6(2):592–604.

	61.	 Palade V. Class imbalance learning methods for support vector machines. 
2013.

	62.	 Wang X, Liu X, Matwin S. A distributed instance-weighted SVM algorithm 
on large-scale imbalanced datasets. In: Proceedings of 2014 IEEE interna‑
tional conference on Big Data, IEEE Big Data 2014. 2015; p. 45–51.

	63.	 Ming C, Viassolo V, Probst-Hensch N, Chappuis PO, Dinov ID, Katapodi MC. 
Machine learning techniques for personalized breast cancer risk predic‑
tion: comparison with the BCRAT and BOADICEA models. Breast Cancer 
Res. 2019;21(1):75.

	64.	 Polikar R. Ensemble based systems in decision making. Circuits Syst Mag 
IEEE. 2006;6(3):21–45.

	65.	 Duan X, Yang Y, Tan S, Wang S, Feng X, Cui L, et al. Application of artificial 
neural network model combined with four biomarkers in auxiliary diag‑
nosis of lung cancer. Med Biol Eng Comput. 2017;55(8):1239–48.

	66.	 Walczak S. Artificial neural networks. In: Encyclopedia of information sci‑
ence and technology, 4th edn. IGI Global; 2018. p. 120–31.

	67.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel 
O, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res. 
2011;12(Oct):2825–30.

	68.	 Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati 
P, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 
2017;46(D1):D649–55.

	69.	 Wu G, Haw R. Functional interaction network construction and analysis 
for disease discovery. In: Wu C, Arighi C, Ross K, editors. Protein bioinfor‑
matics. Berlin: Springer; 2017. p. 235–53.

	70.	 Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, et al. 
Reactome pathway analysis: a high-performance in-memory approach. 
BMC Bioinformatics. 2017;18(1):142.

	71.	 Bioinformatics & Evolutionary Genomics. 2018. http://​bioin​forma​tics.​psb.​
ugent.​be/​webto​ols/​Venn/. Accessed 20 Nov 2018.

	72.	 Dietterich TG. Approximate statistical tests for comparing supervised clas‑
sification learning algorithms. Neural Comput. 1998;10(7):1895–923.

https://hcmdb.isanger.com/images/hcmdb/gene_publication.xls
https://portal.gdc.cancer.gov/files/b8ca5856-9819-459c-87c5-94e91aca4032
https://portal.gdc.cancer.gov/files/b8ca5856-9819-459c-87c5-94e91aca4032
https://github.com/cBioPortal/datahubstudycurationtools/tree/master/split_data_clinical_sample_patient
https://github.com/cBioPortal/datahubstudycurationtools/tree/master/split_data_clinical_sample_patient
https://github.com/cBioPortal/datahubstudycurationtools/tree/master/split_data_clinical_sample_patient
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/


Page 19 of 19Mirsadeghi et al. BMC Med Genomics          (2021) 14:122 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	73.	 Chen X, Cao Q, Liao R, Wu X, Xun S, Huang J, et al. Loss of ABAT-mediated 
GABAergic system promotes basal-like breast cancer progression by 
activating Ca2+-NFAT1 axis. Theranostics. 2019;9(1):34.

	74.	 Zhao G, Li N, Li S, Wu W, Wang X, Gu J. High methylation of the 4-amin‑
obutyrate aminotransferase gene predicts a poor prognosis in patients 
with myelodysplastic syndrome. Int J Oncol. 2019;54(2):491–504.

	75.	 Sas L, Lardon F, Vermeulen PB, Hauspy J, Van Dam P, Pauwels P, et al. The 
interaction between ER and NFκB in resistance to endocrine therapy. 
Breast Cancer Res. 2012;14(4):212.

	76.	 Zeng Q, Michael IP, Zhang P, Saghafinia S, Knott G, Jiao W, et al. Synaptic 
proximity enables NMDAR signalling to promote brain metastasis. Nature. 
2019;573(7775):526–31.

	77.	 Cilluffo D, Barra V, Spatafora S, Coronnello C, Contino F, Bivona S, 
et al. Aneuploid IMR90 cells induced by depletion of pRB, DNMT1 
and MAD2 show a common gene expression signature. Genomics. 
2020;112(3):2541–9.

	78.	 Hii L-W, Chung FF-L, Soo JS-S, Tan BS, Mai C-W, Leong C-O. Histone 
deacetylase (HDAC) inhibitors and doxorubicin combinations target both 
breast cancer stem cells and non-stem breast cancer cells simultane‑
ously. Breast Cancer Res Treat. 2019;179:615–29.

	79.	 Cai WL, Greer CB, Chen JF, Arnal-Estapé A, Cao J, Yan Q, et al. Specific 
chromatin landscapes and transcription factors couple breast cancer 
subtype with metastatic relapse to lung or brain. BMC Med Genomics. 
2020;13(1):1–18.

	80.	 Liu J, Campen A, Huang S, Peng S-B, Ye X, Palakal M, et al. Identification of 
a gene signature in cell cycle pathway for breast cancer prognosis using 
gene expression profiling data. BMC Med Genomics. 2008;1(1):39.

	81.	 Raschka S. Python machine learning. Packt publishing ltd; 2015.
	82.	 Tang J, Alelyani S, Liu H. Data classification: algorithms and applica‑

tions. Data Data Mining and Knowledge Discovery Series. CRC Press. 
2014;37–64.

	83.	 Wolpert DH. Stacked generalization. Neural Netw. 1992;5(2):241–59.
	84.	 Griffith OL, Gray JW. Omic approaches to preventing or managing meta‑

static breast cancer. Breast Cancer Res. 2011;13(6):230.
	85.	 Rohart F, Gautier B, Singh A, Lê cao KA. mixOmics: an R package for 

‘omics feature selection and multiple data integration. PLoS Comput Biol. 
2017;13(11):e1005752.

	86.	 Merrill NM, Lachacz EJ, Vandecan NM, Ulintz PJ, Bao L, Lloyd JP, et al. 
Molecular determinants of drug response in TNBC cell lines. Breast Can‑
cer Res Treat. 2020;179(2):337–47.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	EARN: an ensemble machine learning algorithm to predict driver genes in metastatic breast cancer
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Selection of dataset
	Selection of software tools for feature extraction
	Feature extraction and feature vector construction

	Classifier model selection
	Training and testing
	Training data set selection

	Genome-wide screening
	Implementation of three machine learning algorithms based on feature integration
	Implementation of proposed ensemble machine based on decision integration
	Biological inferences

	Results
	BRCA​
	MBCA
	Investigation of the diversity of features extracted from the original mutation file
	Outputs of three individual classifiers and EARN
	Investigation of top 100 genes predicted by the four machine learning methods
	Biological validation of predictions based on gene set enrichment analysis
	Statistical validation of three individual classifiers and EARN based on evaluation measures

	BRCA and MBCA
	Targeted gene panel discovery for MBCA based on pathway enrichment analysis (PEA)


	Discussion
	Conclusions
	Acknowledgements
	References


