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Abstract 

Background:  Copy number variations (CNVs) account for a substantial proportion of inter-individual genomic varia‑
tion. However, a majority of genomic variation studies have focused on single-nucleotide variations (SNVs), with lim‑
ited genome-wide analysis of CNVs in large cohorts, especially in populations that are under-represented in genetic 
studies including people of African descent.

Methods:  We carried out a genome-wide copy number analysis in > 3400 healthy Bantu Africans from Tanzania. 
Signal intensity data from high density (> 2.5 million probes) genotyping arrays were used for CNV calling with three 
algorithms including PennCNV, DNAcopy and VanillaICE. Stringent quality metrics and filtering criteria were applied to 
obtain high confidence CNVs.

Results:  We identified over 400,000 CNVs larger than 1 kilobase (kb), for an average of 120 CNVs (SE = 2.57) per 
individual. We detected 866 large CNVs (≥ 300 kb), some of which overlapped genomic regions previously associ‑
ated with multiple congenital anomaly syndromes, including Prader-Willi/Angelman syndrome (Type1) and 22q11.2 
deletion syndrome. Furthermore, several of the common CNVs seen in our cohort (≥ 5%) overlap genes previously 
associated with developmental disorders.

Conclusions:  These findings may help refine the phenotypic outcomes and penetrance of variations affecting genes 
and genomic regions previously implicated in diseases. Our study provides one of the largest datasets of CNVs from 
individuals of African ancestry, enabling improved clinical evaluation and disease association of CNVs observed in 
research and clinical studies in African populations.
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Background
Copy number variations (CNVs) are a class of structural 
variation resulting from loss or gain of genomic frag-
ments ≥ 1 kilobase (kb). CNVs can arise from genomic 
rearrangements such as deletions, duplications, inser-
tions, inversions, or translocations [1–3] and have been 

implicated in the etiology of Mendelian disorders as well 
as complex traits [4]. Several pediatric disorders result-
ing from CNVs such as the 22q11 deletion syndrome, 
the Williams-Beuren syndrome, resulting from a micro-
deletion in 7q11.23, and the 15q13.3 microdeletion syn-
dromes are characterized by the occurrence of multiple 
congenital anomalies, including intellectual and develop-
mental disabilities, congenital heart defects, craniofacial 
dysmorphisms, or abnormalities in the development of 
other tissues and organs [5–10]. These types of CNVs can 
alter copy number of dosage-sensitive genes or disrupt 
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regulatory elements, which result in pathogenic out-
comes observed in patients [11]. For instance, 22q11.2 
microdeletion region overlaps with genes essential for 
cortical circuit formation, and aberrations in cortical 
anatomy are two of the phenotypes observed in individu-
als with 22q11.2 deletion syndrome [12]. CNVs may also 
play a role in the etiology of common, complex diseases 
and traits including, diabetes, asthma, HIV susceptibility, 
cancer, and phenotypes in immune and environmental 
responses [13–17].

In addition to their role in disease, CNVs account for a 
high level of variation between healthy individuals, both 
within and between populations [1–3, 18, 19]. The 1000 
Genomes Project was initiated to identify genetic vari-
ation in the human genome across diverse populations, 
and it has been instrumental in generating the largest 
catalog of genomic variants, including CNVs [20–23]. 
Nevertheless, CNVs remain largely understudied com-
pared to single-nucleotide variations (SNVs) and are not 
commonly genotyped in a microarray-based analysis of 
genome-wide variation and association to disease phe-
notypes [24]. In 2015, Zarrei and colleagues compiled a 
CNV map of the human genome and estimated that 4.8–
9.5% of the human genome contributes to CNV [25]. Fur-
thermore, they identified approximately 100 genes whose 
loss is not associated with any severe consequences [25]. 
However, the vast majority of CNV data derive from 
individuals of European descent residing in Western 
countries, which might cause incorrect clinical interpre-
tation of genomic variants [26–28]. Recently, resources 
such as the Genome Aggregation Database (gnomAD) 
have reported structural variations, including CNVs, in 
large cohorts of individuals of both European and non-
European ancestries [29]. Regardless, knowledge of the 
genomic landscape of CNVs remains incomplete, espe-
cially in understudied populations such as Africans.

Based on the significant role of CNVs in health and 
disease, it is critical to have a set of reference CNVs 
observed in individuals from diverse populations. These 
population-specific reference datasets will greatly 
improve clinical interpretation and can help to refine a 
genomic region associated with diseases [30]. A recent 
study by Kessler and colleagues [31] demonstrated how 
lack of African ancestry individuals in variant databases 
may have resulted in the mischaracterization of variants 
in the ClinVar and Human Gene Mutation Databases.

In this study, we have detected CNVs in > 3400 healthy 
Bantu African children from Tanzania, using data from 
high-density (> 2.5 million probes) genotyping microar-
rays. We present a high-resolution map of CNVs ranging 
in size from 1 kb—3 Mb (million bases), providing a use-
ful resource of CNV genetic variation for individuals of 
African ancestry. Additionally, we observe large CNVs in 

genomic regions previously implicated in syndromes and 
developmental disorders.

Methods
Sample description – populations
Our study was conducted using a previously collected 
cohort which included 3631 Bantu African children aged 
3–21 living in Mwanza, Tanzania, a region with a popu-
lation that is both genetically and environmentally rela-
tively homogeneous [32]. The original study was aimed at 
studying the genetics of facial shape in children and ado-
lescents aged 3–21 to minimize the potential and accu-
mulating impact of the environment. Additionally, the 
majority of the sample were between the ages of 7 and 12 
to also minimize the effects of puberty. Other parameters 
collected for individuals in the study included height, 
weight and BMI (Additional file  1). Individuals with a 
birth defect or having a relative with orofacial cleft were 
excluded [32]. The subjects were previously genotyped at 
the Center for Inherited Disease Research (CIDR) as part 
of the NIDCR FaceBase1 initiative. Genotyping using the 
Illumina HumanOmni2.5Exome-8v1_A (also referred to 
as Infinium Omni2.5–8) beadchip array and quality con-
trol (QC) was described previously [32, 33]. We obtained 
deidentified signal intensity data (*.idat) files for all the 
subjects in order to carry out copy number variation 
detection and analysis as described below.

CNV detection and analysis
Signal intensity data (*.idat) files were processed and 
normalized using Illumina GenomeStudio software. The 
FinalReport files were used as the raw data to perform 
CNV calling with three CNV calling algorithms: Pen-
nCNV (version 1.0.1) [34], DNAcopy (version 1.46.0), 
[35] and VanillaICE (version 1.32.2), [36]. Both Pen-
nCNV and VanillaICE implement Hidden Markov Mod-
els (HMM), whereas DNAcopy implements a Circular 
Binary Segmentation (CBS) algorithm. GC correction 
was performed for PennCNV using the built-in function, 
and the R/Bioconductor package ArrayTV (version 1.8.0) 
[37] was used to perform GC correction for DNAcopy 
and VanillaICE. Codes used to run the algorithms are 
available at GitHub [38]. Individuals with a total number 
of CNVs ≥ 3 standard deviations above the cohort mean 
were removed from further analysis based on previ-
ously established criteria [39]. In all, 168 individuals were 
excluded from further analysis: 70 duplicate samples, 97 
individuals with a total number of CNVs ≥ 3 standard 
deviation of the cohort mean, and one individual who 
had 0 CNVs after applying analysis pipeline thresholds 
described in Fig.  1. All subsequent analyses were per-
formed on the remaining 3463 individuals and all CNV 
coordinates are based on NCBI build37/hg19.
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CNV calls with fewer than five probes and < 1000 bases 
in size were removed, followed by those with DNAcopy 
log-ratio between -0.1 and 0.1 (a threshold determined 
by a plateau plot in the DNAcopy R package that shows 
the copy number across the genome), and PennCNV 
calls with confidence score < 10 (recommended thresh-
old by the developers of PennCNV) (Fig. 1). We used the 
intersect function in BEDTools v2.25 [40] to determine 
the proportion of overlap between CNV coordinates and 
genomic elements. CNV calls from two or more algo-
rithms that overlap by 50% or more were considered con-
cordant and included for further analyses. Next, CNV 
calls overlapping the centromere, telomere, or ≥ 50% with 
segmental duplications were removed.

PennCNV calls with copy numbers of 0 and 1 were 
annotated as copy number loss, 2 as diploid copy num-
ber, and 3, 4, 5 and 6 as copy number gain; VanillaICE 
calls with copy numbers of 1 and 2 were annotated as 
copy number loss, 3 and 4 as diploid copy number, and 
5 and 6 as copy number gain; DNAcopy segments with 
log-ratio ≥ 0.1 were annotated as copy number gain, and 
log-ratio ≤ -0.1 as copy number loss.

CNV calling with PennCNV from genotype data 
using high-density SNP arrays often results in the artifi-
cial splitting of larger CNVs (i.e. > 500  kb) into multiple 
smaller CNVs [34]. Therefore, we merged adjacent CNVs 
of the same type (i.e., loss or gain) in the same individual 
using an approach described previously [34]. Briefly, for 
three adjacent genomic regions A, B, and C, where A and 
C represent two CNVs of the same type separated by a 
region B, the length of B was divided by the total length of 
all three segments (A + B + C). If this fraction was ≤ 15%, 

then three regions were merged into one CNV. This 
approach was used to generate a list of CNVs that passed 
quality metrics and filtering criteria in individual samples 
from the Bantu cohort (Additional file 2).

In silico quality assessment of CNVs
To assess the quality of CNV calls in the Bantu popula-
tion, we compared the overlap of CNVs in the Bantu pop-
ulation with the Database of Genomic Variants (DGV) 
Gold Standard (GS) variants [41]. DGV GS variants are 
a curated set of variants from a select number of stud-
ies with high resolution and high quality, which were 
evaluated for accuracy and sensitivity. Therefore, an over-
lap with DGV GS variants indicates that our CNV calls 
are likely true positives. To assess whether the overlap 
was more than expected by chance, we permuted the 
genomic locations (n = 1000) using the shuffle function in 
BEDTools v2.25 [40]. Permutation tests were performed 
within each chromosome with the same number and size 
distribution of CNVs observed in the Bantu population 
as recommended for genomic elements that are unevenly 
distributed across the genome [42].

CNV regions (CNVRs)
CNV regions (CNVRs) were generated by merging all 
overlapping CNVs of the same type (i.e. loss or gain) from 
multiple individuals in our cohort, using the merge func-
tion in BEDTools v2.25 [40]. This resulted in a list of loss-
only and gain-only CNVRs, which were further merged 
into overlapping CNVRs of all types (Additional file 3).

Comparison to other CNV datasets
We compared Bantu CNVRs to variants obtained from 
DGV (release date 2020–02-15) [41], the Genome Aggre-
gation Database (gnomAD v2.1) [29, 43], African CNVR 
[44] and CNVs identified in low-mappability regions [45]. 
DGV CNVs dataset were downloaded from DGV web-
site [46]. gnomAD SV 2.1 sites BED file was downloaded 
from Broad Institute website [47], which were filtered 
by SV Type and SV Filter, and only “DEL”, “DUP”, “CN” 
SV types, and SVs with “PASS” SV Filter were included. 
The CNV dataset for low-mappability regions obtained 
from Monlong and colleagues’ publication additional 
material Sect.  [45]. CNVs obtained from tumor samples 
were excluded. CNVRs were generated using a similar 
approach as described above, and we then compared to 
the list of Bantu CNVRs to identify overlap.

CNV blocks
We generated a list of ‘CNV blocks’ from a set of unre-
lated individuals in our cohort (the description of unre-
lated individuals is explained in Ref. 32) to obtain a more 
accurate count of the number of times any given CNV 

Fig. 1  CNV analysis and filtering pipeline. Workflow showing the 
various filtering steps applied to detected CNVs in order to obtain a 
set of high confidence CNVs used for further analysis
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was observed. First, all overlapping CNVs localizing to a 
given genomic region were aligned as shown (Fig. 2a,b). 
The largest region encompassed by these overlap-
ping CNVs (A-D in Fig.  2) was segmented by start and 
end coordinates of individual CNV calls (A-K in Fig. 2), 
which resulted into multiple CNV blocks (A-E, E-C, C-J 
in Fig. 2, Additional file 4). An example for CNV blocks 
is represented in Fig.  2b. We then counted the number 
of times each CNV block was observed in unrelated 
individuals in our cohort. Based on these counts, CNV 
blocks were categorized into four groups: CNV blocks 
observed in ≥ 5% (common CNV blocks), ≥ 1 and < 5% 
(low frequency CNV blocks), ≥ 0.1 and < 1% (rare CNV 
blocks), and ≤ 0.1% (very rare CNV blocks).

CNVs in regions associated with disease
To assess which CNVs from our cohort overlap genes 
associated with developmental disorders, we identified 
overlap (at least 1  bp) of our common (≥ 5%), low fre-
quency (≥ 1—< 5%), and rare (≥ 0.1—< 1%) CNV blocks 
with genes catalogued in the Developmental Disor-
ders Genotype–Phenotype Database (Additional file  5) 
(DDG2P, [48]), compiled based on known implication 
in disease etiology. The following “STATUS” categories 
were included in the analysis: Confirmed developmen-
tal disorder (DD) Gene, Probable DD Gene, Possible 
DD Gene, and Both DD and IF (incidental finding). We 
determined the degree of overlap between using a bi-
directional approach; first we calculated how much of the 
CNV block overlapped with gene (CNVvsGeneOverlap% 

in Additional file 6) and then how much of the gene over-
lapped with the CNV block (GenevsCNVOverlap% in 
Additional file 6).

To assess whether large CNVs from our cohort overlap 
loci associated with genomic disorders, we first generated 
a list of 866 large CNVs (≥ 300 kb) observed in our cohort 
(Additional file  7). We then determined the proportion 
overlap of these CNVs with known CNVs previously 
implicated in the etiology of syndromes and genomic dis-
orders catalogued in The DatabasE of genomiC variation 
and Phenotype in Humans using Ensembl Resources [49, 
50] (Additional file  8). DECIPHER is an expert-curated 
database of microdeletion and microduplication syn-
dromes in developmental disorders.

Results
CNV detection and analysis
We identified 448,337 CNVs in the genomes of 3463 
Bantu African children (Fig.  1). Adjacent CNVs of 
the same type within a given individual were merged, 
resulted in a total of 416,877 CNVs across all auto-
somes, including 355,027 losses and 61,850 gains 
(Table  1, Additional file  2). Of these, 72,205 (17.3%) 
CNVs were concordantly called by all three CNV call-
ing algorithms used. The average number of CNVs per 
subject was 120 (min = 27, max = 1569, mean = 120.38, 
stdev = 151.04, IQR = 45) with a median length of 7558 
nucleotides (nt) and an average length of 18,145 nt 
(min = 1,001 nt, max = 2,929,312 nt). We further cat-
egorized CNVs based on their genomic size, as shown 

Fig. 2  CNV blocks. a A schematic demonstrating the delineation of CNV blocks followed by determination of total count within the Bantu cohort 
and categorization based on frequency. Black and gray rectangles, a-h and j, k represent five overlapping CNVs observed in different individuals 
[1–5]. a–k represent the start and end coordinates of the CNVs. Blue rectangles represent CNV blocks. b Represents an actual example of CNV block 
delineation from our CNV dataset
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(Table  1). The vast majority of detected CNVs were 
smaller, with 247,314 (59.3%) that were 1–10  kb and 
158,190 (38.0%) that were 10–100  kb. However, a siz-
able proportion were ≥ 100  kb with over a thousand 
that were ≥ 300  kb. Our CNV calls were significantly 
enriched for the Database of Genomic Variants (DGV) 
Gold Standard (GS) variants compared to randomly 
selected CNV regions (permuted p-value < 0.001), indi-
cating that CNV calls detected in this study are likely 
true positives.

We next assembled copy number variation regions 
(CNVRs) by merging overlapping CNVs of the same 
type (loss or gain) detected in multiple individuals in 
the Bantu cohort (Additional file 3). These CNVRs were 
further divided into 13,738 loss only, 1100 gain only 
and 2656 with both gain and loss, for a total of 17,494 
CNVRs (Additional file  3). The assembly into CNVRs 
further allowed us to determine that CNVs observed in 
our cohort covered a total of approximately 600 million 
nucleotides, about 20% of the genome. The distribution 
of CNVRs across the genome suggested that the number 
of CNVRs was not proportional to the size of the chro-
mosome (Fig. 3), consistent with previous reports [25].

Comparison to other CNV datasets
To determine overlap with existing CNV datasets, we 
compared the CNVRs observed in our cohort with exist-
ing CNV databases including DGV (40,418 CNVRs) [41], 
gnomAD (54,851 CNVRs) [29, 43], and current stud-
ies that focus on CNVs in different African populations 
(7608 CNVRs) [44] and low-mappability regions (12,242 
CNVRs) [45]. This comparison identified 1952 (11.16%) 
CNVRs in our cohort overlapping all four and 10,046 
(57.46%) overlapping any three datasets, while a major-
ity overlapped CNVRs in only one, two, or three of the 
databases (Table 2).

Additionally, we observed 48 CNVRs in our cohort 
that did not overlap with any CNV datasets mentioned 
above (Fig. 4, Additional file 9). These 48 CNVRs encom-
pass a total of 209,951 nt with three (very rare frequency 
CNVRs) overlapping genes reported to be associated 
with developmental disorders in the Developmental Dis-
orders Genotype–Phenotype Database (DDG2P) (Addi-
tional file 5).

CNVs in regions associated with disease
We next wanted to determine whether CNVs observed in 
the Bantu cohort overlapped genes and genomic regions 
previously associated with disease phenotypes. Using 
CNVs from 2696 unrelated subjects in our cohort, we 
identified 121,334 CNV blocks from 323,667 CNV calls 
(Additional file 4). We further classified CNV blocks into 
four categories based on how often they were observed 
in these 2696 unrelated individuals: a) 6913 CNV blocks 
observed in ≥ 5% of unrelated subjects were categorized 
as common; b) 24,908 CNV blocks observed in 1–5% 
were categorized as low frequency; c) 44,910 CNV blocks 
observed in 0.1–1% were categorized as rare; and d) 
44,603 CNV blocks were observed in ≤ 0.1% and were 
categorized as very rare; most of the very rare CNV 
blocks were singletons.

We then determined the overlap between common 
(≥ 5%), low frequency (1–5%), and rare (0.1–1%) CNV 
blocks and genes reported to be associated with devel-
opmental disorders in the DDG2P Database (Additional 
file 5). We identified 11,835 CNV blocks that overlapped 
1627 DDG2P genes (Additional file 6). We used recipro-
cal approach to identify ≥ 50% overlap between DDG2P 
genes and CNV blocks, which identified 125 CNV blocks 
(83 loss, 21 gain, 21 loss and gain) which overlapped with 
125 DDG2P genes with reciprocal overlap percentage 
of ≥ 50%.

Additionally, we identified 866 relatively large CNVs 
(≥ 300  kb) (Additional file  7) in unrelated individu-
als within our cohort. We investigated whether any of 
these large CNVs overlap (≥ 1  bp) CNVs previously 

Table 1  Number and size distribution of CNVs in Bantu Africans

CNV length Number of probes CNV

Count Loss Gain Total

1–10 ≥ kb 5–10 129,752 4878 134,630

11–25 80,315 14,633 94,948

26–50 11,733 4049 15,782

51–100 985 910 1895

 > 100 4 55 59

Total 222,789 24,525 247,314

 > 10–100 ≥ kb 5–10 15,900 1680 17,580

11–25 45,287 9715 55,002

26–50 41,636 12,560 54,196

51–100 18,785 6590 25,375

 > 100 3714 2323 6037

Total 125,322 32,868 158,190

 > 100–300 ≥ kb 5–10 37 10 47

11–25 650 76 726

26–50 1122 492 1614

51–100 1373 1119 2492

 > 100 3413 1990 5403

Total 6595 3687 10,282

 ≥ 300 kb 5–10 2 4 6

11–25 1 1 2

26–50 12 28 40

51–100 8 9 17

 > 100 298 728 1026

Total 321 770 1091



Page 6 of 11Yilmaz et al. BMC Med Genomics          (2021) 14:129 

implicated in syndromes or genomic disorders cata-
logued in DECIPHER (DatabasE of genomiC vari-
ation and Phenotype in Humans using Ensembl 
Resources; Additional file  8) [49]. We identified 83 
large CNVs, including 62 gain CNVs ranging in size 

from ~ 300–2740  kb and 21 loss CNVs ranging in 
size from ~ 309–1532  kb that overlap CNVs impli-
cated in the etiology of 24 known syndromes and 
genomic disorders (Additional file 10). Fourteen indi-
viduals had CNVs, including 1 loss (~ 442  kb) and 13 

Fig. 3  Genomic Map of CNVRs. CNVRs detected in our cohort are shown as colored density plots across individual chromosomes represented by 
ideograms. The genome was divided into 1 million equal sized windows and the number of CNVRs within each window were counted and plotted 
on the density plot. Color key—red: loss CNVRs, blue: gain CNVRs, green: loss and gain CNVRs. Density was calculated by dividing the genome in 
equal sized windows (n = 1,000,000) and counting the number of CNVRs overlapping each of the windows
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gains (~ 414–537  kb), that overlap with the genomic 
region implicated in Prader-Willi /Angelman syn-
dromes (Type 1), which is caused by a ~ 5.69 mb dele-
tion on chromosome 15. Thirty-two individuals had 
CNVs, including 7 losses and 25 gains, ranging in size 
from ~ 300–485  kb that overlapped with the region 
implicated in ATR-16 syndrome, which is caused by a 
775 kb deletion on chromosome 16.

Discussion
The vast majority of existing genetic variation analyses 
have been performed on individuals of European descent 
[26–28]. These types of analyses have resulted in an 
incomplete view of the genetic variation across popula-
tions and hindered the understanding and discovery of 
associations between diseases and genetic variations 
in non-European populations. To better catalog the full 
extent of genetic variation across human populations, tar-
geted analyses of genetic variation in under-represented 
populations are needed. Several recent studies have 
undertaken such analyses, including of single-nucleotide 
variations (SNVs), small insertion-deletions (indels), and 
copy number variations (CNVs) in under-represented 
populations including people of African, Asian, Latinx 
and Native American ancestry [29, 51–59]. Here, we pre-
sent a catalog of genome-wide copy number variations in 
a large cohort of healthy individuals of African ancestry.

One of the earliest studies reporting CNVs in a popu-
lation of African descent was an analysis of 385 indi-
viduals of African American ancestry, which identified 
1362 total CNVs [51]. Compared to the results we show 
here, this study used a lower resolution array platform 
that contained fewer probes, which resulted in a rela-
tively small number of CNVs being identified [51]. Over 
the years, additional studies of individuals from diverse 
populations, including of African descent as part of 1000 

Table 2  Bantu CNVRs overlap with CNV datasets

DGV: CNVRs generated from the Database of Genomic Variants CNVs, gnomAD: 
CNVRs generated from Genome Aggregation Database CNVs, African CNVR: 
CNVRs identified by Nyangiri and colleagues (44), All Four: CNVRs observed in all 
four datasets. Any Three and Any Two: CNVRs from any three or two of the above 
datasets respectively

CNV datasets Total CNVRs

All four 1952

Any three 10,046

Any two 4712

DGV only 338

gnomAD only 1

Low mappability regions only 396

African CNVR 1

None 48

Total 17,494

Fig. 4  Novel CNVRs. The chromosomal locations of CNVRs detected in the Bantu cohort, which did not overlap with known CNV datasets included 
in our comparison analysis. Vertical, colored lines represent individual CNVRs. Color key—red: loss blue: gain, green: loss and gain
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Genomes Project, reported an increasing number of 
CNVs (> 50,000) [20–23]. Most recently, CNVs and other 
structural variants (> 400,000) in 4937 individuals of Afri-
can and African American ancestry were reported as part 
of the Genome Aggregation Database (gnomAD) [29, 
43], and novel CNVRs were identified by Nyangiri and 
colleagues [44]. In our study, we identified 48 CNVRs 
which may represent CNVRs that are either specific to 
the Bantu African population or that may be very rare 
in populations currently represented in existing CNV 
datasets.

One of the limitations of our study is that the genotyp-
ing array platforms are limited to detecting copy number 
differences of sequences present in the human genome 
reference assembly used to design probes [60, 61]. This 
suggests that the current reference genome, which is 
mostly derived from people of European descent, may 
not be adequate for population-based analysis of human 
genome variation. A recent study showed that there is 
an unprecedented variation on highly repetitive 22q11.2 
segmental duplication regions within individuals and 
populations [62] which might be missed by genotyping 
platforms. Furthermore, there is a high level of varia-
tion between human genome assemblies hg19 (GRCh37) 
and hg38 (GRCh38), which is mainly due to gaps associ-
ated with complex genomic regions, missing sequences, 
sequencing errors and representation of centromeres and 
telomeres in individual assemblies [63]. In the array used 
in our study, the probes were selected based on human 
genome reference assembly hg19 (GRCh37), which 
is likely missing DNA that exists in people of African 
ancestry. Another limitation is the ability to detect CNVs 
which varies between platforms, as SNP-based array plat-
forms are more likely to underestimate gain CNVs than 
are array CGH platforms [64, 65]. Therefore, the num-
ber of detected losses is usually higher than the number 
of detected gains. CNVRs observed in our dataset, but 
not in other existing databases are likely to be either spe-
cific to Africans or rare in other populations, underscor-
ing the importance of genetic reference datasets derived 
from diverse ancestral populations.

We observed a considerable overlap between genes 
within common CNV blocks and genes previously impli-
cated in developmental disorders curated within the 
DDG2P Database. These observations raise the possibil-
ity that dosage alteration of these genesis either not path-
ogenic or incompletely penetrant in people of African 
ancestry. Additionally, of the 866 large CNVs (≥ 300 kb) 
we identified, 87 overlap with CNVs previously impli-
cated in syndromes catalogued in DECIPHER [49]. Thirty 
of these (34%) are in the same direction (loss or gain) as 
observed in these known syndromes but are smaller than 
the pathologic CNVs. One potential explanation for this 

could be that the region responsible for the clinical out-
comes observed in syndromic patients is smaller and our 
data may allow further refinement of the critical region 
for these syndromes. Alternatively, these results may also 
point to variable expressivity and/or reduced penetrance 
of CNVs in these regions in Africans. These findings 
underscore the need for population specific CNV data-
sets for comparison in order to determine the impact of 
CNVs on clinical outcomes observed in patients [66, 67].

A recent study [68] showed that the African “pan-
genome”, built using sequence data from 910 individuals 
of African descent, contained ~ 10% more DNA not pre-
sent in hg38 (GRCh38), suggesting that the current refer-
ence genome may not fully represent genomic variation 
in diverse human populations. This suggests the need 
for de novo sequencing of a large number of genomes 
from African and other under-represented populations, 
in order to comprehensively assess genomic variation 
within and between diverse populations.

Conclusion
The increasing number of African samples being ana-
lyzed as part of the 1000 Genomes Project, gnomAD, and 
several other projects continues to improve our under-
standing of genetic diversity in this population. More 
importantly, our results suggests that the determination 
of the clinical impact and phenotypic outcomes of CNVs, 
in diverse populations, will require appropriate datasets 
from healthy individuals from the same population for 
comparison. The data we present contribute to this effort 
by providing a rich dataset of CNVs observed in a large 
cohort of Bantu Africans. However, based on the level of 
genomic diversity that exists within African subpopula-
tions, we suggest that additional, larger datasets will be 
required in order to capture all the existing genomic vari-
ation within the African population [69–73].
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