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Abstract 

Background:  Huntington’s disease is a kind of chronic progressive neurodegenerative disease with complex patho-
genic mechanisms. To data, the pathogenesis of Huntington’s disease is still not fully understood, and there has been 
no effective treatment. The rapid development of high-throughput sequencing technologies makes it possible to 
explore the molecular mechanisms at the transcriptome level. Our previous studies on Huntington’s disease have 
shown that it is difficult to distinguish disease-associated genes from non-disease genes. Meanwhile, recent progress 
in bio-medicine shows that the molecular origin of chronic complex diseases may not exist in the diseased tissue, 
and differentially expressed genes between different tissues may be helpful to reveal the molecular origin of chronic 
diseases. Therefore, developing integrative analysis computational methods for the multi-tissues gene expression 
data, exploring the relationship between differentially expressed genes in different tissues and the disease, can greatly 
accelerate the molecular discovery process.

Methods:  For analysis of the intra- and inter- tissues’ differentially expressed genes, we designed an integrative 
enrichment analysis method based on an artificial neuron (IEAAN). Firstly, we calculated the differential expression 
scores of genes which are seen as features of the corresponding gene, using fold-change approach with intra- and 
inter- tissues’ gene expression data. Then, we weighted sum all the differential expression scores through a sigmoid 
function to get differential expression enrichment score. Finally, we ranked the genes according to the enrichment 
score. Top ranking genes are supposed to be the potential disease-associated genes.

Results:  In this study, we conducted large amounts of experiments to analyze the differentially expressed genes of 
intra- and inter- tissues. Experimental results showed that genes differentially expressed between different tissues 
are more likely to be Huntington’s disease-associated genes. Five disease-associated genes were selected out in this 
study, two of which have been reported to be implicated in Huntington’s disease.

Conclusions:  We proposed a novel integrative enrichment analysis method based on artificial neuron (IEAAN), which 
displays better prediction precision of disease-associated genes in comparison with the state-of-the-art statistical-
based methods. Our comprehensive evaluation suggests that genes differentially expressed between striatum and 
liver tissues of health individuals are more likely to be Huntington’s disease-associated genes.
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Background
Huntington’s disease (HD) is a representative neurode-
generative disease, caused by excessive triplet (CAG) 
repeat located in huntingtin (HTT) gene on chromo-
some 4 that codes for polyglutamine in the huntingtin 
protein [1]. The mutant protein has many effects in cells 
through entering the nucleus followed by gene transcrip-
tion changes [2]. With accumulation of the mutant pro-
tein, numerous interactions between molecules and a 
number of molecular pathways are affected, resulting in 
neuronal dysfunction and degeneration [3, 4]. With the 
connections between neurons getting sparse, the neurons 
start dying gradually, and finally died during the disease 
deterioration. At the meanwhile, the volume of striatum 
decreased markedly [5]. HD can lead to motor, cognitive, 
and emotional impairments progressively. The molecu-
lar pathogenesis of HD is very complicated. It has been 
reported that many pathogenic factors may be related to 
the disease, such as neurotrophasthenia, impairment of 
axon transmission, impairment of metabolic pathways, 
protein misfolding, inflammation, and intestinal micro-
organism [6–11]. However, the molecular mechanisms of 
HD can not be completely explained by a single patho-
genic factor. To date, the complicated molecular patho-
genesis of HD still remains elusive.

To elucidate the molecular pathological mechanisms, 
researchers in biomedical research field are focusing 
on the study of biomarkers and the regulatory path-
ways related to specific phenotype of chronic diseases. 
This traditional hypothesis-based researches need long 
research periods and high labor cost. However, with the 
rapid and encouraging development of high-throughput 
sequencing technologies, such as RNA-seq, ATAC-seq, 
ChIP-seq, and RIP-seq, many computational methods 
and softwares for investigating the molecular targets 
have been developed in recent years. Therefore, research-
ers could firstly screen biomarkers or catch a glimpse of 
the interactions between molecules from a genome-wide 
scale using computational methods with omics data, and 
then use online resources to obtain functional anno-
tations or pathway information. It is obvious that the 
results obtained in bioinformatics provide a useful refer-
ence for biomedical researchers.

The computational methods can be roughly divided 
into three major categories: network-based methods 
[12–16], statistics-based enrichment analysis methods 
[17–19], and machine learning based methods [20–22]. 
Meanwhile, network-based methods can well describe 
the regulatory relationship between regulatory elements 

and interaction sites in the DNA sequence from the 
system level. Network-based methods often need large 
amounts of computational time. Statistics-based enrich-
ment analysis methods compute the statistical differ-
ence p values using case samples and control samples. 
Machine learning based methods, such as matrix factori-
zation based methods [23, 24] and deep learning meth-
ods [25, 26], have been widely used and studied in the 
field of bio-medicine recently. Matrix factorization based 
methods may lead to unstable results due to random ini-
tialization, and deep learning methods often need large 
amounts of samples to train the predictive models.

The complex molecular pathological mechanisms and 
complicated phenotypes of neurodegenerative diseases 
provide great challenges for screening disease-associated 
genes. On the one hand, there is still a large gap between 
the interpretation of pathological mechanisms and the 
disease-associated genes screened by various computa-
tional methods. On the other hand, the consistency of 
the candidate disease-associated gene sets obtained by 
different methods is poor [25]. What’s more, we found 
that it is very difficult to distinguish disease-associated 
genes from non-disease genes of Huntington’s disease in 
our previous study [23]. At present, it is urgent to develop 
effective computational methods to improve the accuracy 
of disease-associated gene prediction and the robustness 
of the candidate disease-associated gene sets, promoting 
the understanding of the pathological molecular mecha-
nisms under complex phenotypes.

Genes often selectively expressed in different tissues. 
Recent studies in the field of bio-medicine have shown 
that the molecular origin of chronic complex diseases 
may not exist in the diseased tissue. Differentially 
expressed genes between different tissues are expected 
to reveal the molecular origin of complex chronic dis-
eases [27–30]. Previously, researchers usually screen 
genes that significantly differentially expressed between 
normal and case samples of different individuals as dis-
ease-associated ones. However, because of the fact that 
large amounts of genes’ expression have been affected 
during the disease development, it becomes quite dif-
ficult to accurately distinguish disease-associated genes 
from non-disease essential genes. Besides, due to the 
gene selectively expressed in different tissues, different 
gene sets can be obtained by using samples of different 
tissues. Moreover, the differentially expressed genes 
selected with normal and case samples may not help-
ful for the personalized medicine due to the individual 
differences. Nevertheless, exploring the differentially 
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expressed genes between different tissues of a same 
individual may reveal endogenous answers for the dis-
ease development.

According to the above analysis, in this study, we 
conducted large amounts of experiments to screen 
Huntington’s disease-associated genes using classi-
cal methods, including t-test [31], fold change method 
(FC) [31], flexible non-negative matrix factorization 
method (FNMF) [23], and joint non-negative matrix 
factorization meta-analysis method (jNMFMA) [24], 
to explore the relationship of differentially expressed 
genes and the disease.

To further improve the disease-associated gene predic-
tion accuracy, we conducted a meta-analysis of the differ-
ential expression scores of a gene, including intra-tissues’ 
differential expression scores (i.e. differential expression 
score between different tissues) and inter-tissues’ differ-
ential expression scores (i.e. differential expression score 
between normal samples and case samples of one tissue). 
Hence, we designed an integrative enrichment analysis of 
intra- and inter- tissues’ differentially expression scores 
of one gene based on an artificial neuron (IEAAN).

Firstly, we calculated the differential expression scores 
of a gene using FC [31] approach. The differential expres-
sion scores are seen as features of the gene. Then, we 
integrated the differential expression scores to get an 
enrichment score of the corresponding gene using an 
artificial neuron model. Finally, we prioritized disease-
associated genes according to the enrichment score. 
Experiments on gene expression data of Huntington’s 
disease show that the prediction accuracy of IEAAN 
could be as precise as that of the-state-of-art methods. 
Furthermore, the gene rankings in ranked list of IEAAN 
are more stable than that of other methods. More impor-
tantly, IEAAN is much helpful for understanding the 
mechanisms under complex disease phenotypes and have 
provided insight into the molecular mechanisms under-
lying Huntington’s disease.

The rest of this paper is organized as follows: The 
IEAAN approach proposed in this study is presented in 
“Methods” section. Experiments that screen differentially 
expressed genes with RNA-seq data of Huntington’s dis-
ease are illustrated and the overall discussion of experi-
mental results of various methods is reported in “Results 
and discussion” section. Conclusions are presented in 
“Conclusions” section.

Methods
In this section, we present the key idea of the integrative 
enrichment analysis, and then describe the details of the 
artificial neuron model and the learning process. Finally, 
the parameter setting of the IEAAN is discussed.

Integrative enrichment analysis
Enrichment analysis aims to select a set of genes which 
are significantly differentially expressed between differ-
ent conditions. The resulting gene set is considered to be 
strongly correlated with the accuracy of distinguishing one 
condition from the others. Traditional enrichment analysis 
methods were used to evaluate the significance of gene set 
using statistical-based strategy. Then the corresponding 
gene set was assigned an enrichment score which was used 
to measure the importance of the gene set.

Intuitively, the interpretability and biological meaning 
could be further improved if we integrate all the differential 
expression scores of one gene. Machine learning methods 
and deep learning methods are suitable for data integra-
tion and prediction. So, according to the above analysis, we 
designed the integrative enrichment analysis model based 
on an artificial neuron to intergrate the differential expres-
sion scores of one gene.

Integrative enrichment analysis of intra‑ and inter‑ tissues’ 
differentially expressed genes based on an artificial neuron
Model
The gene intra-tissues’ differential expression scores and 
inter-tissues’ differential expression scores were computed 
based on FC [31]. It should be ensured that the fold change 
of any two samples must be not less than 1. If not, the 
reciprocal is used. The differential expression score (greater 
score indicates that the gene is more significantly differen-
tially expressed) of a gene is the average fold changes of any 
two samples from normal ones and case ones respectively.

Symbol xg = (pg1, · · · , pgn) represents the differential 
expression scores of gene g. pgi represents the differential 
expression score obtained by the i − th method. In this 
study, the differential expression scores pgi, i = 1, · · · , n 
were seen as features of gene g. We trained the artificial 
neuron with the genes in the training set. The labels of 
genes are denoted as Y = (y1, · · · , yg ) . The value of yg is 
defined by

In the artificial neuron model (Fig. 1), pi represents the 
differential expression score, and wi and b are the param-
eters of the model. Sigmoid function is used as activation 
function to integrate all the features of a gene. The sigmoid 
function is written as

where θ = (W , b) represents the parameter setting.

(1)yg =

{

1, if g is disease− associated,
−1, if g is non − disease− associated.

(2)fθ (xg ) =
1

1+ e−(
∑n

i=1 wipgi+b)
,
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Let ŷg = fθ (xg ) represents the evaluated label of gene g. 
Mean square error is used as loss function, which is writ-
ten as

where N represents the number of genes.
Therefore, the loss function for gene g is defined by

Learning
In this study, error back-propagation algorithm is used 
to learn parameters in the model. The learning process is 
completed until the loss function converges. The gradi-
ent descent algorithm is used to calculate the gradient in 
each iteration. The calculation of gradient is given by

(3)L(Y , Ŷ ) =

N
∑

g=1

l(yg , ŷg ),

(4)l(yg , ŷg ) =
1

2
(yg − ŷg )

2.

(5)

�wi =
∂L

∂wi

=

N
∑

g=1

∂lg

∂wi

= −

N
∑

g=1

(yg − ŷg )
e−(

∑n
i=1 wipgi+b)

(1+ e−(
∑n

i=1 wipgi+b))2
pgi,

(6)

�br =
∂L

∂b

=

N
∑

g=1

∂lg

∂b

= −

N
∑

g=1

(yg − ŷg )
e−(

∑n
i=1 wipgi+b)

(1+ e−(
∑n

i=1 wipgi+b))2
.

(7)W (k + 1) = W (k)− η�W (k),

where W(k) is the weighted matrix of the model in the k-
th interactions. η is the learning rate, which controls the 
convergent speed.

Integrative enrichment score
Finally, Eq.  (9) was used to calculate integrative enrich-
ment score for each gene. We ranked the genes in 
descending order according to the integrative enrich-
ment score. Top ranking genes are more likely to be dis-
ease-associated genes.

By training the artificial neuron, we can clearly know 
which differential expression score contributes more to 
the finally integrative enrichment score according to the 
weight, providing a better understanding of the relation-
ship between disease phenotype and the differentially 
expressed genes.

Parameter setting
Here, we initialized parameters in the model as follows: 
1) if the area under the receiver operating characteristic 
curve (AUC) [32] of the differential expression score is 
larger than 0.5, the corresponding w is preset to be the 
AUC, 2) the other w is preset to be 0, 3) the b is preset to 
be 0.

The integrative enrichment analysis model described 
here is generally applicable to any high-dimensional 
sequencing data for meaningful biological biomarkers 
discovery.

Results and discussion
In Fig.  2, we present the pipeline of steps needed to 
develop for high-precision biomarker discovery from 
the whole-genome gene expression data to downstream 
analysis.

Next, we first described the dataset used in this study in 
detail. Second, we demonstrated the experimental results 
of four common used methods. Then, we analyzed and 
discussed the disease-associated gene prediction accu-
racy of four traditional methods and the IEAAN. The 
robustness of IEAAN was also further tested by ran-
domly selecting samples. Finally, 5 genes were selected 
out by integrating the results of IEAAN and those of FC-
based experiments.

Gene expression data
Gene expression data used in this study were down-
loaded at http://​www.​hdinhd.​org, which were obtained 

(8)b(k + 1) = b(k)− η�b(k).

(9)Eg =

n
∑

i=1

wipgi.

Fig. 1  Schematic illustration of the integrative enrichment analysis 
artificial neuron model

http://www.hdinhd.org
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from 6-month-old Huntington’s disease mice through 
RNA-seq technology. The dataset contains three tis-
sues: striatum, cortex, and liver. There are 6 kinds of 
genotypes, including ploy Q20, ploy Q80, ploy Q92, 
ploy Q111, ploy Q140, and ploy Q175. For each geno-
type, there are 8 samples. The genotype ploy Q20 is the 
normal one, while the other genotypes are disease ones. 
Altogether there are 144 samples and there are 23351 
genes for each sample in the dataset. The detailed infor-
mation of the dataset is illustrated in Table 1.

Since most of the computational methods select dis-
ease genes from transcript level based on the hypothe-
sis that disease-associated genes tend to be significantly 
differently expressed in case samples compared with 
normal ones. Genes whose expression changed slightly 
during the disease development are difficult to be 
selected out. Therefore, we conducted a filter step to 
reduce computational complexity. First, genes with 
any 0 expression level were filtered out according to 
l0-norm. Then, gene expression through samples was 
normalized, and the genes were ranked in descending 
order according to the variance in striatum, cortex, and 
liver respectively (Additional file  1 Figure S1, Addi-
tional file  2 Figure S2, and Additional file  3 Figure S3, 
respectively). The top ranked 4000 genes have larger 
expression variances, compared with the relatively 
small expression variances of the other genes. Due to 
the fact that computational methods have no discrimi-
native ability for the genes with small variance, the top 
ranked 4000 genes in each of the three tissues were 
manually selected out and then integrated together. 

Finally, 6,723 genes were selected out from the whole 
genome for next analysis.

The modifier genes were from [33, 34]. There were 520 
genes, including 89 disease genes and 431 non-disease 
genes.

Prediction performance of t‑test, FC, FNMF, and jNMFMA
It has been reported that large amounts of genes’ expres-
sion, as well as the interactions between genes, are 
affected during the Huntington’s disease progression. 
The pathological molecular mechanisms of HD are still 
unclear. In this study, we conducted experiments using 
t-test, FC, FNMF, and jNMFMA, to explore the charac-
teristics of intra-tissues’ differentially expressed genes 
and inter-tissues’ differentially expressed genes, respec-
tively. We denoted the experiments using normal sam-
ples (gene expression data with genotype Q20) versus 
normal samples as Normal-Normal, the experiments 
using normal samples versus case samples (gene expres-
sion data with genotype Q80, Q92, Q111, Q140, or Q175) 
as Normal-Case, and the experiments using case samples 
versus case samples as Case-Case.

For the non-parameter methods, i.e., t-test and FC, we 
conducted the experiment once to obtain the stable gene 
ranking results. Due to the instability of methods with 
many parameters that need to be randomly initialized, 
i.e., FNMF and jNMFMA, we conducted experiments 10 
times. Then, the mean and standard deviation of the 10 
experimental results were calculated as the final assess-
ment. The experimental results for the four methods are 
shown in Tables 2, 3, 4, and 5, respectively.

From Tables 2 and 3, we can know that the t-test and 
FC perform poorly in disease-associated gene predic-
tion with intra-tissues’ Normal-Case samples, while they 
perform better with both inter-tissues’ Normal-Normal 
samples and inter-tissues’ Case-Case samples. It indicates 
that the differentially expressed genes of inter-tissues are 
more likely to be disease-associated genes. It also indi-
cates that it is easily to screen disease-associated genes 
with Normal-Normal samples or Case-Case samples. 
Besides, the performance of the two methods with inter-
tissues’ Normal-Normal samples is comparable to that 
with inter-tissues’ Case-Case samples. It demonstrates 
that the differentially expressed genes between different 
tissues in health individuals are likely to be disease-asso-
ciated genes.

Comparing Tables  2 and 3, we observed that the FC 
method outperformed t-test method. We reasoned that 
this difference might be because t-test method uses the 
average information of gene expression, ignoring lots of 
useful information, and finally leads to poor result.

Tables  4 and 5 show the experimental results using 
jNMFMA method and FNMF method. The two methods 

Fig. 2  Pipeline of the integrative analysis of gene expression data 
based on the IEAAN model. Data preparation and pre-processing 
steps are described firstly. The training process of the IEAAN 
are illustrated in detail. Disease-associated genes are prioritized 
according to the enrichment scores finally
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have similar performance in screening disease-associated 
genes under various conditions.

Through comprehensive comparison of Tables  2, 3, 4, 
and 5, we found that the performance of the jNMFMA 
and FNMF methods were superior than that of the two 
statistical-based methods when screening differentially 
expressed genes with intra-tissues’ gene expression data. 
However, there was no statistical significance among the 
results of the 4 methods with inter-tissues’ gene expres-
sion data. These results indicate that genes differentially 
expressed among inter-tissues in healthy individuals have 
great relationship with the disease, providing a new per-
spective on disease-associated gene screening.

Performance comparison of IEAAN with other four 
methods
We further analyzed the performance of IEAAN and the 
other four methods. For jNMFMA and FNMF, we con-
ducted 10 time experiments with random initialization. 
The best performed experiment was used to conduct 
comparison analysis. We observed that jNMFMA and 
FNMF performed better at prediction accuracy and pre-
diction precision for top ranking genes, with Normal-
Case samples of striatum, cortex, and liver, respectively 
(Additional file  4 Figure S4 and Additional file  5 Figure 
S5). Moreover, FC, jNMFMA, and FNMF have simi-
lar performances, which are better than t-test method 
(Additional file  6 Figure S6, Additional file  7 Figure S7, 
Additional file  8 Figure S8, and Additional file  9 Figure 
S9). It is because that t-test solely uses the average expres-
sion of gene, possibly missing some useful information. 
However, due to the random initialization, jNMFMA 
and FNMF produce unstable final ranked lists of genes. 
Moreover, jNMFMA and FNMF display higher computa-
tional complexity.

From above results, we concluded that FC, as a param-
eterless method, is relatively simple, effective, and stable. 
With the gene expression data considered in details, FC 
may yet better results. Therefore, we designed IEAAN 
to integrate differential expression scores obtained by 
FC method. The results of IEAAN and FC are shown in 
Figs. 3, and 4.

Compared with the best result of FC, the AUC was 
improved by 2.6% in IEAAN (AUC=0.598), and in the 
meanwhile, the AUPR was improved by 5.4% IEAAN 
(AUPR=0.231). To test the robustness of the method, we 
randomly took out 2 samples, then computed the intra-
tissues’ and inter-tissues’ differential expression scores 
based on FC with the left 6 samples. The IEAAN model 
was re-run with those differential expression scores as 
the features of gene. The procedure has been repeated for 
5 times. The final ranking lists of the 5 experiments have 
been analyzed and the overlap degree of the top ranked 

500 genes was 0.73, suggesting the robustness and stabil-
ity of the integrative model.

Moreover, to verify the consistency of the gene ranked 
lists, which are obtained from the differential expres-
sion scores using FC with intra-tissues’ gene expression 
data and inter-tissues’ gene expression data, we ana-
lysed the overlap degree of top ranking genes between 
any two ranked lists. Since the prediction precision of 
disease-associated genes is very high when the recall rate 
is no more than 0.10, we checked the rankings of top 9 
( 89 ∗ 0.10 = 8.90 ) genes in the ranked lists, and found 
that they are ranked in top 800 of the final ranked lists. 
So, we statistics the overlap degree of the top 800 genes, 
and found that the overlap degrees were larger than 0.20 
Table 6. The overlap degree between the result of IEAAN 
and that of FC with better performance is higher, while 
the one between the result of IEAAN and that of FC with 
poor performance was lower. The above analysis results 

Fig. 3  The ROC curves of FC-based results

Fig. 4  The PR curves of FC-based results
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indicate that genes differentially expressed between tis-
sues are more susceptible to be affected and differentially 
expressed during the disease progression.

Integrating the top 800 gene sets of the eight ranked 
lists, we finally obtained 5 genes simultaneously pre-
sented in the top 800 of all ranked lists. They were Arpp21 
(cAMP-regulated phosphoprotein 21), Rgs4 (regulator of 

G-protein signaling 4), Rasd2 (RASD family member 2), 
Gabrd (gamma-aminobutyric acid type A receptor delta 
subunit), and Tmod1 (tropomodulin 1). These five genes 
were found to be differentially expressed in intra-tissues 
and inter-tissues. The functional annotations of the five 
genes are shown in Table  7. Among the five differential 
expressed genes, Arpp21 is related to cellular response 

Table 1  Experimental data description

Age 6-month-old

Tissue Striatum Cortex Liver

Genotype poly Q20 poly Q80 poly Q92 poly Q111 poly Q140 poly Q175

Total sample number 144

Table 2  Performance of the t-test method

t-test Normal–case Normal–normal Case–case

Str_Str Cor_Cor Liv_Liv Str_Cor Str_Liv Cor_Liv Str_Cor Str_Liv Cor_Liv

AUC​ 0.48 0.52 0.47 0.545 0.529 0.512 0.521 0.514 0.523

AUPR 0.16 0.17 0.15 0.200 0.186 0.178 0.178 0.178 0.183

Table 3  Performance of the FC method

FC Normal–case Normal–normal Case–case

Str_Str Cor_Cor Liv_Liv Str_Cor Str_Liv Cor_Liv Str_Cor Str_Liv Cor_Liv

AUC​ 0.55 0.51 0.56 0.472 0.582 0.584 0.485 0.583 0.583

AUPR 0.18 0.19 0.23 0.168 0.218 0.216 0.174 0.219 0.216

Table 4  Performance of the jNMFMA method

jNMFMA Normal–case Normal–normal Case–case

Str_Str Cor_Cor Liv_Liv Str_Cor Str_Liv Cor_Liv Str_Cor Str_Liv Cor_Liv

AUC​ 0.567 0.554 0.585 0.527 0.534 0.548 0.537 0.581 0.563

±0.016 ±0.005 ±0.021 ±0.013 ±0.011 ±0.029 ±0.023 ±0.009 ±0.014

AUPR 0.207 0.194 0.216 0.181 0.191 0.196 0.187 0.221 0.206

±0.015 ±0.005 ±0.011 ±0.006 ±0.008 ±0.012 ±0.019 ±0.009 ±0.009

Table 5  Performance of the FNMF method

FNMF Normal–case Normal–normal Case–case

Str_Str Cor_Cor Liv_Liv Str_Cor Str_Liv Cor_Liv Str_Cor Str_Liv Cor_Liv

AUC​ 0.554 0.556 0.569 0.542 0.566 0.537 0.540 0.549 0.545

±0.016 ±0.014 ±0.029 ±0.015 ±0.022 ±0.029 ±0.016 ±0.032 ±0.032

AUPR 0.199 0.197 0.194 0.194 0.192 0.198 0.188 0.195 0.191

±0.017 ±0.010 ±0.016 ±0.008 ±0.013 ±0.024 ±0.009 ±0.013 ±0.011
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to heat and nucleic acid binding, and Rgs4 is involved 
in inactivation of MAPK activity and GTPase activator 
activity. Rasd2 has been previously implicated in synap-
tic transmission and GTP binding, Gabrd is related to cell 
junction and GABA-A receptor complex, and Tmod1 can 
play a role in muscle contraction and pointed-end action 
filament capping (Table 7). By investigating the prefrontal 
cortex single cell expression, it was found that Arpp21, 
Rasd2, Gabrd, Tmod1 mainly express in astrocytes, neu-
rons, microglia, OPC, stem cells and GABAergic neu-
rons, while Rgs4 mainly expresses in neurons, OPC, stem 
cells, and GABAergic neurons.

The five genes may play an key role during HD pro-
gression. It is important to note that Arrpp21 and Rasd2 
have also been reported in the article [33], suggesting the 
effectiveness of IEAAN and the significance of the five 
genes for the disease development.

The results indicate that the-state-of-art methods could 
not effectively distinguish the disease genes from non-
disease ones. To improve the performance of disease 
gene selection tools, in this study, we developed a inte-
grative computational methods from a new perspective 
to mine the differentially expressed genes between dif-
ferent tissues of healthy individuals. Finally, we obtained 

Table 6  The overlap degree of the top 800 genes in any two ranked lists obtained by FC

Normal–case Normal–normal Case–case

Str_Str Cor_Cor Liv_Liv Str_Cor Str_Liv Cor_Liv Str_Cor Str_Liv Cor_Liv

Normal–case Cor_Cor 0.38

Liv_Liv 0.22 0.19

Normal–normal Str_Cor 0.48 0.26 0.21

Str_Liv 0.25 0.14 0.44 0.27

Cor_Liv 0.21 0.13 0.45 0.21 0.92

Case–case Str_Cor 0.39 0.29 0.41 0.87 0.26 0.20

Str_Liv 0.25 0.14 0.44 0.27 0.96 0.91 0.26

Cor_Liv 0.21 0.12 0.45 0.20 0.91 0.96 0.19 0.92

IEAAN – 0.23 0.14 0.46 0.23 0.93 0.95 0.23 0.93 0.95

Table 7  The functional annotations of the five genes

Gene GOTERM_BP_DIRECT GOTERM_CC_DIRECT GOTERM_MF_DIRECT

Arpp21 Cellular response to heat Cytoplasm Nucleic acid binding

Rgs4 Inactivation of MAPK activity Nucleus GTPase activator activity

Regulation of G-protein coupled Cytoplasm

Receptor protein signaling pathway

Rasd2 Synaptic transmission Intracellular GTP binding

Dopaminergic Membrane

Small GTPase mediated signal transduction

Gabrd Transport Plasma membrane GABA-A receptor activity

Ion transport Membrane Extracellular ligand-
gated ion channel 
activity

Signal transduction Integral component of membrane

Cell junction

Synapse

GABA-A receptor complex

Tmod1 Muscle contraction COP9 signalosome Tropomyosin binding

Adult locomotory behavior Membrance

Myofibril assembly sarcomere

Pointed-end action filament capping Cortical cytoskeleton

Lens fiber cell development



Page 9 of 10Jiang et al. BMC Med Genomics          (2021) 14:173 	

five disease-related genes by prioritizing the differentially 
expressed genes between different tissues. The best per-
formance of AUC is around 0.6, and AUPR is around 
0.23. It suggests that our method can also be very helpful 
for understanding the endogenous reasons of disease.

Conclusions
Prioritizing differentially expressed genes as disease-
associated genes can not perform well in the Hunting-
ton’s disease gene expression data analysis. To better 
understand molecular mechanisms under complicated 
phenotypes, we designed IEAAN to integrate the differ-
ential expression scores of intra-tissues’ and inter-tissues’. 
In this study, we conducted extensive experiments to ana-
lyze the performance of different methods with different 
samples. We demonstrated that differentially expressed 
genes between different tissues of healthy individuals are 
likely to be disease-associated genes. We finally screened 
five genes, including Arpp21, Rgs4, Rasd2, Gabrd, and 
Tmod1, two (Arpp21 and Rasd2) of which have been 
reported to be related with Huntington’s disease [33].
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