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Multivariate transcriptome analysis 
identifies networks and key drivers of chronic 
lymphocytic leukemia relapse risk and patient 
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Abstract 

Background:  Chronic lymphocytic leukemia (CLL) is an indolent heme malignancy characterized by the accumula-
tion of CD5+ CD19+ B cells and episodes of relapse. The biological signaling that influence episodes of relapse in CLL 
are not fully described. Here, we identify gene networks associated with CLL relapse and survival risk.

Methods:  Networks were investigated by using a novel weighted gene network co-expression analysis method and 
examining overrepresentation of upstream regulators and signaling pathways within co-expressed transcriptome 
modules across clinically annotated transcriptomes from CLL patients (N = 203). Gene Ontology analysis was used 
to identify biological functions overrepresented in each module. Differential Expression of modules and individual 
genes was assessed using an ANOVA (Binet Stage A and B relapsed patients) or T-test (SF3B1 mutations). The clinical 
relevance of biomarker candidates was evaluated using log-rank Kaplan Meier (survival and relapse interval) and ROC 
tests.

Results:  Eight distinct modules (M2, M3, M4, M7, M9, M10, M11, M13) were significantly correlated with relapse and 
differentially expressed between relapsed and non-relapsed Binet Stage A CLL patients. The biological functions of 
modules positively correlated with relapse were carbohydrate and mRNA metabolism, whereas negatively correlated 
modules to relapse were protein translation associated. Additionally, M1, M3, M7, and M13 modules negatively corre-
lated with overall survival. CLL biomarkers BTK, BCL2, and TP53 were co-expressed, while unmutated IGHV biomarker 
ZAP70 and cell survival-associated NOTCH1 were co-expressed in modules positively correlated with relapse and 
negatively correlated with survival days.

Conclusions:  This study provides novel insights into CLL relapse biology and pathways associated with known and 
novel biomarkers for relapse and overall survival. The modules associated with relapse and overall survival repre-
sented both known and novel pathways associated with CLL pathogenesis and can be a resource for the CLL research 
community. The hub genes of these modules, e.g., ARHGAP27P2, C1S, CASC2, CLEC3B, CRY1, CXCR5, FUT5, MID1IP1, 
and URAHP, can be studied further as new therapeutic targets or clinical markers to predict CLL patient outcomes.
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Background
Chronic lymphocytic leukemia (CLL) is a heme malig-
nancy characterized by the presence of CD5+ CD19+ B 
cells in the blood, bone marrow, and lymph node organs 
[1]. In 2020, CLL was predicted to occur in 21,040 new 
cases and lead to 4060 deaths, in the United States [2]. 
Recent therapy innovations have markedly improved 
response rates, and the duration of response for most, 
but patients continue to develop resistance to therapy, 
resulting in relapse. CLL does not have a cure and is 
heterogeneous in terms of progression and outcomes. 
The molecular mechanisms responsible for relapse are 
incompletely understood. Patient survival can range 
from a few months to several years [3]. The aggrega-
tion of B cells in the bone marrow and lymphoid organs 
interferes with the production of new blood, result-
ing in anemia, thrombocytopenia and neutropenia as 
well as impairing immune system integrity negatively 
impacting the quality of life of CLL patients. To effec-
tively cure CLL and improve the quality of life of CLL 
patients, we need a better understanding of the cellular 
and molecular mechanisms that follow CLL initiation 
and lead to disease progression.

Many molecular features and biomarkers have been 
identified for CLL that drive disease progression or 
clinically prognostic. Numerous cytogenetic abnormal-
ities with favorable and unfavorable prognostic impact 
are recognized. The five major mutations in CLL 
include the 13q (mir-15), 11q (ATM), 17p (TP53), and 
6q (FOXO) deletions and Trisomy 12 (NOTCH1) [4]. 
The 17p, 11q, 6q, and Trisomy 12 mutations result in 
lower overall survival, time to first treatment, and pro-
gression free survival [4]. In the current targeted ther-
apy era (i.e., Ibrutinib, Venetoclax), the 17p deletion is 
the only cytogenetic aberration used to inform treat-
ment decisions [5]. The Ig heavy chain variable region’s 
mutation status is prognostic with unmutated forms 
(U-CLL) showing enhanced B cell receptor (BCR)-
signaling and being prognostically adverse in patients 
treated with chemotherapy [6–8]. Mutated CLL 
(M-CLL) cells possess a rearranged IGHV, are derived 
from B cells that have undergone somatic hypermuta-
tion, and have decreased BCR-signaling, which results 
in a more indolent disease [6]. Some cytogenetic abnor-
malities are more prevalent based on IGHV status (i.e., 
Trisomy 12) which explains distinct differences in U 
and M-CLL biology and outcomes [9, 10]

Although not mutated, upregulation of BCR, PI3K and 
BCL-2 anti-apoptotic molecules are involved in signal-
ing pathways that drive CLL progression [11] and acti-
vate downstream effectors, e.g., JNK, ERK, mTOR, and 
NF-kB, which promote anti-apoptotic effects, growth, 
and proliferation [11–13]. These pathways are targets 
for therapies, e.g., BCL-2 and BTK inhibitors, venetoclax 
and ibrutinib, respectively [14, 15]. Even with these effec-
tive targeted therapies, CLL patients often relapse.

Relapse is a common occurrence during CLL treat-
ment. When patients are treated with the standard 
fludarabine, cyclophosphamide, and rituximab (FCR) 
therapy, 6% of patients experience relapse within 
6–12 months, and 14% within 2 years [16, 17]. The 5-year 
progression free survival rate of refractory/relapsed CLL 
patients treated with ibrutinib is 44% [18]. Previously 
reported factors contributing to relapse are aberrant 
expression of BTK (ibrutinib), and BCL-2 (venetoclax). 
In 17p deletion relapse cases, 80% of patients developed 
mutations in BTK, or PLCγ2, which cause ibrutinib 
to become ineffective [19]. Apart from these findings, 
mechanisms responsible for relapse have not been com-
pletely characterized.

This study aimed to identify the gene expression pat-
terns associated with clinical outcomes. This is the first 
study to our knowledge to use a novel WGCNA, a sys-
tems biology method, to determine how these molecular 
signatures, across the transcriptome network, are associ-
ated with the clinical attributes of CLL. Furthermore, this 
study aims to contribute to understanding the biology of 
this disease.

Methods
Reads per kilobase of transcript per million mapped Reads 
(RPKM) and clinical data
CLL patient RNA-seq RPKM and clinical data were 
downloaded from the ICGC CLLE-ES project [20]. RNA-
seq expression data was sequenced via an Illumina Hiseq 
2000 sequencer and aligned with the human reference 
genome Gencode v7 hg19. Gene counts were estimated 
using a transcriptome counter program called Flux 
Capacitor. An overview of clinical data for 203 case sam-
ples is provided (Table 1).

Data cleaning was performed to reduce variation 
in the gene set, of 57,820 genes, before gene cluster-
ing analysis. This was completed by removing genes 
with zero RPKM values in 50% or more of the patient 
samples. The remaining 24,658 genes were then log2 
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transformed following addition of 0.05 RPKM. Next, 
two outlier patients, with z-transformed sample con-
nectivity (z.k.) measures that were three or more 
standard deviations from the average z.k of the patient 
cohort were removed iteratively until no such outli-
ers were detected before gene clustering. A principal 

component analysis was performed, using the R sta-
tistical program and Factoextra package, to assess the 
quality of the dataset before and after data cleaning 
(Fig. 1). Variance in gene expression introduced by con-
founding variables (sex and age), was assessed using the 
VariancePartitian R package.

Table 1  Distribution of reported clinical traits among CLL patients

These clinical traits were correlated with transcriptome module eigengenes that were identified during the Weighted Gene Co-Expression Network Analysis (WGCNA)

Clinical traits Description Number of patients 
with reported 
information

Age at diagnosis Age patient was when diagnosed with disease 203

Survival days Length of time patient survived (days) since primary diagnosis 203

Binet stage B Patients diagnosed with Binet Stage B CLL 15/203

Binet stage A Patients diagnosed with Binet Stage A CLL 179/203

Binet stage C Patients diagnosed with Binet Stage C CLL 8/203

Male 116/203

Female 78/203

Relapse interval Length of disease-free interval (days) following primary treatment 92/203

Relapse Patients with reported relapse event 92/203

Chemotherapy Patients who received chemotherapy as first treatment 24/203

No treatment Patients who did not receive any therapy 9/203

IGHV mutated Patients with Immunoglobulin Heavy Chain mutations 132/203

IGHV unmutated Patients without Immunoglobulin Heavy Chain mutations 65/203

SF3B1 mutated Patients with any SNP mutations in the SF3B1 gene 19/203

ATM mutated Patients with any mutations in the ATM gene 18/203

Fig. 1  Principle component analysis (PCA) of CLL patient RNA-seq data before and after data cleaning steps. A The variation in the dataset before 
data cleaning and B represents the variation in the dataset after the data cleaning steps. The x and y axes illustrate the variation between the 
samples
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Gene clustering
The WGCNA R package was used to identify gene co-
expression networks and correlate them with several 
clinical traits and characteristics. WGCNA identifies 
gene clusters by creating a sample dissimilarity matrix 
(1-topology overlap) and grouping genes that have simi-
lar expression patterns within the patient cohort. The 
network construction was performed using WGCNA 
blockwiseModules function with parameters as follows: 
bicor correlation, signed network module separation, 
maxBlocksize of 25,000, and a power achieving scale-
free topology of 5.5. We used “bicor”, biweight midcor-
relation, as opposed to Pearson correlation, to robustly 
correlate with less weight given to outlier measures [21, 
22]. Due to high technical variation within RNAseq data, 
representing transcript abundances across samples, bic-
orrho and p values were used to summarize correlation 
with more robustness, a pivotal feature of the analysis. 
The first principal component of each module (module 
eigengenes) was then correlated with clinical traits (Sex, 
deceased, alive, relapsed, survival days, age at diagnosis, 
IGHV status, SF3B1 mutated, ATM mutated, remission, 
stable, relapse interval, Binet Stage A, and Binet Stage B). 
Modules for Unmutated and Mutated CLL patients were 
built using the same parameters except for use of differ-
ent optimum soft thresholding powers (3.5 for M-CLL, 
6 for U-CLL). Variance in introduced by confounding 
variables (sex and age), in individual and module gene 
expression, was assessed using the VariancePartitian R 
package.

Differential expression, ROC curve, and Kaplan–Meier 
analyses
Differential Expression via an ANOVA test was per-
formed to identify gene biomarker candidates within 
modules over-expressed/downregulated in relapsed 
CLL patients. A one-way ANOVA was used to compare 
Binet Stage A CLL patients who relapsed (n = 78) with 
those that did not relapse (n = 102). Of the patients who 
relapsed, 22 received chemotherapy and 17 received 
chemotherapy with an anti-CD52 antibody. The remain-
ing patients had unreported therapy information. As the 
sequencing data for the CLL-ES project was produced 
prior to the FDA approval of Ibrutinib and Venetoclax, 
the therapy options for these CLL patients were chemo-
therapy (fludarabine, cyclophosphamide, bendamustine, 
chlorambucil) combined with an antibody (rituximab 
and alemtuzumab). 18,044 genes with symbols were 
visualized using the EnhancedVolcano R package and 
used for further analyses. To determine if differentially 
expressed genes could serve as biomarkers for relapse, a 
Receiver Operator Curve Analysis (ROC) was performed 
using the expression of the top over-expressed genes in 

relapse-associated modules (M4, M13, M10, M3, and 
M7). This analysis was performed using the easyROC 
web tool on the default non-parametric test setting. 
The control group were patients who did not experi-
ence a relapse event (n = 108). Cutoff points for over-
all survival and relapse free survival were calculated for 
differentially expressed hub genes with symbols (kME 
of 0.7 and log fold change of 0.5 and above) from net-
works correlated with survival days and relapse, using 
the cutpointr R package. For the gene combination ROC 
analysis, z-transformed gene expression data was used 
as input to calculate prognostic ratio scores, per patient, 
for combinations (pairs and triplets) generated from the 
aforementioned candidate biomarkers and genes from 
modules (M2 and M11) down-regulated in relapsed 
patients. Prognostic ratios were calculated by dividing 
the expression of over-expressed genes by the expression 
of down-regulated genes to amplify sensitivity for relapse 
prediction which is denoted by changes in a sample. This 
analysis generated 71,359 combinations to be tested at 
four relapse interval time points (15 months, 18 months, 
3 years, and 5 years) with the pROC R package.

Gene ontology analysis
GO Elite was used to perform a gene ontology enrich-
ment analysis on gene symbol lists from transcripts 
within modules of interest to identify their functions 
[23]. Gene enrichment analysis involves using predefined 
lists classifying genes of interest into categories, such as 
biological processes and molecular functions, and test-
ing for statistical overrepresentation of the category 
members, in this case, to gene lists based on module 
membership. Fisher’s exact test was used to test for over-
representation or significant list overlap [24]. In addition 
to the standard Ensemble v6.2 database with 3 standard 
ontology categories, the Gene Set Enrichment Analysis 
(GSEA) molecular signature C2 database (v6.2) was used 
as a reference to identify association of network modules 
with the curated lists related to published studies with 
varying focus on health and disease, particularly cancer-
dysregulated gene lists [25, 26].

Module preservation
WGCNA’s modulePreservation function was used to 
test whether gene correlations within the ICGC modules 
exist in a separate cohort. The Broad CLL RNA-seq data-
set (n = 93, 17,000 genes) was used as the validation set. 
ICGC samples in the Broad study were removed prior 
to data processing. The validation dataset was processed 
in the same manner as the ICGC dataset: outlier patient 
samples and genes with low expression were removed 
and the dataset was log2 transformed prior to module 
preservation analysis. The module preservation function 
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was also used to assess preservation of modules between 
regressed and unregressed ICGC data and mutated 
(n = 132) and unmutated ICGC CLL patients (n = 65).

Results
Systems biology defines a network of CLL co‑expression 
modules
To assess the systems biology of CLL, the transcrip-
tome comprising 24,658 genes across 201 CLL case 
samples (Table  1) were examined for co-expres-
sion modules of gene transcripts. Thirteen modules 
eigengenes (MEs), numbered by their rank from the 
largest number of genes to the smallest, M1 to M13, 
were identified (Fig. 2; Table 2). After MEs were identi-
fied, their relatedness was determined by an expression 
correlation metric and plotted as a dendrogram (Fig. 3, 
upper panel). M10 was closely related to M7 and M13. 
M8, M2, and M1 were separate but also closely related, 

Fig. 2  Cluster dendrogram of module eigengenes detected based on dissimilarity in WGCNA. There were 13 modules identified within the CLL 
patient gene expression data. WGCNA determined dissimilarities between modules by calculating correlations of gene expression patterns across 
all patient samples and clinical traits clinical traits (i.e., Relapse Interval, Relapse, Gender, Chemotherapy, Age at Diagnosis, Survival Time in Days, 
Binet Stage A, and IGHV Mutated)

Table 2  Gene networks and their number of genes

Networks number and colors are displayed from the largest to smallest size

Module number Color Size

M1 Turquoise 4223

M2 Blue 3156

M3 Brown 1937

M4 Yellow 1315

M5 Green 1300

M6 Red 1260

M7 Black 990

M8 Pink 626

M9 Magenta 525

M10 Purple 479

M11 Greenyellow 424

M12 Tan 317

M13 Salmon 207
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as were M5 and M12. The relatedness dendrogram 
showed M6, M11, and M9 formed a branch, as do M3 
and M4 modules. Next, we asked whether the ICGC 
intramodule gene correlations were reproducible. This 
question was addressed using WGCNA’s moduleP-
reservation function, the ICGC modules/dataset as a 
reference, and RNA-seq data from a Broad CLL study 
as the validation set [27]. Correlations in ten (i.e., blue, 
black, brown, green, greenyellow, magenta, purple, red, 
and turquoise) of the thirteen networks were preserved 
in the Broad dataset (Additional file 1).

Transcript modules associated with relapse
Association of MEs to quantitative and qualitative clini-
cal traits is assessed by correlation, reducing the multiple 
testing problem. This allows the determination of which 
modules are candidates for molecular causality of the 
traits of interest in this CLL cohort (Table 1). To deter-
mine the transcriptome networks of interest associated to 
case-sample traits, robust correlation of the 13 MEs to 8 
traits including relapse status and survival time was per-
formed (Fig. 3, heatmap). We identified M10 (p = 1E−08, 
R = 0.34), M7 (p = 0.008, R = 0.2), M13 (p = 0.001, 
R = 0.23), M3 (p = 0.05, R = 0.14), and M4 (p = 0.003, 
R = 0.21) as positively associated with relapse, and M2 

Fig. 3  Module eigengene heatmap with clinical correlates. Upper panel, Module eigengene relatedness dendrogram based on the correlation 
network of MEs. Lower panel. The colors (bottom) represent different co-expressed gene clusters in order of relatedness. The heatmap color scale 
is for bicor rho from − 1 (anti-correlated) to + 1, (correlated) Correlations of the module eigengenes to clinical traits (i.e., Relapse Interval, Relapse, 
Gender, Chemotherapy, Age at Diagnosis, Survival Time in Days, Binet Stage A, and IGHV mutated). Significant student correlation p values are given 
within the heatmap
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(p = 0.004, R = −0.2), M11 (p = 7E−04, R = −0.24), and 
M9 (p = 0.005, R = −0.19) showed an opposing pattern 
anticorrelated to relapse status, a total of eight modules 
(Fig. 3, heatmap). Of these, M3 (p = 0.03, R = 0.16) posi-
tively associated with survival time, while M7 (p = 0.03, 
R = −0.15) and M13 (p = 0.003, R = −0.21) associated 
negatively. After observing many significant module-trait 
correlations, we endeavored to assess if any of the cor-
relations may be due to confounding variables (sex and 
age). The variance introduced into gene expression, by 
sex, age, and IGHV status, was assessed using the Vari-
ance Partition R package. We observed that age and sex 
contribute to less than 10% of the variation observed in 
expression of any individual gene expression (Additional 
file 2, A) and most modules (Additional file 2, B). How-
ever, IGHV status contributed to 7–14% of the variance 
in expression of 5 modules: purple (M10), black (M7), 
salmon (M13), green (M5), and yellow (M4). Interest-
ingly, the top 3 modules displaying some covariance to 
IGHV status (M10, M7, and M13) were also the most 
correlated with sex and age. However, these levels of 
covariance with all 3 variables were a minor component 
of the overall variance even in these modules.

To decipher module-trait associations with relapse and 
overall survival, we performed a one-way ANOVA to 
compare the expression of eight relapse-associated mod-
ules and one patient survival-associated module between 
four groups: Binet stage A without relapse, Binet stage 
A with relapse, Binet stage B without relapse and Binet 
stage B with relapse. Seven modules were significantly 
differentially expressed between one or more of the com-
parison groups (Fig. 4A). To identify clusters of patients 
that exhibited relapse associated expression patterns of 
modules, we performed unsupervised hierarchical clus-
tering of all 201 case-samples expression patterns of the 
13 MEs (Fig.  4B). Seven patient clusters were formed 
(C1–C7). Interestingly, two patient clusters (C2 and C4) 
predominately experienced relapse events (dashed boxes 
filled with red color over sample dendrogram in Fig. 4B 
dendrogram). One cluster (C5) displayed the opposite 
composition, as it predominantly consisted of patients 
who did not experience a relapse event (dashed boxes 
with blue color over sample dendrogram in Fig.  4B). 
These patient clusters are of interest as they are possibly 
driving the expression patterns influencing the WGCNA 

module trait heatmap correlations and can be used to 
determine which patients are at risk for relapse. In the 
ME-sample heatmap, clusters C2 and C4 have above 
average expression of genes in the M3 and M4 (orange 
dashed boxes) modules and below average expression of 
M1 and M2 (blue dashed boxes). Cluster C5 has inversed 
expression patterns as the majority of this group consists 
of patients who did not experience a relapse event. Thus, 
the expression patterns of M1–M4 are associated with 
relapse status.

We next assessed the relationship between M1 and M2 
with M3 and M4 expression modules transcripts, using 
Pearson correlations to MEs (kMEs). When kME is posi-
tive and above 0.7, and higher for one module than oth-
ers, this identifies a gene as representative of the ME and 
is consistent with that module’s membership. Such genes 
are considered as network hubs in a signed co-expression 
network. Hubs tend to be the network’s key drivers. In 
co-expression analysis, the directionality of cause-and-
effect relationship is not determinable without external 
information [28, 29]. The correlation table (Additional 
file 3) was sorted for ranked hubs (highest-to-lowest kME 
transcripts within their assigned module by WGCNA 
clustering), and correlation coefficients were colored by 
a red-yellow-green heatmap scale to represent positive 
correlation (red) and negative correlation (green) pat-
terns across modules. Strikingly, M1 and M2 hubs shared 
positive correlation to each other, and negative correla-
tion to M3 and M4 hubs. M3 and M4 hubs were inverted 
in their pattern. Thus, the overall expression patterns of 
these modules are interlinked.

Transcript modules associated with relapse stratified 
by IGHV status
Previously, we observed IGHV status was a modest con-
tributor to variance observed in several modules that 
were correlated with relapse. This implicated that mod-
ules associated with relapse risk may be influenced by or 
depend on IGHV status. To further explore this relation-
ship, patients were separated by IGHV status and tran-
scriptomes were analyzed separately for coexpression. 
The U-CLL group (n = 65) produced 17 modules (Addi-
tional file 4, A) whereas the M-CLL group (n = 132) pro-
duced 12 (Additional file 4, B). After identifying modules 
in both sets, we asked if IGHV status alters co-expression 

Fig. 4  Differential expression patterns of module eigengenes across CLL patient samples. A Select ME boxplots and non-parametric ANOVA 
p for relapse status also segregated by CLL stage. B Clustering of MEs (rows) and samples (narrow columns) reveal a sample group (C4) that is 
enriched > 80% for relapsed individuals, and on average, has elevated expression of the yellow and brown module eigengenes, but downregulated 
expression of turquoise and blue module eigengenes. The opposite is apparent for the right cluster(C5) of case samples which have < 20% relapsed 
cases (13/47). The kME table hubs for these 4 modules confirms that these 2 sets of modules have the strongest correlation and anti-correlation in 
their pattern of expression across all 201 case-samples in the network. Color scale: eigengene expression Z-score

(See figure on next page.)
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network structure or not using module preservation. 
Modules in the network with gene expression were 
regressed to remove IGHV covariance and were entirely 
and highly preserved in the original network and vice 
versa (Additional file  5, A and B). Regressed network 
modules and their module-trait relationships can be 
found in Additional file 6 (B, C). Moreover, we success-
fully cross-validated the preservation of both sets of 
modules in the separate M and U-CLL networks without 
regression (Additional file  5, C and D), implicating that 
observed gene correlation patterns are retained irrespec-
tive of IGHV status. None of the modules in the U-CLL 
group correlated with relapse, whereas 4 (Mut-M6, Mut-
M10-12) correlated with relapse (Additional file  4). We 
followed up with a Wilcoxon t-test between Relapsed 
Binet Stage A and Non-relapsed Binet Stage A patients 
to determine if there were significant increases/decreases 
in expression of modules associated with relapse. To our 
surprise, the unmutated IGHV brown network mod-
ule (U-M3) gene expression was increased in relapsed 
U-CLL patients (Additional file 7, B). Similar differences 
in expression were observed with M-CLL’s relapse associ-
ated modules (Additional file 8, A).

Gene ontology analysis of relapse-associated modules 
in M-CLL revealed translation (Mut-M6), cell growth, 
transcription, metabolism (Mut-M10), Rho protein signal 
transduction (Mut-M11), chromatin organization, home-
ostasis, and gene expression (Mut-M12) biological func-
tions (Additional file  9). The U-M3 module in U-CLL 
had similar biological functions (macromolecule metab-
olism, mRNA processing) in addition to RNA splicing 
(Additional file  10). These results suggest that relapsed 
U-CLL patients exhibit increased levels of expression 
of genes involved in RNA splicing compared to U-CLL 
patients that did not experience relapse; relapsing M-CLL 
patients also showed an increase in translation machin-
ery transcripts.

Networks associated with known drivers of CLL
We next explored co-expression relationships of genes 
that have been previously shown to drive CLL progres-
sion. BTK, TP53, and BCL2 are co-expressed with genes 
in the M1 module, which was negatively correlated with 
survival days (p = 0.01, R = −0.18; Additional file  3). 
ATM was co-expressed with 3156 genes in the M2 mod-
ule. ZAP70 and NOTCH1 were in the M7 and M13 
modules. CXCR5 is co-expressed with genes in the M4 
module. CD38, CXCL13, MCL1, and SF3B1 were not 
co-expressed with any genes. We noted CXCL13, CD38, 
MCL1, and SF3B1 did not fall into a module due to the 
lack of strong co-expression with over 30 gene prod-
ucts. However, we identified modules associated with 
the SF3B1 mutation status in all CLL and separately U 

and M-CLL patient networks. From the analysis of all 
CLL patients, the purple (M10) and greenyellow (M11) 
correlated with SF3B1 mutation status. Modules Mut-
M4, Mut-M10. U-M6, and U-M10 were negatively cor-
related with SF3B1 mutation status. A Wilcoxon test 
was used to confirm decreased expression of Mut-M4 
(Additional file 8, B) and U-M6 (Additional file 7, A). In 
U-CLL, our gene ontology results for enriched processes 
in U-M6 imply that SF3B1 mutations are associated with 
decreased proteolysis, organelle organization, mRNA 
transport, cell cycle regulation, and ARF protein signal-
ing (Additional file 10). Defining overrepresented ontol-
ogies of the 13 modules’ hubs (Table  3) revealed that 
the key networks M1 through M4 represent ontologies 
including carbohydrate metabolic process (M1), mRNA 
metabolic process (M3), and cellular metabolic process 
(M4). The M2, M13, M10, M7, and M11 modules did not 
have any significantly overrepresented biological pro-
cesses. The M9 module was overrepresented with trans-
lation elongation and termination and viral transcription 
and infection processes. Given that M4 hubs overrepre-
sent the proteasome (PSMB2, UBE2B, and UBAP1), we 
concluded that M4 is potentially relevant to upregulated 
proteostasis capacity of B cells in relapsed CLL.

To identify B cell specific functional interactions 
between CLL biomarkers (BTK, TP53, BCL2, ZAP70, 
NOTCH1, CXCR5, and ATM) and hub genes of their 
assigned modules, we used Genome-wide Integrated 
Analysis of gene Networks in Tissues (GIANTv2) [30]. 
Deciphering these functional interactions are impor-
tant, as they are implicative of mechanisms that promote 
CLL relapse. GIANTv2 calculates functional relationship 
Confidence Scores (CS) for each input gene interaction 
and all other gene interactions, based on what’s reported 
in the literature. TP53 has strong upstream interactions 
with M1 hub gene UNG (CS = 0.537), TUBB (CS = 0.73), 
PHB (CS = 0.87), MCM3 (CS = 0.95) and PPP1CA 
(CS = 0.97). BCL2 has high confidence upstream 
interactions with TP53 (CS = 0.744) and PPP1CA 
(CS = 0.34). ATM has upstream functional interactions 
with N4BP2L2 (CS = 0.89) and AKAP9 (CS = 0.86) in 
M3 brown. ATM has downstream functional interac-
tions with USP34 (CS = 0.96), PNISR (CS = 0.94), TIA1 
(CS = 0.91) in M1, NKTR (CS = 0.68), and LUC7L3 
(CS = 0.57) in M1. ATM’s interactions implicate signal-
ing communication between the M1, M2, and M3 mod-
ules, which was previously implicated in Fig. 4B. ZAP70 
has a downstream interaction with PTPRCAP (CS = 1), 
a hub gene of the M7 black module. BTK, CXCR5, and 
NOTCH1 did not have any high confidence interac-
tions with the top hub genes of their assigned modules 
respectively (Fig. 5). These results implicate that signaling 
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relationships between BTK, CXCR5, NOTCH1 and their 
hub genes have not been characterized in the literature.

Modules differentiating between relapsed 
and non‑relapsed patients represent biological 
underpinnings of cancer
Based on the relapse trait correlations, we hypothesized 
that modules with positive correlations would have 
elevated expression and modules with negative correla-
tions would be down regulated in patients who experi-
ence a relapse event. This hypothesis was tested using an 
ANOVA-Tukey analysis (Additional file  11). Consistent 
with the module-trait bicor correlations to relapse (Fig. 3, 

heatmap), the volcano plots for Binet Stage A relapsed 
versus Binet Stage A non-relapsed pairwise Tukey post 
hoc significance confirmed elevated expression of genes 
in M3, M4, M7, M10, and M13 (Fig.  6A) and lower 
expression of M2, M9, and M11 (Fig. 6B).

A total of 1703 genes were down regulated, and 1250 
genes were upregulated between the Binet stage A 
relapse and Binet stage A no relapse groups (Additional 
file  11, unfiltered full table). Biological processes asso-
ciated with the upregulated genes are negative regula-
tion of monooxygenase activity, response to stimulus, 
cell communication regulation, cell signaling, and 
epithelial-to-mesenchymal transition. We noted that 

Table 3  Functions for relapse associated networks

Networks adjacent to the red bar have positive correlations with relapse and are upregulated in Binet Stage A patients who relapsed. Networks adjacent to the 
blue panel are negatively correlated with relapse. The top five biological functions and adjusted p values are displayed in the table. Networks with blank biological 
processes did not have any overrepresented biological processes based on the FET

Module Top 5 biological processes FET p value

Positively correlated with relapse

Purple No significant biological processes identified NA

p < 0.001

Rho = 0.34

Salmon No significant biological processes identified NA

p = 0.001

Rho = 0.23

Yellow Cellular macromolecule metabolic process 2.90E−19

p = 0.003 Proteasomal protein catabolic process 2.27E−10

Rho = 0.21 Establishment of protein localization 5.11E−08

Intracellular transport 4.14E−07

Positive regulation of cell cycle arrest 1.29E−06

Black No significant biological processes identified NA

p = 0.006

Rho = 0.19

Brown mRNA metabolic process 8.10E−11

p = 0.05 Regulation of macromolecule metabolism 1.24E−09

Rho = 0.14 Modification-dependent macromolecule catabolic process 3.51E−09

RNA splicing regulation 5.81E−09

Cellular metabolism process 1.91E−08

Negatively correlated with relapse

Greenyellow No significant biological processes identified NA

p < 0.001

Rho = −0.24

Blue No significant biological processes identified NA

p = 0.004

Rho = 0.2

Magenta Translational elongation 1.86E−110

p = 0.005 Viral transcription 1.17E−108

Rho = −0.2 Translational termination 1.37E−106

Viral infectious cycle 1.89E−106

Endocrine pancreas development 1.76E−103
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Fig. 5  Predicted interactions between CLL Biomarkers and hub genes in their assigned modules. The hub genes are represented by the large 
nodes. The smaller nodes represent the additional genes added based on signaling biology reported in the literature. The heatmap scale represents 
the confidence of the predicted interactions based on the B cell specific interactions. Reded lines represent high confidence interactions
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CLL biomarkers ATM, CXCR5, and ZAP70 were sig-
nificantly differentially expressed. However, there was 
no difference in expression detected for BTK, BCL2, 
CD38, MCL1, NOTCH1, SF3B1, and TP53. Addition-
ally, we noted the top 5 differentially expressed genes in 
each relapse-associated module (Fig. 6): CRY1,CLEC3B, 
RMRP, FAM166A, and PRR7 (M10 purple), C4ORF48, 
UNC93B2, LTBR2, TNFRSF25, and TCETX1D4 (M13 
salmon), LMNA, SLC7A5, TNFSF9, SLC41A2, and 
CKS2 (M4 yellow), RELL1, ID1, HIST1H1E, DUSP4, 
FUT5, and RNU2-64P(M3 brown), URAHP, MID1IPI, 
ZAP70, RAB4-EGLN2, ITPKA (M7 black), RPL21P75, 
EEF1A1P4, RPL21, RPL30, and NPC2 (M9 magenta), 
MACC1, MT9D6P4, SNHG25, and RNASEK-C17orf49 
(M11 greenyellow), MDS2, DPF3, CRIP3, FGL2, and 
ADAM29 (M2 blue).

We hypothesized that the top differentially expressed 
genes of relapse associated modules could be used to 
predict relapse risk. Relapse risk was evaluated using 
a Receiver Operating Characteristc (ROC) analysis. 
Among those listed above, CRY1(0.73), URAHP (0.716), 
MID1IP1(0.708), and CLEC3B (0.706) had the high-
est AUC scores for prediction of relapse, considering 
the measure of relapse free survival (Table 4). Addition-
ally, we tested the capability of gene expression com-
binations to predict relapse risk at four time points: 
15 months, 18 months, 3 years, and 5 years (Additional 
files 12–15). The input genes for this analysis were the 
relapse biomarker candidates (Table  4) in addition to 
down-regulated (relapse) genes in the blue (CNTNAP2, 
ADMA29, DFF3, APOD, HOMER3) and greenyellow 
(SNHG25, MACC1) modules and non-coexpressed 
genes (LPL, ZNF667, DMD, KANK2). We performed 

Fig. 6  CLL relapse-correlated modules differentially expressed between CLL relapse versus patients who did not relapse. Differential expression was 
performed to compare Stage A CLL patients who relapsed (n = 78) with those that did not relapse (n = 102). A M3, M10, M13, M7, and M4 modules 
are biased towards genes upregulated in CLL patients that relapsed. B Illustrates how M2, M11, and M9 are biased towards downregulated genes in 
cases that relapsed. C Volcano plot of all 18,044 genes with symbols in the network. P values were calculated using ANOVA-Tukey

Table 4  Receiver operating curves (ROC) for genes 
overexpressed in relapse-associated modules

Table of genes, AUC scores, and p values from ROC analysis. The input genes had 
AUC scores above 0.5. URAHP (0.711), MID1IP1(0.693), and APBB2(0.691) have 
the highest AUC scores. p values of zero represent significance less than 10E−06

Gene AUC​ Z p value Module

URAHP 0.71558 5.95301 0 Black

MID1IP1 0.70859 5.62656 0 Black

ZAP70 0.66843 4.2768 2.00E−05 Black

RAB4B.EGLN2 0.6482 3.93621 8.00E−05 Black

ITPKA 0.64456 3.7544 0.00017 Black

LDOC1 0.62717 3.13477 0.00172 Black

RELL1 0.6954 5.3149 0 Brown

HIST1H1E 0.66089 4.18598 3.00E−05 Brown

JADE3 0.66024 4.13126 4.00E−05 Brown

ID1 0.65624 4.03103 6.00E−05 Brown

FUT5 0.63222 3.39698 0.00068 Brown

CRY1 0.73077 6.38277 0 Purple

CLEC3B 0.70679 5.69858 0 Purple

RMRP 0.68482 4.94943 0 Purple

FAM166A 0.68297 4.91336 0 Purple

PRR7 0.65664 4.03721 5.00E−05 Purple

TCTEX1D4 0.68681 5.03117 0 Salmon

UNC93B2 0.68412 4.97913 0 Salmon

LTB4R2 0.68167 4.81932 0 Salmon

C4orf48 0.67123 4.61744 0 Salmon

TNFRSF25 0.61798 3.04507 0.00233 Salmon

SLC41A2 0.67612 4.65439 0 Yellow

TNFSF9 0.66653 4.36275 1.00E−05 Yellow

SLC7A5 0.65574 4.04569 5.00E−05 Yellow

CKS2 0.61918 2.97625 0.00292 Yellow

LMNA 0.6013 2.4887 0.01282 Yellow
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this analysis in all CLL patients and U-CLL patients 
using the pROC R package. When considering all CLL 
patients, we found that SLC7A5 + URAHP + FAM166A/
CNTNAP2 + HOMER3 + MACC1 (AUC 80.33%) is 
the best combination of genes considered for predicting 
relapse events within 15–18 months. ID1 + LPL + FUT5/
SNHG25 + APOD + ADAM29, C1S + TCTEX1D4/
CNTNAP2 + HOMER3 were the optimum combi-
nations of candidates for predicting relapse within 3 
(AUC 71.24%) and 5  years (AUC 74.6%), respectively. 
In U-CLL, the following combinations were capable of 
predicting RFS within 15  months, 18  months, 3  years 
and 5  years: CRY1 + RELL1/CNTNAP2 + HOMER3 
(AUC 84.66%), SLC7A5 + URAHP + FAM166A/
CNTNAP2 + HOMER3 + MACC1 (AUC 81.64%), 
CKS2 + FAM166A/HOMER3 + ADAM29 (AUC79.55%), 
and UNC93B2 + SLC7A5/APOD + ADAM29 (AUC 
82.91%).

To determine the effect of differentially expressed hub 
and biomarker genes on patient overall and relapse free 
survival outcomes, we performed a log-rank Kaplan 

Meier Analysis. Hub genes were selected for this analysis 
as they would make good therapeutic target candidates 
due to their capability to regulate the expression of mul-
tiple genes. Differentially expressed hub genes (p < 0.05, 
kME ≥ 0.7, LFC ≥ 0.5) from modules correlated with 
relapse (M3, M7, M10 and M13) and survival days (M3, 
M13, and M7) were evaluated (Additional file s 16 and 
17). Hub genes from the M11, M9, M4, and M2 modules 
were not evaluated for RFS due to them not meeting the 
selection criterion. Hub genes from the M1 module were 
not evaluated for overall survival for the same reason. 
Hub genes ARHGAP27P2, HSPBP1, CASC2, and C1S 
along with CLL biomarkers CXCR5 and ZAP70 were 
prognostic for overall survival days (Additional file  16 
and Fig. 7). Additionally, ATM, FUT5, and ZAP70 were 
prognostic for relapse free survival (Additional file 17 and 
Fig. 7).

Fig. 7  Overall and relapse free survival of biomarker genes. OS and RFS relationships for three biomarker genes (ATM, CXCR5, and ZAP70) from the 
M3, M4, M7, M10, and M13 networks were visualized. The red lines denote RFS of patients with high gene expression and the blue lines refer to 
patients with low expression. Hazard ratios (HR) are reported for low expression of the genes
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Discussion
Systems biology approaches can decipher complex inter-
actions between cancer cell intracellular, extracellular, 
genetic, and epigenetic networks [31]. This study applied 
a systems biology approach to identify gene transcript co-
expression networks, driven by CLL progression factors, 
and correlated them to clinical outcomes. The strongly 
correlated modules represented both known and novel 
mechanisms of heme malignancy.

A novel WGCNA method was used to identify modules 
of transcripts from CLL patient blood sample derived 
RNAseq data. Co-expression networks are mathemati-
cally defined without supervision and revealed sets of 
genes controlled by the same transcription factors or epi-
genetic regulation, have the same function, and therefore 
are co-regulated. Module members can also be enriched 
with genes of the same signaling pathway [32]. WGCNA 
identified 13 modules and correlated their expression 
with clinical traits.

Out of the thirteen modules, eight modules were 
found to be correlated with CLL relapse. Five had posi-
tive correlations (M10, M13, M4, M7, and M3) and 
three demonstrated negative correlations (M11, M2, 
and M9) (Table 3). These eight modules provide insights 
on pathways relapsed CLL cells depend on to prolifer-
ate and survive. Interestingly, the M11 and M9 modules 
contain genes involved in translation (Table  3). These 
modules positively correlated with the IGHV mutated 
disease status and negatively correlated with relapse and 
chemotherapy. Previously, it has been shown that CLL 
patients with high expression of ribosomal and transla-
tion associated proteins have lower progression free sur-
vival and reduced chemotherapy requirements [33]. In 
this study, we observed lower expression of translation 
associated proteins in patients (M9 and M11 in Fig. 6B) 
who experienced relapse events consistent with the poor 
clinical course reported in aforementioned study. Chem-
otherapeutic drugs often induce ROS-induced cell death. 
Higher expression of translation-associated proteins has 
been associated with oxidative stress induced apopto-
sis [34, 35]. Our study’s findings concur with previous 
findings that detail CLL cells with higher expression of 
translation-associated proteins may be more sensitive to 
chemotherapeutic drugs.

The M13 and M7 modules contain known drivers of 
CLL (NOTCH1 and ZAP70) and genes that can be used 
as predictors of relapse (CRY1, CLEC3B, MID1IP1, and 
URAHP). M13 and M7 also negatively correlate with 
survival days and the IGHV mutated disease status and 
positively correlated with relapse. High expression of 
ZAP70 is associated with poorer survival outcomes, 
increased BCR signaling, and the unmutated CLL dis-
ease status [36–38]. Although the prognostic value of 

ZAP70 expression has been examined, the molecu-
lar pathways its expression affects have not been com-
pletely characterized. In this study, we found that 
ZAP70 is co-expressed with genes involved in WNT 
(APC, AXIN1, DVL1, FZD2, STK11, WNT10A, and 
WNT6) and NOTCH (CFD, FURIN, HES7, MAML1, 
and MIB2) signaling and endocytosis (ABCA7, AP2A1, 
ARHGAP27, CORO1A, EPS15L1, HOOK2, LRP10, 
MARCH2, PDLIM7, RABEP2, RIN3, SCARF1, SCRIB, 
SH3GL1, SNX18, SPECC1L, UNC13D, and WASF2) and 
is significantly over-expressed in patients who relapsed 
(Additional file 8). Possibly, the M7 module associations 
are due to the fact that unmutated CLL cells have higher 
expression of WNT pathway genes and endocytose more 
antigens compared to mutated CLL cells [39]. In a sub-
set of patients, NOTCH1 is constantly activated, often 
mutated, and is associated with ibrutinib resistance, poor 
clinical outcome and relapse [40–42]. Thus, supporting 
the M13 module’s negative correlation with days of sur-
vival [40, 43].

Interestingly, the M3 module displayed several genes 
of interest, associated with antigen presentation/recep-
tor signaling (CD83), metabolism and apoptosis (CASP3, 
CASP8, RELA), DNA repair and gene instability (BRCA2, 
SUMO3, and KRAS), and GTP signaling/signal trans-
duction (GNA13A and KRAS). In CLL, CD83 is overex-
pressed and has a role in creating an immunosuppressive 
environment [44–46]. DNA repair genes are also over-
expressed and have been implicated in therapy resist-
ance and relapse [47]. The M4 module contains genes 
involved in apoptosis (BCL2L11, BAK1, CASP7, DEDD2, 
DIABLO, FADD, TNF, and TNFRSF10B), the cell cycle 
(CDK7, CDK2, CDK9, CDK11B, and CDKN1B), and 
chemokine signaling (CXCR5, GNA12, RAC1, PIK3C3). 
During normal B cell maturation, CXCL13-CXCR5 
signaling homes naïve B cells to bone marrow and lym-
phoid organs, at which point, the B cells undergo somatic 
hypermutation after antigen-specific BCR, SYK and LYN 
kinases are activated to promote the proliferation and 
survival of B cells [48]. Hence, co-expression of genes 
in this module increase the expression of pro-apoptotic 
proteins through the enhancement of NF-KB and PI3K 
signaling [49].

The CLL transcriptome co-expression network iden-
tified relationships between sets of MEs (Fig.  2). The 
genes in the M3 and M4 networks had an expression 
correlation rho above 0.5 and share the macromolecule 
metabolism biological function. Perhaps, the M3 module 
is closely related to the M4 module in function, because 
both share proteins that activate pathways represented 
by members of the cognate module. Previously, our lab-
oratory treated prostate cancer cell lines with CXCL13 
and observed an elevation in BRAC1, CTNNB1, ELK1, 
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HDAC8, ICAM1, GNA13, MAPK8, RELA, RHOH, and 
STAT3 phosphorylation, all of which were present in the 
brown and yellow modules [50]. The phosphorylation of 
these proteins resulted in the growth, proliferation, sur-
vival, and metastasis of prostate cancer cells.

The M10 module has genes that are involved in B 
cell activation (CD28, IRS2, TGFB1, TICAM1, and 
TNFRSF13C), myeloid cell activation (PREX1, SBNO2, 
STXBP2, TGFB1, TICAM1), and cell proliferation 
(APOA1, ARHGEF1, BRD4, CHRM4, CITED2, E4F1, 
EMP1, ERF, IRS2, JUNB, KLF10, MMP14, MYC, NF2, 
and TGFB1). CLL cells heavily depend on interactions 
with their microenvironment which consists of T cells, 
dendritic cells, myeloid support cells (NLCs) and myeloid 
suppressor cells which support the growth and survival 
of CLL cells. The presence of myeloid derived suppressor 
cells is correlated with poor clinical outcomes and dis-
ease progression [51, 52]. Hence, the expression levels of 
genes in M10 could potentially serve as markers for CLL 
progression.

The M2 module has genes involved in bone miner-
alization (ACVR2B, BMP6, BMPR1A, P2RX7, TGFB3) 
and cell adhesion (CDH26, FAT2, KIAA0319, PCDH12, 
PCDHGA1, PCDHGA10, PCDHGA11, PCDHGA12, 
PCDHGA3, PCDHGB7, and PCDHGC3). Bone loss is a 
regular occurrence in several types of cancer, including 
CLL [53]. It is attributed to the increased production of 
osteoclasts by CLL cells and the effects of chemotherapy 
on dividing cells [53, 54]. Perhaps the genes in M2 are 
down-regulated due to CLL cells remodeling their bone 
marrow microenvironment.

Although M1 did not associate with relapse, this 
module is of interest due to its association with bio-
markers of CLL (i.e., BTK, TP53, BCL2). BCR-signaling 
is known to activate PI3K/AKT, MEK/ERK, mTOR, 
and NF-KB signaling to promote cell survival, migra-
tion, and proliferation in CLL. The genes in the M1 net-
work are consistent with previous findings and provides 
novel interactions and functions that are associated 
with BCR, TP53, and BCL2 signaling. This network is 
overrepresented with genes involved in glutathione 
and carbohydrate metabolism. Enhanced glutathione 
production by CLL cells has been implicated in ROS 
generating drug resistance and increased expression of 
anti-apoptotic proteins, such as MCL1 [55] Previously, 
it has been shown that BTK directly modulates TP53. 
Normally, BTK activation is increased in response to 
DNA damage, which ultimately phosphorylates TP53 
[56]. However, based on previous findings and the M1 
network, CLL cells are protected from ROS induced 
DNA damage and apoptosis through upregulation of 
glutathione, oxidoreduction, and anti-apoptotic signals. 
The M1 co-expression network is the first to implicate 

connected signaling mechanisms of BCR-signaling and 
glutathione metabolism. This network also suggests 
novel signaling mechanisms associated with CLL drug 
resistance.

Not only has our study shown the potential value of 
using gene expression modules to characterize CLL 
biology, but we have also shown that they can be used 
to stratify patients into biological sub-groups. However, 
our clinical conclusions on module-defined patient 
sub-groups are limited due to the amount of clinical 
information available for the ICGC cohort. We identi-
fied seven patient sub-groups after hierarchal cluster-
ing of module eigengene expression (Fig. 4B). 3 groups 
(clusters 2, 4, and 5) represented distinct relapse risk 
groups. Previously, CLL was stratified into two groups 
(C1 and C2) based on gene expression data [57] In 
our study, we observed that ICGC clusters 2 and 4 
(increased relapse risk groups) have above average 
expression of genes in the M3 and M4 modules and 
below average expression of M1 and M2 whereas Clus-
ter 5 had the opposite expression patterns and a lower 
relapse risk. In the aforementioned study, group C2 had 
lower time to treatment intervals and increased expres-
sion of RNA splicing, mRNA transport, MAPK signal-
ing, and organic substance response genes. Similarly, 
we observed the overexpression of modules with genes 
involved in mRNA and macromolecule signaling path-
ways in relapsed patients, which are the majority of the 
patients in ICGC clusters 2 and 4. Perhaps patients in 
module defined sub-groups (clusters 2 and 4) have sim-
ilar biology to the C2 group.

In this study, we propose CRY1, URAHP, MID1IP1, 
and CLEC3B as biomarkers for relapse risk in CLL. 
CRY1 has been implicated as a prognostic marker pro-
gression and survival in CLL and other types of cancer, 
however, the role of URAHP, MID1IP1, and CLEC3B 
has not been explored in CLL [58, 59]. We also pro-
pose ARHGAP27P2, CASC2, CXCR5, C1S, and FUT5 
as markers to predict overall survival and relapse free 
survival. FUT5 and C1S have been implicated as bio-
markers for differentiation, proliferation, migration, 
and invasion in other cancers [60–62]. High CASC2 
expression has been previously shown to inhibit pan-
creatic and ovarian cancer growth and, opposingly, 
contribute to breast cancer chemoresistance [63–65]. 
CXCL13-CXCR5 signaling is currently a biomarker for 
metastasis in breast and prostate cancer and mortal-
ity in colorectal cancer [66–68]. Our study is the first 
to report CASC2, CXCR5, and ARHGAP27P2 as bio-
markers for poor overall survival prognosis in CLL. The 
roles of these novel biomarker genes in CLL should be 
further studied in silico and in vitro.
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Conclusion
This is the first study to use WGCNA to identify gene 
signatures in CLL. Mechanisms responsible for relapse 
have not been completely characterized. Our study 
identified eight networks associated with relapse and 
three associated with overall survival. The modules rep-
resent known and novel pathways associated with CLL 
pathogenesis and relapse and can be a resource for the 
CLL research community. The hub genes of these mod-
ules, e.g., ARHGAP27P2, C1S, CASC2, CLEC3B, CRY1, 
CXCR5, FUT5, MID1IP1, and URAHP, can be studied 
further as new therapeutic targets or can be used as 
clinical markers to predict patient outcomes.
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Additional file 1. Module Preservation of ICGC CLL Modules in the 
Broad CLL Dataset. Median rank (left figure, y-axis) of modules deter-
mined by module preservation scores (right, y-axis) are displayed. 
Modules ranked closest to zero are the most preserved. The blue and 
red dotted lines denote cutoffs for a –log rank p value of 0.05 (blue) and 
p value < 0.00001(red). Most modules (10 out of 13) are preserved in the 
Broad CLL dataset.

Additional file 2. Confounding Variable Variance. Variance scores (x-axis) 
of confounding variables (bold) and the top 25 genes (A, y-axis) and 
modules (B, y-axis) affected. At the individual gene level, age and sex 
contribute to less than 10% to the variance in gene expression of the top 
affected genes. At the module level, age at diagnosis and IGHV status are 
the largest contributors to variance in gene expression. 8 of 13 modules 
are minimally affected by confounding variables.

Additional file 3. Module eigengenes and their gene membership. Genes 
are listed, followed by their membership scores for each module, and 
lastly the module that they were assigned to.

Additional file 4. Module-trait Relationships of regressed ICGC data 
based on IGHV Status. Modules for Unmutated IGHV (A) and Mutated 
IGHV (B) datasets are denoted on the x-axis, traits on y-axis. The blue-
white-red colors inside of the heatmap indicate positive (red), negative 
(blue), and no (white) correlations. The numbers, inside the heatmaps, 
represent the correlation test p values. WGCNA of unmutated patient data 
produced more modules (17 vs 11) than the mutated dataset.

Additional file 5. Module Preservation of Modules based on Regression 
and IGHV Status. WGCNA’s Module Preservation analysis was applied 
according to regression (A, B) and IGHV (C, D) status. Median rank (left fig-
ure, y-axis) of modules determined by module preservation scores (right 
figure, y-axis) are displayed. Modules ranked closest to zero are the most 
preserved. The blue and red dotted lines denote cutoffs for a –log rank p 
value of 0.05 (blue) and p value < 0.00001. Module gene correlations are 
preserved regardless of IGHV and Regression status.

Additional file 6. Module-Trait Heatmaps of Regressed and Unregressed 
ICGC Data (.pdf ). Modules for unregressed (A) and regressed (B, C) data-
sets are denoted on the x-axis, traits on y-axis. B Modules-trait relation-
ships following regression of sex and age. C reprEsents modules-trait 
relationships following regression of sex, age, and IGHV status. The blue-
white-red colors inside of the heatmap indicate positive (red), negative 
(blue), and no(white) correlations. The numbers, inside the heatmaps, rep-
resent the correlation test p values. WGCNA of unregressed data produced 
more modules (13 vs 11) and significant module-trait relationships (45 vs 
34) than the regressed (panel B) dataset.

Additional file 7. Modules with altered expression in Unmutated CLL 
patients based on SF3B1 and Relapse Status. Violin plots of module eigen-
gene (red and brown) expression (x-axis) based on SF3B1 (A) and relapse 
status (B). A Wilcoxon test was used to determine if module expression 
was altered between groups.

Additional file 8. Modules with altered expression in Mutated CLL 
patients based on SF3B1 and Relapse Status. Violin plots of module eigen-
gene tan, red, greenyellow, purple, yellow) expression (x-axis) based on 
SF3B1 (A) and relapse status (B). A Wilcoxon test was used to determine if 
module expression was altered between groups.

Additional file 9. Gene Ontology of Relapse-Associated M-CLL network 
modules. Biological processes (green), molecular processes (blue), and cel-
lular locations (brown) of M6, M10, M11, and M12 modules are displayed 
on the y-axis. Z-scores are on the x-axis.

Additional file 10. Gene Ontology of Relapse (U-M3) and SF3B1(U-M6) 
mutation associated U-CLL modules. Biological processes (green), molecu-
lar processes (blue), and cellular locations (brown) of are displayed on the 
y-axis. Z-scores are on the x-axis.

Additional file 11. ANOVA Differential Expression Results. The genes are 
listed, followed by ANOVA F statistics, Tukey p values, log2 FPKM differ-
ences, and module names.

Additional file 12. Optimum RFS Gene Combination AUC in All ICGC 
CLL patients. Receiver Operator curves for Optimum biomarker gene 
combinations are shown for each time point: 15 months (A), 18 months 
(B), 3 years (C), and 5 years (D), The y-axis represents the percentage of 
patients who were true positives for relapse, whereas the x-axis represents 
the percentage of patients who were true negatives. The AUC (top left 
legend) for each time point is represented by a distinct color: dark orange 
(15 months), red (18 months), dark red (3 years), and magenta (5 years).

Additional file 13. Optimum RFS Gene Combination AUC in U-CLL 
patients. Receiver Operator curves for Optimum biomarker gene 
combinations are shown for each time point: 15 months (A), 18 months 
(B), 3 years (C), and 5 years (D), The y-axis represents the percentage of 
patients who were true positives for relapse, whereas the x-axis represents 
the percentage of patients who were true negatives. The AUC (top left 
legend) for each time point is represented by a distinct color: dark orange 
(15 months), red (18 months), dark red (3 years), and magenta (5 years).

Additional file 14. AUC Gene Combinations Tested in All ICGC CLL 
patients. Biomarker Gene combinations are listed, followed by their AUC 
scores for each time point (15 months, 18 months, 3 years, and 5 years),

Additional file 15. AUC Gene Combinations Tested in U-CLL ICGC CLL 
patients. Biomarker Gene combinations are listed, followed by their AUC 
scores for each time point (15 months, 18 months, 3 years, and 5 years).

Additional file 16. Overall Survival of hub genes from networks associ-
ated with survival days. OS for nine hub genes from the M3, M7, and M13 
networks were evaluated. The red lines denote OS of patients with high 
gene expression and the blue lines refer to patients with low expression.

Additional file 17. Relapse Free Survival of hub genes from Relapse 
associated networks. RFS for twelve hub genes from the M3, M7, M10, 
and M13 networks were evaluated. The red lines denote RFS of patients 
with high gene expression and the blue lines refer to patients with low 
expression.
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