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Abstract 

Background: Coronary heart disease (CHD) is the leading cause of human death worldwide. Genetic factors play an 
important role in the occurrence of CHD. Our study is designed to investigate the influence of CYP7B1 polymorphisms 
on CHD risk.

Methods: In this case–control study, 508 CHD patients and 510 healthy individuals were recruited to determine the 
correlation between CYP7B1 polymorphisms (rs7836768, rs6472155, and rs2980003) and CHD risk. The associations 
were evaluated by computing odds ratios (OR) and 95% confidence intervals (CI) with logistic regression analysis. The 
association between SNP-SNP interaction and CHD susceptibility was carried out by multifactor dimensionality reduc-
tion analyses.

Results: Our study found that rs6472155 is significantly associated with an increased risk of CHD in age > 60 years 
(OR 2.20, 95% CI = 1.07–4.49, p = 0.031), women (OR 3.17, 95% CI = 1.19–8.44, p = 0.021), and non-smokers (3.43, 95% 
CI = 1.16–10.09, p = 0.025). Rs2980003 polymorphism has a lower risk of CHD in drinkers (OR 0.47, 95% CI = 0.24–0.91, 
p = 0.025). Further analyses based on false-positive report probability validated these significant results. Besides, it was 
found that rs6472155 polymorphism was associated with uric acid level (p = 0.034).

Conclusion: Our study indicated that CYP7B1 polymorphisms are related to the risk of CHD, which provides a new 
perspective for prevent of CHD.
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Introduction
Coronary heart disease (CHD) is a kind of heart dis-
ease caused by myocardial ischemia, hypoxia or necrosis 
caused by structural and functional changes of coronary 
artery, also known as atherosclerotic heart disease, cor-
onary disease or ischemic heart disease. It is the most 
common type of cardiovascular disease in the world 
[1–3]. In America, about 620,000 people develop new 

coronary artery disease every year, and about 295,000 
people have recurrent attacks [4]. The incidence and 
mortality of CHD are increasing year by year in China, 
and the incidence population is also getting younger and 
younger. Deaths caused by CHD rank the second among 
deaths caused by other diseases [5]. The World Health 
Organization (WHO) predicts that the number of CHD 
deaths will increase to 23.3 million by 2030, becoming 
the leading cause of human death [6]. The pathophysio-
logical basis of CHD is atherosclerosis caused by a variety 
of pathogenic factors, resulting in stenosis or complete 
occlusion of blood vessels, reduction, or complete inter-
ruption of coronary blood flow, and eventually ischemia 
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or necrosis of cardiomyocytes [7]. Although the exact 
pathogenesis of coronary heart disease is not very clear, 
the most widely accepted view is that coronary heart dis-
ease is a polygenetic disease, which is the result of the 
interaction between multiple genes and environmental 
factors [8]. In addition to the classic risk factors such 
as age, smoking, drinking, hypertension, diabetes, and 
hypercholesterolemia [9], a large number of studies have 
confirmed that genetic factors play an important role in 
the occurrence and development of CHD [10]. Besides, 
many genetic variants such as LPA [11], CYP24A1 [12], 
CYP2C19 [13], PNPLA3 I148M [14], and IL-7/7R [15] 
can significantly affect the susceptibility of CHD.

Cytochrome P450 (CYP), a superfamily of cystine-
heme enzymes, its central role in the pathogenesis, pro-
gression, and prognosis of CHD has been determined 
[16]. CYP7B1 (Cytochrome P450 Family 7 Subfamily B 
Member 1) is the subfamily member of CYP enzymes, 
involved in the metabolism of endogenous hydroxysterols 
and steroids such as neurosteroids [17, 18]. The CYP7B1 
gene mainly in human liver, brain, and reproductive tract 
[18]. 27-hydroxycholesterol (27HC) is a rich cholesterol 
metabolite, which increases in hypercholesterolemia and 
is found to be a competitive estrogen receptor antagonist 
in vascular system in atherosclerotic lesions. Umetani 
et  al. found that increasing 27HC levels in mice caused 
by genetic manipulation (by knockout of the CYP7B1 
gene) could decrease estrogen-dependent vascular 
nitric oxide synthase expression and inhibited carotid 
artery endothelialization [19]. This finding indicated that 
CYP7B1 may play an important role in the occurrence of 
CHD. It is well accepted that genetics polymorphism can 
significantly influence the gene expression. However, it is 
not clear whether CYP7B1 genetic polymorphism affects 
the risk of CHD.

Thus, we performed a case–control study to determine 
the potential role of CYP7B1 genetic variants in CHD 
patients. We obtained the SNPs in the CYP7B1 gene in 
accordance with 1000 Human Genomic Projects. We fur-
ther investigated the association between the CYP7B1 
polymorphisms and CHD risk in the Chinese Han popu-
lation. Stratified analyses were carried out to evaluate the 
association. We also detect the relationship of SNP-SNP 
interaction in CHD with clinical indicators among geno-
types. This study will give new horizon for the molecular 
mechanism in the CHD.

Materials and methods
Study population
In this case–control study, we recruited 1018 unrelated 
Chinese individuals including 508 patients with CHD 
and 510 age/gender-matched healthy subjects at Affili-
ated Haikou Hospital of Xiangya Medical College. All 

participants were told the purpose of study and signed 
written informed consents. Patients were firstly diag-
nosed and confirmed to be CHD by experienced car-
diologists in accordance with coronary angiography 
[20]. The patients with congenial and rheumatic heart 
disease, a family history of CHD, a history of any ath-
erosclerotic vascular diseases and other comorbidity 
such as chronic renal failure, malignancy, and chronic 
infections should be excluded. The healthy controls 
were selected from the CHD-free participants who 
take a normal physical examination in the same hospi-
tal. And the controls must meet the following inclusion 
criterion: (1) without a family history of CHD; (2) no 
diabetes and hypertension; (3) no cardiovascular and 
cerebrovascular diseases. Basic characteristics included 
age, gender, smoking status, drinking status, diabe-
tes and hypertension status were acquired by medical 
records and questionnaire survey. Our study has been 
approved by the Medical Ethics Committee of Affiliated 
Haikou Hospital of Xiangya Medical College. Experi-
ments in this study were performed following the pro-
tocol of Helsinki’s Declaration.

Selection and genotyping for SNP
In our study, rs7836768, rs62519827, rs62519841, 
rs10808739, rs13276608, rs6472155, and rs2980003 in 
the CYP7B1 gene were obtained from 1000 Genomes 
Project database with a minor allele frequency 
(MAF) > 5% for further studying. Genomic DNA 
from peripheral blood samples of all participants was 
extracted following the protocol of DNA extraction kit 
(Xi’an GoldMag Co. Ltd., Xi’an, China) [21]. We further 
designed the primers for PCR amplification according 
to Agena Bioscience Assay Design software. All SNPs 
were genotyped by an Agena MassARRAY iPLEX plat-
form (Agena Bioscience Inc., CA, USA) [22]. The PCR 
reaction consisted of 1 μL of 10  ng/μL genomic DNA 
and 4 μL of PCR mixture that contained 1.8 μL of water, 
0.5 μL of 10 × PCR buffer, 0.4 μL of 25 mM  MgCl2, 0.1 
μL of 25  mM dNTP, 1 μL of PCR Primer mix and 0.2 
μL of 5 U/μL PCR Taq. The PCR conditions were as fol-
lows: initial denaturing at 95 °C for 2 min, followed by 
45 cycles of denaturing at 95  °C for 30  s, annealing at 
56 °C for 30 s, and final extension at 72 °C for 60 s. Then 
the final step is to keep it at 25 °C indefinitely. Matrix-
assisted laser desorption/ionization-time of flight 
(MALDI-TOF) mass spectrometry was used to identify 
SNP alleles of different quality extension primers after 
alkaline phosphatase reaction, single group extension 
and resin desalination reaction [23]. Finally, the data 
of SNP genotyping was management and analyzed by 
Agena Bioscience TYPER 4.0 software [24].
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Bioinformatics analysis
Online software for HaploReg v4.1 (https:// pubs. broad 
insti tute. org/ mamma ls/ haplo reg/ haplo reg. php) was used 
to predict the possible functional effects on these SNPs.

Statistical analysis
We performed SPSS version 17.0 software for statisti-
cal analyses. The p-value with two-tailed test lower than 
0.05 means statistically significant. Data distributions 
are firstly evaluated for normality using the Kolmogo-
rov–Smirnov test. Differences of age and clinical indica-
tors between cases and controls were respectively tested 
by the student’s t-test and Mann–Whitney test. And the 
comparisons of gender between the cases and controls 
was compared by Pearson′s χ2 test. The Hardy–Weinberg 
equilibrium (HWE) for SNPs in the controls was evalu-
ated by a Chi-squared test. The χ2 test or exact test was 
used to analyze the allele and genotype distributions of 
SNPs in the case and control groups. Association of 
CYP7B1 polymorphisms with CHD susceptibility was 
determined by computing ORs and 95% Cis using logis-
tic regression analysis under five multiple genetic models. 
The explanation for the genetic models is as following: 
If A is the wild-type allele, B is the mutant allele, AA is 
the wild homozygous genotype, AB is the mutant het-
erozygous genotype, and BB is the mutant homozygous 
genotype, then the five genetic models are defined as fol-
lows: (1) codominant model: BB Vs. AA, AB Vs. AA (AA 
was the reference); (2) dominant model: (AB + BB) Vs. 
AA (AA was the references); (3) recessive model: BB Vs. 
(AA + AB) (AA + AB was the reference); (4) log-additive 
model: AA Vs. AB Vs. BB; (5) allele model: B Vs. A (A 
was the reference). Besides, we also detected the asso-
ciations stratified by age, gender, smoking, and drinking 
status. The false-positive report probability (FPRP) analy-
sis was performed to validate these significant results in 
this study [25]. In the end, we explored the relationship 
of SNP interaction and CHD susceptibility with multifac-
eted dimensionality reduction (MDR) method in which 
the interaction model with the highest cross-validation 
consistency (CVC) and testing accuracy was consid-
ered best. The comparisons between clinical indicators 
and SNPs were detected by ANOVA test and one-way 
analysis.

Results
Study subjects
Our study included in 508 CHD patients and 510 healthy 
individuals. The basic information of the cases and 
controls were shown in Table  1. The average age was 
62.17 ± 10.34  years in the cases and 61.12 ± 9.02  years 
in the controls. There was no significant differences in 

age, gender, and urea between the cases and controls 
(p = 0.084, p = 0.964, p = 0.759, respectively). There were 
significant comparisons in creatinine, uric acid, total-
cholesterol, and apolipoprotein AI between the cases and 
controls (all p < 0.05).

Association analyses between CYP7B1 polymorphisms 
and CHD risk
A total of seven SNPs (rs7836768, rs62519827, 
rs62519841, rs10808739, rs13276608, rs6472155, and 
rs2980003) in the CYP7B1 gene were successfully 
detected in our study. The information of each SNP 
was presented in Table  2. The MAF for rs62519827, 
rs62519841, rs10808739, and rs13276608 were lower 
than 0.05, these polymorphisms were deleted in the cur-
rent study. SNPs including rs7836768, rs6472155, and 
rs2980003 in the control followed HWE (p > 0.05). We 
investigated the relationship of CYP7B1 genetic variants 
and the risk of CHD under five genetic models, and our 
result showed that there are no significant associations 
(Table 3).

Table 1 Basic characteristics of CHD patients and controls

pa value was calculated by Student ′s t-test. pb value was calculated by Pearson 
′s χ2 test

pc Mann–whitney test is used

Characteristics Cases (n = 508) Controls (n = 510) p

Age, years (mean ± SD)a 62.17 ± 10.34 61.12 ± 9.02 0.084

 > 60 282 (55.5%) 284 (55.7%)

 ≤ 60 226 (45.5%) 226 (44.3%)

Gender b 0.964

Male 334 (65.7%) 336 (65.9%)

Female 174 (34.3%) 174 (34.1%)

Urea (mmol/l)c 462.01 ± 4.50 456.63 ± 2.67 0.759

Creatinine (umol/l)c 384.73 ± 3.40 456.07 ± 3.50  < 0.001

Uric acid (umol/l)c 431.26 ± 1.08 489.10 ± 2.07  < 0.001

Total-cholesterol 
(mmol/l)c

369.60 ± 1.00 548.04 ± 1.05  < 0.001

Apolipoprotein AI (g/l)c 247.13 ± 5.74 351.08 ± 0.70  < 0.001

Smoking status

Smoker 231 (45.5%) 115 (22.5%)

Nonsmoker 186 (36.6%) 167 (32.7%)

Missing 91 (17.9%) 228 (44.8%)

Drinking status

Drinking 52 (10.2%) 124 (24.3%)

Nondrinking 306 (60.2%) 135 (26.5%)

Missing 150 (29.6%) 251 (49.2%)

Diabetes 190 (37.4%)

Non diabetes 318 (62.6%)

Hypertension 362 (71.3%)

Normal tension 146 (28.7%)

https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
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Table 2 Allele frequencies among CYP7B1 SNPs

SNP, Single nucleotide polymorphisms; MAF, Minor allele frequency; HWE, Hardy–Weinberg equilibrium; O (HET), Observed heterozygosity; E (HET), Expected 
heterozygosity; OR, Odds ratio; 95% CI, 95% confidence intervals

pa values were calculated by exact test

SNP ID Chromosome position Alleles 
(minor/
major)

MAF O (HET) E (HET) p-HWE HaploReg v4.1

Case Control

rs7836768 chr8: 64,474,910 G/A 0.413 0.396 0.514 0.478 0.115 Enhancer histone marks, DNAse, Motifs changed

rs62519827 chr8: 64,569,390 C/T 0.003 0.005 0.010 0.010 1.000 Siphy cons, Enhancer histone marks, DNAse, Motifs 
changed

rs62519841 chr8: 64,588,948 A/G 0.005 0.005 0.010 0.010 1.000 Motifs changed

rs10808739 chr8: 64,727,703 A/G 0.029 0.042 0.084 0.081 1.000 DNAse, NHGRI/EBI GWAS hits

rs13276608 chr8: 64,769,294 T/C 0.001 0.003 0.006 0.006 1.000 Motifs changed, Selected eQTL genes

rs6472155 chr8: 64,817,650 G/A 0.286 0.264 0.422 0.388 0.067 Promoter histone marks, Enhancer histone marks, 
DNAse, Proteins bound, Motifs changed, NHGRI/EBI 
GWAS hits, GRASP QTL hits, Selected eQTL genes

rs2980003 chr8: 65,087,728 T/C 0.357 0.346 0.452 0.452 1.000 DNAse, NHGRI/EBI GWAS hits

Table 3 Association of CYP7B1 polymorphisms with CHD risk

CI, confidence interval; OR, odds ratio; SNP: single nucleotide polymorphism; OR, Odds ratio, 95% CI; 95% confidence intervals

p‐values were calculated by unconditional logistic regression analysis with adjustment for age and gender

p < 0.05 indicates statistical significance

SNP ID Model Allele/Genotype Case N Control N OR (95% CI) p

rs7836768 Allele A 595 616 1

G 419 404 1.07 (0.90–1.28) 0.431

Codominant AG 239 71 0.90 (0.69–1.19) 0.464

GG 90 262 1.27 (0.87–1.84) 0.220

AA 178 177 1

Dominant AG-GG 329 333 0.98 (0.76–1.27) 0.878

Recessive AA-AG 417 248 1

GG 90 262 1.34 (0.96–1.89) 0.090

Log-additive – – – 1.08 (0.90–1.29) 0.427

rs6472155 Allele A 725 751 1

G 291 269 1.12 (0.92–1.36) 0.252

Codominant AG 219 215 1.08 (0.83–1.39) 0.575

GG 36 27 1.39 (0.82–2.35) 0.226

AA 253 268 1

Dominant AG-GG 255 242 1.11 (0.87–1.42) 0.404

Recessive AA-AG 472 483 1

GG 36 27 1.34 (0.80–2.25) 0.265

Log-additive – – – 1.12 (0.92–1.38) 0.260

rs2980003 Allele C 653 666 1

T 363 352 1.05 (0.88–1.26) 0.587

Codominant TC 233 230 1.05 (0.81–1.37) 0.722

TT 65 61 1.09 (0.73–1.63) 0.663

CC 210 218 1

Dominant TC-TT 298 291 1.06 (0.82–1.36) 0.657

Recessive CC-TC 443 448 1

TT 65 61 1.07 (0.73–1.55) 0.738

Log-additive – – – 1.05 (0.87–1.26) 0.626
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The association analyses stratified by age and gender
We then determined the effect of CYP7B1 polymor-
phisms on the risk of CHD stratified by age and gender. 
Table 4 showed the associations under age-based strati-
fication. We found that rs6472155 is significantly asso-
ciated with an increased risk of CHD in age > 60  years 
(allele model: G vs A, OR 1.43, 95% CI = 1.10–1.86, 
p = 0.008; co-dominant model: GG vs AA, OR 2.20, 
95% CI = 1.07–4.49, p = 0.031; log-additive: OR 1.39, 
95% CI = 1.06–1.83, p = 0.018). On gender stratification 
(Table 5), our data indicated that rs6472155 can increase 
the susceptibility to CHD in women under allele model 
(G vs A, OR 1.48, 95% CI = 1.06–2.07, p = 0.022), co-
dominant model (GG vs AA, OR 3.17, 95% CI = 1.19–
8.44, p = 0.021), and recessive model (GG vs AA-AG, OR 
2.91, 95% CI = 1.12–7.58, p = 0.029).

CYP7B1 polymorphisms related to CHD susceptibility 
under smoking and drinking subgroups
We also detected the associations stratified by smok-
ing and drinking status. As was shown in Table  6, 
rs2980003 polymorphism has a lower risk of CHD 
in drinkers under allele model (T vs C, OR 0.57, 95% 
CI = 0.35–0.95, p = 0.031), co-dominant model (TC vs 
CC, OR 0.48, 95% CI = 0.23–0.97, p = 0.042), domi-
nant model (TC-TT vs CC, OR 0.47, 95% CI = 0.24–
0.91, p = 0.025), and log-additive model (OR 0.59, 
95% CI = 0.36–0.98, p = 0.041). In non-drinkers, we 
observed that rs6472155 significantly increased a risk 
of CHD (co-dominant model: GG vs AA, OR 3.16, 95% 
CI = 1.05–9.48, p = 0.040; log-additive model: OR 3.43, 
95% CI = 1.16–10.09, p = 0.025).

Table 4 Association between CYP7B1 polymorphisms and CHD risk stratified by age

Bold indicate that P < 0.05 means the data are statistically significant

OR, Odds ratio, 95% CI; 95% confidence intervals

p values were calculated by logistic regression adjusted by age and gender

p < 0.05 indicates statistical significance

SNP ID Model Genotype Case Control OR (95% CI) p Case Control OR (95% CI) p
 > 60 years  ≤ 60 years

rs7836768 Allele A 326 342 1 269 274 1

G 238 226 1.11 (0.87–1.40) 0.410 181 178 1.04 (0.79–1.35) 0.796

Codominant AG 140 156 0.91 (0.89–1.32) 0.624 99 106 0.92 (0.61–1.39) 0.693

GG 49 35 1.52 (0.89–2.58) 0.123 41 36 1.13 (0.66–1.93) 0.669

AA 93 93 1 85 84 1

Dominant AG-GG 189 191 1.02 (0.71–1.45) 0.920 140 142 0.97 (0.66–1.43) 0.890

Recessive AA-AG 233 249 1 184 190 1

GG 49 35 1.61 (1.00–2.59) 0.052 41 36 1.18 (0.72–1.93) 0.519

Log-additive – – – 1.15 (0.90–1.48) 0.266 – – 1.03 (0.80–1.34) 0.806

rs6472155 Allele A 388 431 1 337 320 1

G 176 137 1.43 (1.10–1.86) 0.008 115 132 0.83 (0.62–1.11) 0.205

Codominant AG 124 111 1.31 (0.92–1.86) 0.130 95 104 0.82 (0.56–1.19) 0.293

GG 26 13 2.20 (1.07–4.49) 0.031 10 14 0.64 (0.27–1.50) 0.300

AA 132 160 1 121 108 1

Dominant AG-GG 150 124 1.40 (1.00–1.95) 0.048 105 118 0.79 (0.55–1.15) 0.222

Recessive AA-AG 256 271 1 216 212 1

GG 26 13 1.94 (0.97–3.90) 0.062 10 14 0.70 (0.30–1.61) 0.403

Log-additive – – – 1.39 (1.06–1.83) 0.018 – – 0.81 (0.59–1.10) 0.180

rs2980003 Allele C 350 369 1 303 297 1

T 214 197 1.15 (0.90–1.46) 0.273 149 155 0.94 (0.72–1.24) 0.673

Codominant TC 126 137 0.97 (0.68–1.39) 0.856 107 93 1.20 (0.81–1.77) 0.368

TT 44 30 1.52 (0.89–2.61) 0.126 21 31 0.70 (0.38–1.31) 0.268

CC 112 116 1 98 102 1

Dominant TC-TT 170 167 1.07 (0.76–1.50) 0.708 128 124 1.08 (0.74–1.56) 0.705

Recessive CC-TC 238 253 1 205 195 1

TT 44 30 1.55 (0.94–2.57) 0.087 21 31 0.64 (0.36–1.16) 0.142

Log-additive – – – 1.15 (0.90–1.48) 0.261 – – 0.94 (0.72–1.24) 0.574
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FPRP results
In order to check the positive findings, we conducted 
the FPRP analysis with setting the FPRP threshold as 0.2. 
As was presented in Additional file  1: Table  S1, at the 
prior probability of 0.25, all the significant results for the 
association of rs6472155 and rs2980003 with CHD risk 
remained noteworthy (all FPRP < 0.2). These results indi-
cated that the significant results made sense.

Effect of SNP-SNP interactions on CHD susceptibility
MDR analyses were performed to determine the influ-
ence of SNP-SNP interactions on the susceptibility to 
CHD. As were demonstrated in Table  7, the two-locus 
model included rs7836768 and rs6472155 (testing accu-
racy = 0.5079, CVC = 7/10, p = 0.021). The three-locus 
model was the combinations of rs7836768, rs6472155, 
and rs2980003 (testing accuracy = 0.4764, CVC = 10/10, 

p = 0.002). Thus, the best model for predicting CHD 
susceptibility was the three-locus model (OR 1.59, 95% 
CI = 1.19–2.13), which had the highest CVC. Addition-
ally, the dendrogram showed weak or no interactions 
between the SNPs of the best models of CHD risk (Fig. 1).

The association between SNP genotypes and clinical 
indicators
Finally, we studied the possible association of SNP with 
clinical indicators in CHD patients. As was showed in 
Table 8, the AG genotype (289.796 ± 84.427 umol/l) and 
GG genotype (296.096 ± 68.438 umol/l) of rs6472155 
polymorphism were associated with a decreased uric 
acid concentration compared with the AA genotype 
(310.364 ± 86.950 umol/l) (p = 0.034).

Table 5 Association between CYP7B1 polymorphisms and CHD risk stratified by gender

Bold indicate that P < 0.05 means the data are statistically significant

OR, Odds ratio, 95% CI; 95% confidence intervals

p values were calculated by logistic regression adjusted by age and gender

p < 0.05 indicates statistical significance

SNP ID Model Genotype Case Control OR (95% CI) p Case Control OR (95% CI) p
Women Men

rs7836768 Allele A 205 223 1 390 393 1

G 141 125 1.23 (0.90–1.67) 0.191 278 279 1.00 (0.81–1.25) 0.971

Codominant AG 89 95 1.00 (0.63–1.59) 0.989 150 167 / /

GG 26 15 1.87 (0.90–3.89) 0.096 64 56 1.08 (0.69–1.68) 0.734

AA 58 64 1 120 113 1

Dominant AG-GG 115 110 1.12 (0.72–1.75) 0.616 214 223 0.90 (0.66–1.24) 0.537

Recessive AA-AG 147 159 1 270 280 1

GG 26 15 1.86 (0.94–3.67) 0.073 64 56 1.19 (0.80–1.77) 0.392

Log-additive – – – 1.24 (0.89–1.73) 0.201 – – 1.01 (0.81–1.25) 0.961

rs6472155 Allele A 239 266 1 486 485 1

G 109 82 1.48 (1.06–2.07) 0.022 182 187 0.97 (0.76–1.23) 0.812

Codominant AG 73 70 1.21 (0.78–1.89) 0.393 146 145 / /

GG 18 6 3.17 (1.19–8.44) 0.021 18 21 1.37 (0.83–2.26) 0.652

AA 83 98 1 170 170 1

Dominant AG-GG 91 76 1.37 (0.89–2.10) 0.148 164 166 0.99 (0.73–1.34) 0.937

Recessive AA-AG 156 168 1 316 315 1

GG 18 6 2.91 (1.12–7.58) 0.029 18 21 0.86 (0.45–1.64) 0.637

Log-additive – – – 1.45 (1.02–2.06) 0.037 – – 0.97 (0.75–1.25) 0.803

rs2980003 Allele C 225 215 1 428 451 1

T 123 133 0.88 (0.65–1.20) 0.432 240 219 1.16 (0.92–1.45) 0.212

Codominant TC 81 81 0.92 (0.58–1.46) 0.732 152 149 / /

TT 21 26 0.73 (0.37–1.43) 0.362 44 35 1.37 (0.83–2.26) 0.220

CC 72 67 1 138 151 1

Dominant TC-TT 102 107 0.88 (0.57–1.35) 0.551 196 184 1.16 (0.86–1.58) 0.334

Recessive CC-TC 153 148 1 290 300 1

TT 21 26 0.76 (0.41–1.43) 0.398 44 35 1.29 (0.81–2.08) 0.286

Log-additive – – – 0.87 (0.64–1.19) 0.394 – – 1.15 (0.92–1.45) 0.220
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Discussion
In our study, we determined the influence of CYP7B1 
polymorphisms on CHD susceptibility. Our study 
showed that CYP7B1 genetic variants significantly relate 
to the risk of CHD in Chinese Han population. Besides, 

we found that rs6472155 polymorphism was associated 
with uric acid level. To our best known, our study is the 
first time to investigate the effect of CYP7B1 genetic vari-
ants on CHD susceptibility.

Table 6 CYP7B1 polymorphisms related to CHD risk stratified by smoking and drinking status

Bold indicate that P < 0.05 means the data are statistically significant

OR, Odds ratio, 95% CI; 95% confidence intervals

p values were calculated by logistic regression adjusted by age and gender

p < 0.05 indicates statistical significance

SNP ID Model Genotype Smoking Non-smoking Drinking Non-drinking

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

rs7836768 Allele A 1 1 1 1

G 0.89 (0.65–1.23) 0.485 1.19 (0.87–1.61) 0.275 1.07 (0.68–1.71) 0.763 1.25 (0.93–1.68) 0.139

Codominant AG 0.84 (0.50–1.40) 0.495 0.96 (0.60–1.54) 0.881 0.65 (0.31–1.36) 0.250 1.18 (0.75–1.85) 0.465

GG 0.83 (0.45–1.56) 0.565 1.51 (0.76–2.99) 0.236 1.31 (0.54–3.16) 0.546 1.71 (0.88–3.29) 0.111

AA 1 1 1 1

Dominant AG-GG 0.84 (0.52–1.35) 0.461 1.07 (0.68–1.66) 0.781 0.81 (0.41–1.60) 0.550 1.29 (0.84–1.98) 0.247

Recessive AA-AG 1 1 1 1

GG 0.92 (0.53–1.60) 0.774 1.07 (0.68–1.66) 0.781 1.66 (0.75–3.66) 0.209 1.55 (0.85–2.84) 0.156

Log-additive – 0.90 (0.67–1.23) 0.522 1.16 (0.84–1.59) 0.370 1.07 (0.68–1.68) 0.769 1.27 (0.94–1.73) 0.119

rs6472155 Allele A 1 1 1 1

G 0.83 (0.59–1.18) 0.294 1.27 (0.90–1.77) 0.171 0.99 (0.59–1.66) 0.961 1.15 (0.83–1.59) 0.387

Codominant AG 0.92 (0.57–1.47) 0.724 0.93 (0.59–1.44) 0.735 1.36 (0.70–2.64) 0.371 0.84 (0.56–1.29) 0.425

GG 0.55 (0.23–1.31) 0.175 2.68 (0.93–7.71) 0.068 0.26 (0.03–2.21) 0.220 3.16 (1.05–9.48) 0.040
AA 1 1 1 1

Dominant AG-GG 0.85 (0.54–1.33) 0.481 1.05 (0.68–1.60) 0.841 1.18 (0.61–2.26) 0.625 0.98 (0.65–1.47) 0.907

Recessive AA-AG 1 1 1 1

GG 0.57 (0.25–1.32) 0.190 2.77 (0.98–7.83) 0.055 0.23 (0.03–1.18) 0.170 3.43 (1.16–10.09) 0.025
Log-additive – 0.82 (0.57–1.17) 0.268 1.19 (0.83–1.69) 0.346 0.95 (0.55–1.64) 0.863 1.16 (0.83–1.63) 0.376

rs2980003 Allele C 1 1 1 1

T 0.97 (0.70–1.36) 0.879 1.04 (0.77–1.41) 0.795 0.57 (0.35–0.95) 0.031 0.96 (0.72–1.30) 0.810

Codominant TC 1.07 (0.66–1.72) 0.790 1.06 (0.67–1.69) 0.805 0.48 (0.23–0.97) 0.042 0.98 (0.63–1.53) 0.927

TT 0.86 (0.41–1.79) 0.682 1.03 (0.54–1.96) 0.928 0.44 (0.15–1.32) 0.143 0.93 (0.49–1.53) 0.833

CC 1 1 1 1

Dominant TC-TT 1.02 (0.65–1.60) 0.933 1.05 (0.68–1.63) 0.818 0.47 (0.24–0.91) 0.025 0.97 (0.64–1.48) 0.882

Recessive CC-TC 1 1 1 1

TT 0.83 (0.41–1.68) 0.603 1.00 (0.55–1.81) 0.995 0.61 (0.21–1.75) 0.359 0.94 (0.52–1.71) 0.849

Log-additive – 0.97 (0.69–1.36) 0.857 1.03 (0.75–1.39) 0.875 0.59 (0.36–0.98) 0.041 0.97 (0.72–1.31) 0.840

Table 7 The analysis of SNP-SNP interaction models using MDR method

Bold indicate that P < 0.05 means the data are statistically significant

Bal. Acc., Balanced accuracy; CVC, Cross-validation consistently

p values were calculated by χ2 test. p < 0.05 indicates statistical significance

Model Training Bal. Acc Testing Bal. Acc CVC OR (95% CI) p

rs7836768 0.5236 0.4931 8/10 1.19 (0.93–1.52) 0.167

rs7836768,rs6472155 0.5336 0.5079 7/10 1.39 (1.05–1.83) 0.021
rs7836768,rs6472155,rs2980003 0.5454 0.4764 10/10 1.59 (1.19–2.13) 0.002
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CHD is a kind of multifactorial disease resulting from 
environmental and genetic factor. An increasing number 
studies strongly supported that genetic polymorphisms 
involve in the risk of CHD, such as SCARB1 [26], RTEL1 
[27], 5-HTTLPR [28], CD40 [29], and NT5C2 [30]. 
The CYP7B1 gene is located on chromosome 8q21.3. 
CYP7B1 is known to be involved in cholesterol synthesis 
of bile acids, which contributes to the CHD progression. 
Whereas there have been no studies on the genetic poly-
morphism in CHD. Therefore, we tried to evaluate the 
association between CYP7B1 polymorphisms and CHD 
risk.

In our study, because the average age of case and con-
trol group is 60 years old, we stratified by age of 60 years. 

Our study found that rs6472155 polymorphism signifi-
cantly affected the risk of CHD in age > 60 years but not 
in age ≤ 60 years, which demonstrated rs6472155 poly-
morphism as a risk factor of CHD in individuals aged 
60 and older. Similar to our findings, Zhang et  al. and 
Ye et  al. reported that genetic polymorphism influence 
CHD risk in age > 60  years and age > 65  years [31, 32]. 
However, Huang et al. and Chen et al. showed that gene 
variants are associated with the susceptibility to CHD 
in age ≤ 61 years [30, 33]. Age is a risk factor for CHD. 
An epidemiologic study indicated that the incidence 
of CHD was eight to nine times greater in men and 
women who aged 55–64  years than in young patients 
[34]. The death rate due to CHD increased quickly in 

Fig. 1 The tree diagram analysis among SNP interaction. The shorter the line connecting the 2 SNPs, the stronger the interaction. Green and blue 
line represent weak and no interactions

Table 8 Comparisons between clinical characteristics and SNP genotypes

p values were calculated by Kruskal–Wallis H test

Bold indicate that P < 0.05 means the data are statistically significan

SNP Urea (mmol/l) Creatinine (umol/l) Uric acid (umol/l) Total-cholesterol 
(mmol/l)

Apolipoprotein AI (g/l)

rs7836768SNP 

AA 5.167 ± 1.422 2.350 ± 0.841 302.857 ± 82.083 4.024 ± 0.999 1.185 ± 0.225

AG 5.210 ± 1.592 2.370 ± 0.867 297.444 ± 87.826 4.066 ± 1.068 1.170 ± 0.238

GG 5.178 ± 1.556 2.430 ± 0.785 304.943 ± 84.697 4.186 ± 1.091 1.149 ± 0.255

p 0.958 0.761 0.718 0.501 0.518

rs6472155

AA 5.209 ± 1.543 2.340 ± 0.825 310.364 ± 86.950 4.039 ± 1.083 1.179 ± 0.236

AG 5.160 ± 1.493 2.410 ± 0.888 289.796 ± 84.427 4.125 ± 1.011 1.162 ± 0.230

GG 5.186 ± 1.615 2.420 ± 0.753 296.096 ± 68.438 4.055 ± 1.045 1.165 ± 0.279

p 0.942 0.636 0.034 0.684 0.737

rs2980003

TT 5.042 ± 1.387 2.300 ± 0.909 290.025 ± 86.984 3.885 ± 1.011 1.126 ± 0.223

CT 5.285 ± 1.599 2.370 ± 0.861 302.334 ± 81.741 4.075 ± 1.082 1.176 ± 0.224

CC 5.117 ± 1.474 2.410 ± 0.810 301.934 ± 88.426 4.142 ± 1.020 1.180 ± 0.254

p 0.384 0.639 0.569 0.239 0.261
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patients aged 55 years and was higher in patients aged 
65 years or more than in young patients [35]. Previous 
studies have confirmed that genetic polymorphisms 
may play an important role in the pathogenesis of early 
onset CHD [36, 37]. These findings may suggest that the 
association of genetic variants with CHD risk relying on 
age and emphasize the importance of considering het-
erogeneity in genetic and CHD association study. We 
also noticed that rs6472155 polymorphism affected the 
susceptibility to CHD in women but not in men, which 
suggested that the impact of rs6472155 polymorphism 
on CHD risk presented gender difference. Our results 
seem to be consistent with other research which found 
genetic polymorphisms are associated with CHD risk 
in women [38]. In contrast, Luo et  al., Ma et  al., and 
Chen et al. indicated that genetic polymorphisms affect 
the risk of CHD in men [26, 30, 39]. Gender is also a 
risk factor for CHD. It has shown that men have higher 
cardiovascular disease morbidity and mortality rates 
than women, but the incidence of CHD increased sig-
nificantly in postmenopausal women [40, 41]. These 
results revealed that innate differences in occurrence 
of CHD between women and men. It has been con-
firmed that gender differences could influence gene 
expression and then affect disease progression [42], 
and genetic polymorphism can impact the gene expres-
sion. Taken together, we guess that gender differences 
contribute to the occurrence of CHD depending on the 
polymorphism, further study was needed to confirm 
this hypothesis. Besides, rs6472155 polymorphism was 
related to CHD risk in non-drinkers but not in drinkers. 
It suggests that rs6472155 might play various roles in 
the development of CHD, and the risk association may 
depend on drinking.

Rs2980003 polymorphism has a lower risk of CHD 
in drinkers, whereas no relationship was found in non-
drinkers, suggesting that rs6472155 may related to the 
risk of CHD relying on drinking status. Although there 
is no any studies focusing on the association of CYP7B1 
polymorphisms with cardiovascular disorders risk, we 
carried out the FPRP analysis to detect whether the 
positive findings in our study were just chance or note-
worthy observations. The data showed that all of the 
significant findings remain noteworthy, which indicates 
our results make sense. In addition, the bioinformat-
ics analysis revealed that rs6472155 might be affect the 
regulation of promoter histone marks, enhancer his-
tone marks, DNAse, proteins bound, motifs changed, 
NHGRI/EBI GWAS hits, GRASP QTL hits, and 
selected eQTL genes, suggesting its possible functions 
in CHD. Rs2980003 might be associated with the regu-
lation of DNAse and NHGRI/EBI GWAS hits. Several 

studies provided increasing evidence to support that 
SNPs confer susceptibilities by affecting gene expres-
sion [43–45]. Thus, we hypothesized that CYP7B1 
polymorphisms, especially rs6472155 and rs2980003 
may affect the expression of CYP7B1 to contribute to 
the risk of CHD. However, further study is necessary to 
confirm this hypothesis.

Given that SNP-SNP interactions are likely to be a 
ubiquitous component of the genetic architecture of 
common diseases [46]. The association of SNP-SNP 
interaction with CHD risk may help to discover the risk 
factors because of this disease caused by environmental 
and genetic interaction. We observed that the combina-
tions of rs7836768, rs6472155, and rs2980003 are the 
best model to predict CHD.

Uric acid is the end-product of purine metabolism in 
humans, which play crucial roles in developing cardio-
vascular diseases including CHD [47]. Hyperuricemia is 
a potential risk factor for CHD [48, 49]. The possible 
mechanisms of uric acid induced CHD was that the ele-
vated serum uric acid may lead to endothelial dysfunction 
through inflammation and oxidative stress and the forma-
tion of unstable lipid plaque in the coronary artery, which 
eventually leads to the occurrence of CHD [50]. Besides, 
it has been confirmed that serum uric acid can be used as 
prognostic marker of CHD [51]. Previous studies reveal 
that genetic polymorphisms can affect serum uric acid 
level. For example, the genetic polymorphisms in the SAA1 
gene was associated with serum uric acid levels, which have 
a high risk of hyperuricemia [52]. The SLC2A9 rs11722228, 
SF1 rs606458, and GCKR rs780094 variants modulate uric 
acid concentrations [53]. Moreover, Wang et  al. showed 
that APOE polymorphism was associated with serum 
uric acid metabolism in patients with CHD [54]. Our data 
showed that patients with the rs6472155-AA genotype in 
the CYP7B1 gene was associated with an increased uric 
acid level compared with the AG and GG genotype, indi-
cating that carriers of the A allele of rs6472155 have a 
high risk of CHD. We assume that the CYP7B1 allele may 
increase serum uric acid level and then exert its destruc-
tive endothelial dysfunction, which increases the risk of 
developing CHD. Of course, the above assumptions require 
more rigorous follow-up studies to confirm.

Some limitations exist in our present study. First, we 
investigated the association between CYP7B1 polymor-
phisms and CHD susceptibility, the relationship between 
CYP7B1 SNPs and the gene expression should be tested 
in future. Second, the molecular mechanism of CYP7B1 
in CHD is needed to be performed in the next work. In 
spite the above limitations, our study gives available 
information for the molecular mechanism of CHD in 
Chinese Han population.
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Conclusion
In summary, this study showed that rs6472155 is sig-
nificantly related to an increased susceptibility to CHD 
in age > 60  years, women, and non-smokers. Rs2980003 
polymorphism has a lower risk of CHD in drinkers. 
Besides, it was found that rs6472155 polymorphism was 
associated with uric acid level. These data may give a new 
potential biomarker for the prevention and management 
of CHD in Chinese Han population.
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