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Abstract 

Background:  Birth defects pose a major challenge to infant health. Thus far, however, the causes of most birth 
defects remain cryptic. Over the past few decades, considerable effort has been expended on disclosing the underly‑
ing mechanisms related to birth defects, yielding myriad treatises and data. To meet the increasing requirements for 
data resources, we developed a freely accessible birth defect multi-omics database (BDdb, http://​t21om​ics.​cngb.​org) 
consisting of multi-omics data and potential disease biomarkers.

Results:  In total, omics datasets from 136 Gene Expression Omnibus (GEO) Series records, including 5245 samples, 
as well as 869 biomarkers of 22 birth defects in six different species, were integrated into the BDdb. The database pro‑
vides a user-friendly interface for searching, browsing, and downloading data of interest. The BDdb also enables users 
to explore the correlations among different sequencing methods, such as chromatin immunoprecipitation sequenc‑
ing (ChIP-Seq) and RNA sequencing (RNA-Seq) from different studies, to obtain the information on gene expression 
patterns from diverse aspects.

Conclusion:  To the best of our knowledge, the BDdb is the first comprehensive database associated with birth 
defects, which should benefit the diagnosis and prevention of birth defects.
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Background
Birth defects refer to abnormalities present at birth in 
form, function, biochemistry, and mentality [1]. More 
than 8.14 million children are born with severe birth 
defects each year, which are among the principal causes 
of infant mortality [2]. The impacts of birth defects on 
human society are widespread, not only affecting survival 

and quality of life for those affected, but also resulting 
in emotional and economic burdens on the family [3]. 
Although many studies have attempted to unveil the 
causes of birth defects, most remain vague [2, 3]. The 
established causes of birth defects can be roughly divided 
into three categories: i.e., genetic factors, environmental 
factors, and their interactions [4]. Genetic factors include 
chromosomal aberrations and genetic mutations, which 
can render severe intellectual disabilities and deformity 
[2, 5].

Chromosomal abnormalities are one of the main causes 
of birth defects with a known etiology [3], with nearly 
one in 200 newborns affected [6]. Most of these children 
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suffer severe intellectual disability and tissue and organ 
deformities. The most common chromosomal abnor-
malities include trisomy 21 (Down syndrome), trisomy 
18 (Edwards syndrome), trisomy 13 (Patau syndrome), 
and sex chromosome aneuploidies such as monosomy X 
(Turner syndrome), conferring more than 80% of prena-
tal diagnosis of chromosomal abnormalities [6]. Among 
them, Down syndrome is the most common disease, with 
an occurrence of 1/319 to 1/1 000 in different popula-
tions [3, 7].

Birth defects resulting from chromosomal abnormali-
ties have almost no effective treatment, although they are 
identifiable at early pregnancy through prenatal screen-
ing and diagnosis. To facilitate the study of human dis-
eases, many databases (e.g., MalaCards, DisGeNET, 
DGA, RareDDB, miR2Disease, HEDD) have been devel-
oped with a focus on the annotation of diseases and 
related genes [8–13]. However, there is currently no 
multi-omics database for collating, storing, integrating, 
and displaying birth defect-related research datasets. To 
fill this gap, we developed a freely accessible birth defect 
multi-omics database (BDdb, http://​t21om​ics.​cngb.​org).

The current version of the BDdb includes a total of 326 
records derived from 136 GSE Series records, involving 
12 tissues and 35 cell types for human, as well as 12 tis-
sues and 17 cell lines for mouse. This database provides 
an interactive platform that allows quick retrieval of data-
sets of interest with pertinent analysis. Furthermore, the 
BDdb includes 869 manually curated biomarkers from 
six species, involving 22 birth-defects. In summary, the 
BDdb provides a comprehensive resource for researchers 
and clinicians.

Construction and content
Data collection
The datasets used to build the BDdb were collected from 
the Gene Expression Omnibus (GEO, https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) database [14]. We first employed a list 
of keywords such as “trisomy 21”, “trisomy 13”, “trisomy 
18”, “trisomy 8”, “monosomy X”, and “XXY” to retrieve 
pertinent information on Homo sapiens and Mus mus-
culus, resulting in 328 GSE Series records (Fig.  1). All 
datasets were collected before August 2019. We then 
manually selected the relevant series records by careful 
reading of the retrieved data. Eventually, a total of 136 
GSE Series records were selected and re-analyzed.

Single-cell RNA sequencing (scRNA-seq) holds tre-
mendous potential for studying cell phenotype and cell 
behavior at single-cell resolution [15]. As such, we con-
sidered single-cell sequencing studies focusing on birth 
defects. We searched birth-disease related scRNA-seq 
datasets in humans and mice from the Sequence Read 
Archive (SRA) and GEO databases. We found one GSE 

Series (GSE127257) record [16], which included 13,766 
cells. This dataset focused on the Ts65Dn mouse model 
for Down syndrome.

To obtain putative biomarkers associated with differ-
ent birth defects from published studies, we searched 
PubMed using keywords, including disease names with 
“marker(s)”, “gene(s)”, and “genetic(s)”. More than 3 000 
publications were obtained. We manually surveyed the 
abstracts of these publications, and if they were consid-
ered to include pertinent information, we downloaded 
the paper and its supplementary materials. We then man-
ually checked the full text of the selected publications to 
obtain biomarkers with reliable evidence and gain use-
ful information, including the title of the paper, PMID, 
disease type, sequencing type, tissue type, cell type, and 
species. Among the final results, more than 500 relevant 
publications were included, and marker gene lists were 
manually extracted.

Data processing
For each dataset, we carefully read the original paper if 
available. When a dataset contained different karyotypes 
or models (or different types of sources, i.e., tissues and 
cell lines), we manually divided it into multiple sub-data-
sets in the BDdb (Fig.  1), with 326 (sub)-datasets thus 
generated (Additional file 1: Table S1).

Raw data from next-generation sequencing and micro-
arrays were downloaded. These data were re-analyzed 
using a uniform pipeline due to the lack of complete 
analysis results. Some microarray datasets were diffi-
cult to re-analyze or contained problems. Thus, we used 
the integrated GEO2R tool provided by GEO website 
to obtain a list of differentially expressed genes (DEGs). 
Detailed analyses are as follows.

RNA‑Seq
Raw reads were filtered by SOAPnuke [17] with the 
parameters “−l 15 −q 0.2 −n 0.05”. Clean reads were 
then aligned to human (GRCh38.p12, downloaded from 
GENCODE [18]) or mouse (GRCm38.p6, downloaded 
from GENCODE [18]) reference genomes using HISAT2 
[19]. StringTie [20] was used to compute gene expression. 
To screen DEGs, DESeq2 [21] was adopted for samples 
containing replicates; otherwise, DEGs were obtained 
using edgeR [22]. DEGs were screened based on absolute 
log2-fold-change >  = 0.5, p < 0.05, and false discovery rate 
(FDR) < 0.1. Gene Ontology (GO) enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) annota-
tion were performed using clusterProfiler [23].

DNA methylation
Low-quality reads from Bisulfite sequencing (BS-Seq) or 
reduced-representation bisulfite sequencing (RRBS-Seq) 
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were filtered with Trim Galore [24]. Subsequently, align-
ment of reads and extraction of methylation informa-
tion were performed using Bismark [25]. Polymerase 
chain reaction (PCR) duplications were removed for the 
BS-Seq samples but not for RRBS-Seq sample as per 
the Bismark instructions. The R package methylKit [26] 
was used to extract the differential methylation regions 
among diverse samples.

DNA–protein interactions
An identical pipeline was adopted for analysis of chro-
matin immunoprecipitation sequencing (ChIP-Seq) and 
DNase I hypersensitive sites sequencing (DNase-Seq). 
SOAPnuke [17] was employed to remove low-quality 
reads, with the resulting clean reads then mapped against 
the human or mouse genome references using Bowtie2 
[27]. Peak calling was performed using MACS2 [28, 29] 
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and peak annotation was accomplished using CHIP-
seeker [30]. Lastly, DiffBind [31] was used to identify dif-
ferential peaks.

Small RNA (smRNA) sequencing
Trim Galore [24] was adopted to trim the adaptors of the 
raw reads. Only smRNA reads that ranged in length from 
18 to 30 nt were retained, with the parameters “–qual-
ity 20 –gzip –small_rna –max_length 30”. Eligible reads 
were then aligned against the human reference genome 
(GRCh38.p12, downloaded from GENCODE) and the 
miRBase [32] (release 22.1, http://​www.​mirba​se.​org/) to 
be annotated as miRNA, tRNA, rRNA, snoRNA, snRNA, 
piRNA, or other non-coding RNAs.

Microarray
For DNA microarray datasets with raw signal files, an 
in-house bioinformatics pipeline was adopted for qual-
ity control and expression quantification. Briefly, we read 
the cel file by using the R package affy (v1.8 release) [33], 
then, used the R packages simpleaffy [34] and affyPLM 
[35] to assess chips quality. Low-quality chips (actin3/
actin5 > 3, gapdh3/gapdh5 > 1.25 and non-detected BioB) 
and lowvar probe sites were excluded. We next adopted 
the “rma” method for pretreatment. The expression 
abundance values of genes, including protein-coding 
genes (PCGs) and long non-coding RNAs (lncRNAs), 
were summarized using t-tests. Expression values were 
log2 transformed with an offset of 1. We resolved the up- 
and down-regulated genes, and then performed KEGG 
annotation and GO enrichment analysis with cluster-
Profiler [23]. Finally, we constructed a network of DEGs 
using STRING [36].

sci‑ATAC‑seq
We extracted corresponding metadata, including cell 
type and source (i.e., tissue, cell line). We also obtained 
the cell groups (referring to patient ID, culture condition 
or cell phenotype) from the supplementary tables of the 
papers and labeled each cell with the cell group informa-
tion. Marker genes were then collected.

Website construction
The website was constructed using CodeIgniter, a power-
ful PHP framework. CodeIgniter provides an Application 
Programming Interface (API) for connecting the website 
to the MySQL database. We also used JavaScript librar-
ies, including jQuery (3.4.1), jQuery-Labelauty, and addi-
tional plugins, to perform dynamic web services.

Data access
The BDdb website is accessible to users at http://​t21om​
ics.​cngb.​org, and offers a concise, well-organized 

interface. Users are welcome to add comments regarding 
their requirements and suggestions to improve the data-
base. All provided data can be downloaded. The BDdb 
will be continually updated with additional data from 
pertinent research. Figure 1 shows the overall features of 
the database.

Utility and discussion
BDdb statistics
At present, the BDdb contains 101 and 37 GSE Series 
records from humans and mice, respectively. The 
obtained datasets include 15 diseases, 12 tissues, and 35 
cell lines in humans, and four diseases, 12 tissues, and 17 
cell lines in mice (Fig. 2a–e) obtained from multi-omics 
studies, e.g., genomics, transcriptomics, epigenomics, 
and single-cell omics (Fig.  2c, d). Moreover, the BDdb 
contains 869 potential biomarkers pertinent to 22 types 
of birth defects, such as microcephaly and neural tube 
defects (Fig. 2f ). These markers were obtained from more 
than 500 studies involving six species, i.e., Homo sapiens, 
Danio rerio, Mus musculus, Sus scrofa, Canis familiaris, 
and Gallus gallus.

In the BDdb, embryonic tissues are among the most 
abundant samples for humans, followed by brain and 
blood; brain tissue samples are among the most abundant 
for mice, followed by lymphoid and embryonic samples 
(Fig.  2a, b). Correspondingly, the most abundant cell 
lines are blastocysts belonging to human embryo tissue 
and cortex belonging to mouse brain tissue. In terms of 
the diversity of sequencing types, DNA microarray data 
are dominant for both humans (44%) and mice (91%), 
followed by RNA-Seq, methylation profiling by array, 
ChIP-Seq, and DNA methylation (Fig. 2c, d). Most data-
sets are linked to Down syndrome, followed by Klinefel-
ter syndrome, Turner syndrome, Warkany syndrome 2, 
and Edwards syndrome (Fig. 2e). In addition to datasets 
of diseases associated with chromosomal abnormalities, 
those related to diseases such as orofacial clefts, and open 
myelomeningocele are also included. For biomarkers col-
lection, the top five diseases regarding related datasets 
include neural tube defects, anophthalmia/microphthal-
mia, cleft lip, atrioventricular septal defects, and dia-
phragmatic hernia (Fig. 2f ). A summary of these datasets 
and biomarkers can be found in Additional files 1 and 2: 
Tables S1 and S2, respectively.

Database features and utility
The BDdb contains multi-omics datasets and allows users 
to query the subsequent analysis results with five func-
tional states. The easy-to-use interface provides access 
for searching, browsing, visualizing, and downloading 
(Fig. 3). The online user guide illustrates several cases of 
BDdb usage.

http://www.mirbase.org/
http://t21omics.cngb.org
http://t21omics.cngb.org
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Information search
For the search module, users can search by inputting key-
words or choosing the provided options. As shown in 
Fig. 3a, users can select one or more options, including the 
organism, karyotype, tissue, and cell line. This enables users 
to opt for certain kinds of karyotypes, such as trisomy 21, 
trisomy 18, and monosomy X, which are typical for chromo-
some aneuploidy. In terms of omics datasets, the BDdb only 
contains those related to humans and mice at present. After 
submitting the search request, relevant results are displayed.

View module
Data from diverse sequencing types are displayed with dif-
ferent result modules (Fig. 3a). For example, in the RNA-Seq 

datasets, the resulting interface contains five sections: (1) 
“Basic Information”, shows the information on karyotype, 
disease, organism, tissue, and cell line, which are the sam-
ple’s features, as well as the GEO title, literature, and search-
ing link, which can help users to trace the origin of the 
data; (2) “DE Genes”, enables users to search or download 
the gene expression matrix as well as up- and down-regu-
lated gene tables; (3) GO and KEGG enrichment, enables 
users to explore functional/pathway enrichment, with the 
bubble charts, bar charts, and cnetplots provided; (4) Net-
work analysis of DEGs; (5) “Genome Browser”, can intui-
tively display expression patterns with a graphical interface. 
Apart from the RNA-Seq datasets, the database also pro-
vides fundamental analysis for other datasets. Particularly, 

Home
Page

Search
Module

Result
List

View
Module

A

B

Fig. 3  Screenshots of BDdb’s web interface. a An overall workflow in BDdb. Users can search the items through either home page or search 
module, and corresponding results would be displayed. b The Genome Browser interface, which enables users to interactively visualize genomic 
data from different studies
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omics datasets from different studies can be displayed in the 
“Genome Browser” as per the user’s requirements to further 
mine for useful information (Fig. 3b).

Birth‑defect diseases biomarker mapper
Biomarkers are stored in the “Biomarker” module. Users 
can search and view markers of interest by selecting spe-
cies, diseases, and tissues from the pull-down menu. 
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Users can also download all analysis and biomarker 
results via the ‘Download’ function. The BDdb also pro-
vides detailed tutorials and answers to common ques-
tions on the “Help” page.

Case study: exploring biomarkers for diseases diagnosis 
using BDdb
To discover useful clues for diseases using the BDdb 
database, we targeted Down syndrome in humans, which 
has drawn considerable attention worldwide over many 
years. Taking fibroblasts as an example, a total of 13 
GSE Series records were linked to trisomy 21, including 
various sequencing types such as RNA-Seq and DNase-
Seq. We consolidated the up-regulated DEGs from eight 
GSE Series records obtained by RNA-Seq and DNA 
microarray, and then sorted them by counts. In total, 21 
genes had counts ≥ 4 (Fig.  4a). Among them, the TTC3 
(tetratricopeptide repeat domain 3) and IFI27 (interferon 
α-inducible protein 27) genes ranked first, with counts of 
six. TTC3 is located on 21q22.2 within the Down syn-
drome critical region (DSCR) and plays an essential role 
in neural development. TTC3 is commonly regarded as a 
candidate gene for Down syndrome and Alzheimer’s dis-
ease [37, 38]. In addition, IFI27 is involved in the inter-
feron response in trisomy 21 [39]. We found that both 
TTC3 and IFI27 had higher expression levels in trisomy 
21 than in euploid controls in GSE55504. This was in 
accordance with the chromatin accessibility pattern in 
GSE55425 as assessed by DNase-Seq (Fig. 4b), implying 
that the extra copy of chromosome 21 or other transcript 
regulators in Down syndrome may confer this differ-
ence. In addition to TTC3 and IFI37, other eight genes 
(marked with asterisks in Fig.  4a) such as SH3BGR [40, 
41] and APP [42] are also typical biomarkers for Down 
syndrome. As these well-studied trisomy 21 marker 
genes can be captured by the BDdb, the rest that has not 
been reported yet, such as OLFM2 and HAS1, may be 
prospective biomarkers for trisomy 21. Taken together, 
we can theoretically seek additional biomarkers associ-
ated with a particular disease using the BDdb.

Future perspectives
To assist clinicians and researchers, we developed the 
BDdb, which consists of multi-omics data and potential 
biomarkers of birth defects. The database will be updated 
constantly according to the frequency of publications 
associated with chromosomal aberrations. Aside from 
existing data, we will also add proteomics data to expand 
the repository. Moreover, other species and diseases will 
be added to provide more information to users. Ulti-
mately, we hope that the BDdb, serving as an auxiliary 
tool, can provide clues for studies on birth defects, and 
hopefully, accelerate research progress.

Conclusions
The BDdb is a practical tool for those in the research 
community committed to studying birth defects. To the 
best of our knowledge, the BDdb is the first comprehen-
sive database focusing on the collection of birth-defect 
multi-omics data, which were curated and re-analyzed 
before inclusion. Users can select data of interest to 
investigate related diseases, which can then be retrieved 
and downloaded. In addition, information on DEGs, 
enriched GO terms and KEGG pathways, and interaction 
networks are provided. Notably, users can also utilize the 
genome browser to compare diverse samples as well as 
the data from various sequencing methods, e.g., RNA-
Seq, ChIP-Seq, and DNA methylation, and can further 
explore their correlations.
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