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Gene biomarker prediction in glioma 
by integrating scRNA‑seq data and gene 
regulatory network
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Abstract 

Background:  Although great efforts have been made to study the occurrence and development of glioma, the 
molecular mechanisms of glioma are still unclear. Single-cell sequencing technology provides a new perspective for 
researchers to explore the pathogens of tumors to further help make treatment and prognosis decisions for patients 
with tumors.

Methods:  In this study, we proposed an algorithm framework to explore the molecular mechanisms of glioma by 
integrating single-cell gene expression profiles and gene regulatory relations. First, since there were great differ-
ences among malignant cells from different glioma samples, we analyzed the expression status of malignant cells for 
each sample, and then tumor consensus genes were identified by constructing and analyzing cell-specific networks. 
Second, to comprehensively analyze the characteristics of glioma, we integrated transcriptional regulatory relation-
ships and consensus genes to construct a tumor-specific regulatory network. Third, we performed a hybrid clustering 
analysis to identify glioma cell types. Finally, candidate tumor gene biomarkers were identified based on cell types 
and known glioma-related genes.

Results:  We got six identified cell types using the method we proposed and for these cell types, we performed func-
tional and biological pathway enrichment analyses. The candidate tumor gene biomarkers were analyzed through 
survival analysis and verified using literature from PubMed.

Conclusions:  The results showed that these candidate tumor gene biomarkers were closely related to glioma and 
could provide clues for the diagnosis and prognosis of patients with glioma. In addition, we found that four of the 
candidate tumor gene biomarkers (NDUFS5, NDUFA1, NDUFA13, and NDUFB8) belong to the NADH ubiquinone oxi-
doreductase subunit gene family, so we inferred that this gene family may be strongly related to glioma.
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Background
Malignant tumors have a very large impact on human 
health due to their high mortality rate and high recur-
rence rate. There are many factors that affect tumo-
rigenesis, including genetic variation, epigenetics, and 

external environmental influences. Glioma is the most 
common type of brain tissue tumor in complex dis-
eases and accounts for approximately 40% of brain tis-
sue tumors [1]. According to histological classification, 
glioma is an umbrella term used to describe the diffirent 
types of glial tumors: astrocytoma, oligodendroglioma, 
and glioblastoma and these three different tumors are 
derived from astrocytes, oligodendrocytes, and ependy-
mal cells respectively. But now WHO classification is 
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generally used. Glioma can be classified into 4 grades 
from WHO grade I to IV, with the higher WHO grade 
is, the more malignant the glioma is. The WHO grades 
of astrocytoma and oligodendroglioma are II or III. The 
WHO grade of glioblastoma is IV [2]. Therefore, It is of 
great importance to explore the molecular mechanisms 
of glioma, as these may help researchers develop glioma 
treatment strategies and drugs.

In recent years, many researchers have focused on the 
molecular mechanisms of glioma. Hu et  al. constructed 
a coexpression network by calculating the differentially 
expressed genes (DEGs) between 971 glioma samples and 
102 normal samples, and functional and pathway enrich-
ment analyses indicated that the p53 signaling pathway 
and the pathway of neuroactive ligand-receptor interac-
tion may play important roles in the progression of gli-
oma, and three genes (PUS7, EFR3B and NRCAM) were 
potential biological agent landmarks [3]. Niu et al. used 
protein–protein interaction networks to screen key DEGs 
and then applied machine learning methods to reveal 
the molecular mechanisms of glioma [4]. Wang et  al. 
integrated gene interaction information into a weighted 
random survival forest method to perform an accurate 
survival prediction and to discover a survival biomarker 
for glioma [5]. Zhou et  al. identified the glioma-specific 
protein interaction network based on bulk RNA-seq data 
and performed enrichment analysis to verify disease-spe-
cific molecular complexes [6]. Due to the complexity of 
glioma, more genetic markers need to be discovered.

Recent advances in microfluidic technology have 
made it possible to isolate a large number of cells, and 
single-cell sequencing (scRNA-seq) data analysis has 
become one of the most noteworthy technical fields 
in bioinformatics [7–9]. The resolution of scRNA-
seq technology is accurate to a single cell, can resolve 
more subtle differences among cells and is widely used 
in biology, including development [10, 11], infectious 
diseases [12, 13], immunity [14, 15], neurology [16] 
and oncology [17–21]. Cell type identification and/
or rare cell type prediction based on scRNA-seq data 
can deepen the understanding of tumors and analyze 
the process of tumor occurrence [22]. At present, many 
methods have been proposed to identify cell types. For 
example, Kiselev et al. proposed a method for consist-
ent clustering of single cells [23]. Wang et al. proposed 
Single-cell Interpretation via Multi-kernel LeaRning 
(SIMLR), which is based on single-cell data and multi-
core learning similarity measures. They used downscal-
ing and clustering to analyze cell types [24]. Kim et al. 
implemented a semi-supervised learning classification 
tool, scReClassfy, to fine tune cell type annotations gen-
erated using any method in single-cell sequence data-
sets [25]. Lin et  al. adopted an implicit missing value 

processing method to reduce the impact of dropout 
values in scRNA-seq data and achieved rapid and accu-
rate cell type identification [26]. Grun et  al. designed 
the RaceID method to identify rare cell types in com-
plex single-cell populations through k-means and out-
lier detection methods [27]. Most of these methods 
directly identified cell types based on single-cell gene 
expression data without integrating multi-omics data.

In addition, gene expression levels are affected by a 
variety of regulatory factors, and it is also crucial for 
the treatment and prevention of complex diseases to 
understand the disturbance of transcriptional regula-
tory relationships. In terms of regulatory mechanisms, a 
transcription factor (TF) is a key gene regulatory factor 
that mainly activates or inhibits gene expression during 
the transcriptional stage. TFs participate in many impor-
tant cellular processes, such as cell proliferation and 
cell differentiation. These cellular processes may affect 
the development of many complex diseases, including 
tumors [28]. For example, Zhang et  al. reconstructed a 
multilayer signaling network that contains pathways from 
intercellular ligand-receptor interactions, intracellular 
TFs and their target genes. In this way, they discovered a 
new multilayer network biomarker (MNB) that was indi-
cated to be valuable for the prognosis and prediction of 
glioma patients [29].

To further analyze the molecular mechanisms of gli-
oma, in this study, we identified multiple cell types and 
candidate tumor gene biomarkers in glioma by integrat-
ing scRNA-seq data and transcriptional regulation pairs. 
Through gene enrichment analysis, survival analysis and 
PubMed analysis, our results showed that our method 
has an effective performance and provides clues for the 
diagnosis and prognosis of patients with glioma.

Methods
Materials
Single‑cell gene expression data of glioma
To explore the molecular mechanisms of glioma, we 
downloaded the single-cell gene expression data with 
EXP0062 from the CancerSEA database [30]. The data 
contain a single-cell gene sequencing profile of 4043 
tumor malignant cells, in which all malignant cells were 
derived from six glioma samples, and the tissue source 
of the samples was oligodendrocytes from cerebral cor-
tex. More specific information about the dataset can be 
founded in [31]. The sample IDs are MGH36, MGH53, 
MGH54, MGH60, MGH93 and MGH97, respectively. 
The CancerSEA database uses methods such as copy 
number variation inference on the original single-cell 
data to ensure that all cells in the data set are tumor 
malignant cells.
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Transcriptional regulation pairs
Gene transcriptional regulation pairs were collected 
from the HTRIdb [32] and TRRUST [33] databases. For 
HTRIdb, we collected 51,871 regulation pairs, and for 
TRRUST, we collected 8427 regulation pairs. The regula-
tion pairs were the pairs between TFs and the regulatory 
targets (TARGETs). TARGETs contain target genes and 
target TFs. Therefore, we divided the regulation pairs into 
TF–TF pairs and TF-gene pairs, according to whether a 
TARGET is a TF or gene. Finally, we obtained 952 TFs, 
17,600 target genes, 5694 TF-TF pairs and 53,408 TF-
gene pairs.

Known glioma‑related genes
We collected known cancer-related genes from the 
Online Mendelian Inheritance in Man (OMIM) [34] and 
the Catalogue Of Somatic Mutations In Cancer (COS-
MIC) [35] databases. OMIM is an authoritative database 
focusing on the relationship between disease phenotypes 
and genotypes and contains cancer-related genes with 
high confidence. COSMIC is a comprehensive somatic 
mutation database that contains thousands of somatic 
mutation information related to cancer development. In 
addition, we obtained known cancer-related genes from 
Bailey’s research results [36]. This research uses 26 dif-
ferent bioinformatics tools to analyze somatic mutations 
in a variety of cancers and provides services for cancer 
research. In total, we obtained 77 KGGs.

Bulk RNA‑seq of gene expression data and clinical data 
from glioma
Bulk RNA-seq of gene expression data and clinical data 
from glioma were obtained from The Cancer Genome 
Atlas (TCGA) [37]. The clinical data contained overall 
survival (OS) data. To analyze the data more effectively, 
we retained samples that had a tissue type of oligoden-
drocytes only. In this way, the tissue type of the samples 
in bulk RNA-seq data was consistent with the tissue type 
of the samples in the single-cell gene expression data. 
In the end, we obtained 198 glioma samples. Then, to 
improve the data quality, we deleted genes whose expres-
sion values were less than 1 in more than half of the sam-
ples. Finally, to mitigate the influence of different samples 
on the expression level and avoid the influence of over-
capturing features with extreme values and outliers, the 
z-score was used to normalize the gene expression values 
in the bulk RNA-seq expression data.

Preprocessing of single‑cell gene expression data
In the single-cell gene expression data, there are signifi-
cant differences in tumor malignant cells among differ-
ent patient samples. To comprehensively analyze tumor 

characteristics, we first explored the expression status of 
malignant cells in a single sample. Therefore, the original 
single-cell gene expression data were split according to 
the sample source to obtain multiple single-sample sin-
gle-cell gene expression data.

Next, we cleaned the single-sample single-cell gene 
expression data from the perspective of cells and genes. 
First, the number of cells and genes were fitted to a 
normal distribution, and cells with significantly fewer 
expressed genes were deleted (FDR < 0.05). Then, the 
genes that had an expression value detected in at least 
3 cells and had an average normalized expression value 
greater than 10−5 were retained. To effectively improve 
the signal-to-noise ratio, the genes affected by technical 
noise were ignored. We performed the M3Drop feature 
selection method [38] and obtained the feature genes 
of single-sample single-cell gene expression data with 
FDR < 0.01. Finally, we normalized each expression data 
with a logarithmic function of offset 1.

After preprocessing, we obtained a total of 6 single-
sample single-cell gene expression data. In MGH36, there 
were 694 cells and 4608 feature genes. In MGH53, there 
were 726 cells and 4126 feature genes. In MGH54, there 
were 1174 cells and 4732 feature genes. In MGH60, there 
were 428 cells and 3609 feature genes. In MGH93, there 
were 440 cells and 3879 feature genes. In MGH97, there 
were 582 cells and 4113 feature genes.

Identification of tumor consensus genes
Differences among samples of tumor malignant cells may 
affect the identification of genetic markers, so we first 
analyzed each single-sample single-cell gene expression 
data. First, we performed PCA on each single-sample sin-
gle-cell gene expression data to determine the appropri-
ate principal components. To prevent excessive capture 
of certain genes with large values, the z-score was used 
to normalize gene expression data. In addition, the crite-
ria for determining the number of principal components 
were as follows: (1) the cumulative contribution rate was 
greater than 90%, and (2) the difference between two 
consecutive principal components was less than 0.1%. 
We used the minimal number in the numbers obtained 
from condition (1) and condition (2) as the final number 
of principal components.

Then, we adopted the idea of the k-nearest neighbors to 
construct a cell-specific network within a single sample. 
The Euclidean distance was used to calculate the distance 
between all cell pairs. The k-nearest neighbor relation-
ships were determined for each cell, and the similarity 
between the two cells was calculated by Jaccard coeffi-
cients. Next, Louvain clustering [39] was used to achieve 
the initial division of cells in a single sample. The results 
of the initial division helped to analyze the expression 
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status of malignant cells in a single sample. We con-
structed a cell-specific network with k as 20 and used the 
Seurat package [40] to complete the clustering process. 
According to each cell cluster in the initial division of 
each sample, the cells were divided into the cells belong-
ing to the cell cluster and the remaining cells. We then 
performed the Limma package [41] to calculate the DEGs 
for each sample (lg2 | FC | > 1, p value < 0.05).

If a gene was a differential gene in multiple samples, the 
gene reflected the coexpression pattern among samples 
to some extent. We selected tumor consensus genes by 
screening the genes that were differentially expressed in 
at least 2 samples.

Identification of tumor cell types
Each TF in the specific regulatory network was used to 
form its corresponding regulation meta module (RMM). 
Each RMM included all target genes and other TFs 
directly regulated by the core TF. Then, based on the 
entire single-cell gene expression data that contained all 
cells from different samples, the RMM was regarded as a 
new feature of malignant cells to construct a specific reg-
ulation expression matrix, in which the feature value was 
calculated by the Cell Score Method [42]. Then, hybrid 
clustering was used to identify the glioma cell types 
based on the matrix. The canopy clustering algorithm 
[43] was first performed on all malignant cells to provide 
the k value and initial clustering center for k-means clus-
tering. Then, k-means clustering was used to identify cell 
types. The Calinski–Harabaz (CH) coefficient was used 
to tune the parameters of the hybrid clustering, and the 
larger the CH value was, the better the clustering results.

In the identified cell types, we combined the entire 
single-cell gene expression data after M3Drop feature 
selection and divided all cells into two groups for each 
cell type: the cells that belonged to the cell type and the 
remaining cells. The ROTS method [44] was performed 
to obtain the gene biomarkers for each cell type.

Gene set enrichment analysis
To further analyze the functional characteristics of cell 
types, GO functional enrichment and pathway enrich-
ment analyses were conducted for gene biomarkers from 
these cell types. We applied the Metascape tool [45] for 

enrichment analysis, which mainly provided five forms 
of gene annotations, including GO biological processes, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway, Reactome pathway database, Reactome canoni-
cal pathways and CORUM.

Results
Overview of the computational framework
We proposed a computational framework, which con-
sisted of four steps (Fig. 1), to gain insight into the molec-
ular mechanisms of glioma.

Step 1 Preprocessing of single-cell gene expression 
data. The original single-cell gene expression data were 
split according to the sample ID. Then, we preprocessed 
the gene expression data through data cleaning, feature 
selection and standardization.

Step 2 Identification of tumor consensus genes. For 
each single-sample single-cell gene expression data, we 
explored the gene expression patterns of all malignant 
cells through principal component analysis (PCA), cell-
specific network construction, and differential gene iden-
tification. Then, based on the overlapping degree of the 
differential genes among samples, tumor consensus genes 
were identified.

Step 3 Identification of tumor cell types. We com-
bined the gene expression profiles of each sample and 
integrated transcriptional regulatory pairs. As a result, 
a specific regulatory network was built based on tumor 
consensus genes and feed forward loops (FFLs). Finally, 
the single-cell specific regulatory expression matrix was 
constructed, and a hybrid clustering method was used to 
obtain the cell types of glioma.

Step 4 Identification of candidate tumor gene biomark-
ers. The gene biomarkers of the cell types were regarded 
as candidate genes, and then the tumor eigenvector 
was calculated by known glioma-related genes (KGGs). 
Finally, the tumor gene biomarkers were identified 
according to the degree of correlation between the candi-
date genes and the tumor eigenvector.

Differential analysis of single‑cell gene expression data 
among samples
We performed data cleaning and feature selection on the 
single-cell gene expression data, and then t-distributed 

Fig. 1  Overview of the computational framework. This framework consists of four steps: (1) Preprocessing of single-cell gene expression data. 
Split the original gene expression data according to the sample ID and then preprocess the data through data cleaning, feature selection 
and standardization. (2) Identification of tumor consensus genes. For each single-sample single-cell gene expression data, explore the gene 
expression patterns of all malignant cells. Then, tumor consensus genes were identified based on the overlapping degree of the differential genes 
among samples. (3) Identification of tumor cell types. Build a specific regulatory network based on tumor consensus genes and FFLs. Then, the 
single-cell specific regulatory expression matrix was constructed, and the cell types of glioma is obtained through a hybrid clustering method. (4) 
Identification of candidate tumor gene biomarkers. The tumor gene biomarkers were identified according to the degree of correlation between the 
candidate genes and the tumor eigenvector

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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stochastic neighbor embedding (TSNE) [46] was used to 
visualize the malignant cell clusters.

Each point in Fig.  2 represents a cell, and each color 
represents a tumor sample. All of the tumor malignant 
cells were clustered according to their tumor sample 
source, and there were almost no mixing results of mul-
tiple tumor sample cells, which was consistent with pre-
vious studies [42, 47, 48]. Thus, there were considerably 
significant differences in malignant cells among samples, 
which inspired us to conduct our analysis at the sample 
level.

Analysis of consensus genes
For each sample, the k-nearest neighbors and Jaccard 
coefficient were used to construct a cell-specific network, 
then Louvain clustering [39] was used to obtain the initial 
division of all cells, and the differentially expressed genes 
(DEGs) were calculated (Table  1). Finally, consensus 
genes were identified based on the overlapping degree of 
differential genes among different samples. In this paper, 
a total of 1123 tumor consensus genes were conserva-
tively conserved by screening differential genes that were 
present in at least two samples.

To show that the overlapping degree of DEGs could 
describe the co-expression patterns of genes among 
different samples, we counted the overlapping degree 
of the DEGs in a certain sample and the other samples 

(Fig.  3). The x-axis represents the sample source of 
all malignant cells. For each sample, the DEGs that 
overlapped with the other 5 samples were calculated, 
respectively, and the y-axis represents the proportion 
of the overlapping DEGs in all the DEGs of the sample. 
Figure  3 shows that the highest percentage of overlap 
was 75%, the lowest percentage of overlap was 28%, 
and more than half of the overlap percentages were 
from 30 to 50%. The analysis results showed that the 
DEGs in different samples had a high degree of consist-
ency, which further showed that the consensus genes 
reflected the common gene expression patterns in dif-
ferent samples.

Fig. 2  TSNE analysis of the entire single-cell gene expression data. Each point represents a cell and each color represents a tumor sample

Table 1  Cell-specific network of single-sample

*The number of clusters through Louvain clustering algorithm

Sample ID Cell-specific network Initial 
division*

Num. of DEGs

Num. of 
nodes

Num. of 
edges

MGH36 694 20,452 6 1206

MGH53 726 21,324 8 661

MGH54 1174 35,915 8 924

MGH60 428 15,271 5 545

MGH93 440 12,695 5 443

MGH97 582 19,057 6 607
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Specific regulatory network analysis
TF-TF pairs and TF-gene pairs were obtained from the 
Human Transcriptional Regulation Interactions data-
base (HTRIdb) [32] and Transcriptional Regulatory 
Relationships Unraveled by Sentence-based Text mining 
(TRRUST) [33], and we constricted the target genes as 
tumor consensus genes. To improve the specificity of the 
regulatory network, the entire single-cell gene expres-
sion data containing all cells from all samples were used 
to adjust the network links. We first reassigned the miss-
ing values in the entire single-cell gene expression data 
using the method proposed by Venteicher et  al. [49]. 
The new value of Ei,j was proportional to the expected 
expression of gene i in cell j, which was calculated by the 
average expression of gene i and the complexity of cell j 
(the number of detected genes). Then, we calculated the 
Euclidean distance for each regulation pair based on the 
entire expression data, and the maximum and minimum 
normalization was used to shrink the range of distance. 
We then calculated the similarity of the regulation pairs 
based on the 1-distance and filtered the pairs whose simi-
larity was less than 0.6. In addition, a feed forward loop 
(FFL) is an important building block of regulatory mech-
anisms and is related to the development of tumors, in 
which one TF M regulates another TF N, and M and N 
jointly regulate their target gene G. Therefore, we identi-
fied FFLs in the regulatory network to construct the final 
specific regulatory network.

Ultimately, the specific regulatory network consisted 
of 121 TFs, 439 target genes and 2081 regulatory pairs. 

There were two categories of edges in the specific regula-
tory network: 394 TF-TF pairs and 1687 TF-target gene 
pairs. Each edge that corresponded to two nodes in the 
network had a tumor-specific regulation relationship, 
and the similarity of the edge represented the degree of 
regulation between the two nodes.
ETS1 was the node with the highest degree in the spe-

cific regulatory network. ETS1 is a protein-coding TF 
that can act as an activator or inhibitor of multiple genes 
in a variety of different cellular environments. Moreo-
ver, annotations of Gene Ontology (GO) related to ETS1 
indicate that the gene participates in various biological 
functions, such as cell senescence, apoptosis, and cell 
development, and plays an important role in the occur-
rence of diseases. ETS1 upregulates the expression of 
the integrin α5 subunit and mediates intracellular sig-
nal transduction and invasion processes, leading to the 
occurrence of malignant glioma [50].

Cell type identification
We identified 121 regulation meta modules (RMMs) 
in the specific regulatory network, and then the RMMs 
were considered as single-cell features to obtain the spe-
cific regulation expression matrix. Next, we used hybrid 
clustering to identify the cell types, and reproducibility-
optimized test statistic (ROTS) method [44] was used to 
identify the gene biomarkers of different cell types. The 
process of cell type identification fully considered the dif-
ferences among tumor samples from malignant cells and 
the effect of transcriptional regulatory mechanisms on 

Fig. 3  Overlap of differentially expressed genes between samples. The horizontal axis represents the sample source of all malignant cells in the 
glioma single-cell gene expression data, a total of 6 tumor samples. For each sample, tumor consensus genes, the differentially expressed genes 
that overlap with the other 5 samples, was founded. The vertical axis represents the proportion of tumor consensus genes in all the differentially 
expressed genes of the sample
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gene expression profiles. The resulting 6 cell types identi-
fied are shown in Table 2 and were named cell types A to 
F.

To further analyze the functional and biological signifi-
cance of different cell types, we performed enrichment 
analysis for gene biomarkers in each cell type. Enrich-
ment analysis was used as the priori knowledge such as 
gene annotation to classify a group of genes, and the clas-
sification results could help explore whether these genes 
had certain functions in common and understand the 
role of genes in life activities. In this study, the Metascape 
tool [45] was used for analysis.

Figures  4 and 5 show the enrichment analysis results 
for cell types A and D, respectively. The more depth the 
color of the bar is, the greater the enrichment of the gene. 
For cell type A, the genes were mainly enriched in biolog-
ical functions such as glial cell differentiation, the ERBB4 
signaling pathway, and nervous system development. 
Among them, ERBB4 belongs to the ERBB receptor fam-
ily and plays an important role in the development of 
the nervous system, and the ERBB growth factor recep-
tor is considered to be a key signaling pathway for many 
human tumors, including glioma [51]. For cell type D, 

the genes were mainly enriched in a number of biological 
functions related to cellular respiration, including aero-
bic respiration and the negative regulation of respiration 
involving inflammation. Hypoxia could lead to increased 
aggressiveness of tumors, and tumor growth, metastasis 
and resistance to drug treatment greatly improved in the 
hypoxic microenvironment. There was also some evi-
dence that the hypoxic response plays a key role in the 
behavior of glioma cells, which is very important for per-
sonalized treatment of patients with glioma [52].

The four most enriched entries of cell types B, C and F 
are shown in Table 3. Table 3 shows that cell type B was 
mainly involved in a variety of cellular metabolic activi-
ties; cell type C was mainly related to apoptosis, inhibi-
tion of cell growth and other biological functions; and cell 
type F was associated with biological functions related to 
multiple ribosomal proteins. Cell metabolism, apoptosis, 
and disturbance of ribosomal proteins could cause many 
complex diseases, including cancer. In addition, since 
only 4 gene biomarkers were found in this cell type, there 
were no related enrichment items. Howerer, two of these 
genes are known cancer-related genes, indicating that cell 
type E may also be related to the development of glioma.

Table 2  Results of cell types identification of glioma

*ROTS is used in obtaining the gene biomarkers

Cell type A B C D E F

Num. of cells 136 983 186 214 238 2287

Num. of gene biomarkers in cell 
type*

229 29 11 388 4 49

Fig. 4  Enrichment analysis results of Metascape of cell type A. The genes were mainly enriched in biological functions such as glial cell 
differentiation, the ERBB4 signaling pathway, and nervous system development
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Metascape enrichment analysis indicated that each cell 
type had unique functionality, and the gene biomarkers 
may be closely related to the occurrence and treatment 
of glioma.

Candidate tumor gene biomarker analysis of glioma
Assuming that KGGs are specifically expressed in gli-
oma, we used the first principal component method to 
calculate the tumor feature vector (TEV) for all KGGs 
based on bulk RNA-seq gene expression data. TEV was 
a linear combination of all KGG expression vectors, 
which could represent the expression level of all KGGs. 
In addition, gene biomarkers of cell types reflected the 

biological function of glioma and were likely to be the 
causative molecules of glioma. Therefore, we took all of 
these genes as candidate genes and calculated the Pear-
son correlation coefficient (PCC) between the candidate 
gene and TEV. The greater the absolute PCC value is, the 
stronger the relationship between the candidate gene and 
glioma. The absolute PCC value was used as the correla-
tion between the candidate gene and TEV. We analyzed 
the top 20 genes in detail and defined them as candidate 
tumor gene biomarkers of glioma (Table  4). Statistical 
results showed that the correlations between two candi-
date tumor gene biomarkers (ATP6V0B and GUK1) were 
extremely strong, with correlations greater than 0.8. The 

Fig. 5  Enrichment analysis results of Metascape of cell type D. The genes were mainly enriched in a number of biological functions related to 
cellular respiration, including aerobic respiration and the negative regulation of respiration involving inflammation

Table 3  Enrichment analysis results of gene sets in cell type B, C, and F

*Function description for each enriched item
# log p value for each enriched item

Cell type Enriched item Function* log10(p)#

Cell type B R-HSA-71291 Metabolism of amino acids and derivatives − 5.3

Cell type B R-HSA-69206 G1/S transition − 3.3

Cell type B GO:0010565 Regulation of cellular ketone metabolic process − 2.9

Cell type B GO:0032787 Monocarboxylic acid metabolic process − 2.1

Cell type C GO:0072331 Signal transduction by p53 class mediator − 3.7

Cell type C GO:0097193 Intrinsic apoptotic signaling pathway − 3.6

Cell type C GO:0071363 Cellular response to growth factor stimulus − 2.5

Cell type C GO:0080135 Regulation of cellular response to stress − 2.4

Cell type F R-HSA-72689 Formation of a pool of free 40S subunits − 35.0

Cell type F R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex − 15.1

Cell type F CORUM:5380 TRBP containing complex (DICER, RPL7A, EIF6, MOV10 and subunits of the 60S 
ribosomal particle)

− 8.8

Cell type F GO:0042255 Ribosome assembly − 5.1
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correlations of the remaining 18 candidate tumor gene 
biomarkers were strong (between 0.6 and 0.8).

Additionally, 11 out of the 20 candidate tumor gene 
biomarkers were confirmed by relevant medical litera-
ture that they had a direct or indirect relationship with 
glioma (Table  4), which showed that the identified can-
didate tumor gene biomarkers were reliable to a certain 
extent. Some candidate genes are found to be associate 
with cancer in GeneCards, a database of human genes 
that provides genomic, proteomic, transcriptomic, 
genetic and functional information on all known and 
predicted human genes [53]. For example, the pro-
tein encoded by GUK1 is thought to be a good target 
for cancer chemotherapy. ZNF195 is located near the 
centromeric border of chromosome 11p15.5, next to 
an imprinted domain that is associated with maternal-
specific loss of heterozygosity in Wilms’ tumors. Chro-
mosomal translocations between NCOA4 and the ret 
tyrosine kinase gene are associated with papillary thyroid 
carcinoma. Sporadic and familial mutations in SDHB 
result in paragangliomas and pheochromocytoma, and 
support a link between mitochondrial dysfunction and 
tumorigenesis. In addition, we found that four (NDUFS5, 
NDUFA1, NDUFA13, and NDUFB8) of the candidate 
tumor gene biomarkers belong to the NADH ubiquinone 

oxidoreductase subunit gene family. This gene family 
plays a key role in the transfer of NADH to the respira-
tory chain. The protein encoded by these four genes is a 
subunit of the NADH:ubiquinone oxidoreductase (com-
plex I), and is the first enzyme complex in the electron 
transport chain. The protein binds the signal transducers 
and activators of transcription 3 (STAT3) transcription 
factor, and can function as a tumor suppressor. NADH is 
the reduced state of nicotinamide adenine dinucleotide 
and is mainly involved in the metabolism of matter and 
energy in cells, which plays a key role in maintaining cell 
growth and differentiation. The studies of Yuan et al. [54] 
and Trinh et  al. [55] showed that NADH is regarded as 
a new marker to classify glioma cancer cells. Therefore, 
we inferred that the NADH ubiquinone oxidoreductase 
subunit gene family may be closely related to glioma.

Survival analysis of candidate tumor gene biomarkers 
of glioma
To further explore the effect of the expression level of 
candidate tumor gene biomarkers on the prognosis of 
gliomas, overall survival (OS) data were used for survival 
analysis. Specifically, we used specific survival time for 
the Kaplan–Meier (KM) survival curve analysis. Figure 6 
shows the results of the KM survival analysis of the most 
highly correlated tumor gene biomarker (ATP6V0B). 
Glioma samples were divided into a high expression 
group (expression_level = 1) and a low expression group 
(expression_level = 0), according to the median expres-
sion value of the candidate tumor gene biomarker in bulk 
RNA-seq profiles. The red curve and the blue curve rep-
resent the survival curves of the low and high expression 

Table 4  Candidate tumor gene biomarkers of glioma

– No supported publiccations were found in PubMed

*Score indicates that the Pearson correlation coefficient (PCC) between the 
candidate gene and tumor feature vector (TEV)

Ranking Candidate tumor gene 
biomarkers

Score* PubMed ID

1 ATP6V0B 0.825678 –

2 GUK1 0.816174 11156382

3 MRPL20 0.774609 –

4 RAB30 0.718324 24080485

5 NDUFS5 0.712145 31747975

6 TMEM160 0.710739 –

7 ZNF195 0.70465 –

8 DDRGK1 0.69812 –

9 ARF5 0.691213 –

10 MRPL41 0.690842 28351326

11 NDUFA1 0.685764 29211022

12 GOLIM4 0.683062 –

13 COX5B 0.682042 29180880

14 NDUFA13 0.681426 31747975

15 NDUFB8 0.675849 29928884

16 NCOA4 0.673071 –

17 ARL2 0.659971 29843637

18 SDHB 0.645852 29890994

19 ROGDI 0.645402 –

20 BMPR1A 0.643674 26683138

Fig. 6  KM survival analysis results of ATP6V0B in OS survival 
data. Glioma samples were divided into a high expression group 
(expression_level = 1) and a low expression group (expression_
level = 0), according to the median expression value of the candidate 
tumor gene biomarker in bulk RNA-seq profiles. The red curve and 
the blue curve represent the survival curves of the low and high 
expression sample groups, respectively
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sample groups, respectively. Analysis of the downward 
trend of the KM curve in Fig. 6 revealed that the inter-
val between the survival curves of the high and low 
expression samples of ATP6V0B was quite obvious, and 
the samples with high expression exhibited the worse 
prognosis.

For each candidate tumor gene biomarker, we divided 
samples into a high expression group and a low expres-
sion group and analyzed the downward trend of the KM 
survival analysis between the two curves. The interval 
between curves of the two groups clearly indicated that 
the gene expression level affected the survival of patients 
with glioma. The survival curve of the high expression 
sample group was below that of the low expression sam-
ple group, indicating that the patients with high gene 
expression had a worse prognosis, whereas the patients 
with low gene expression of the gene had a worse prog-
nosis. Table  5 summarizes the KM survival analysis 
results of candidate tumor gene biomarkers. There were 
5 genes (ATP6V0B, MRPL20, NDUFS5, DDRGK1, and 
SDHB) with high expression levels, and the prognosis 
of the patient was worse. In addition, there were 5 genes 
(GUK1, ZNF195, MRPL41, NDUFA13, and BMPR1A) in 
which the expression level was low, and the prognosis of 
the patient was worse.

The experimental results of survival analysis showed 
that the identified candidate tumor gene biomarkers 
were reliable and had a strong correlation with glioma, 
and these genes could provide clues for the diagnosis and 
treatment of patients with gliomas and further help to 
understand the molecular mechanisms of glioma.

Discussion
Due to the batch effect or other factors, the individual 
differences in malignant cells among tumor samples are 
strong. The identification of cell types can essentially be 
regarded as an unsupervised clustering process. If cluster 
analysis of malignant cells based on single-cell expression 
profiles is performed directly, malignant cells from the 
same individual will often cluster together, and the clus-
tering results may not reflect the tumor cell types. How-
ever, there will be consistency among different samples 
of the tumor. To identify the genes that were coexpressed 
in the tumor and the genes that expressed heterogeneity 

in different tumor samples, we analyzed the cell-specific 
network from the single-sample level to identify tumor 
consensus genes and then combined the transcriptional 
regulatory pairs with multisample cell expression data to 
identify glioma cell types. Since the gene biomarkers of 
the cell types have a strong correlation with glioma, we 
used the correlation assessment method to predict the 
candidate tumor gene biomarkers that are highly related 
to glioma. From the analysis results, we concluded that 
the identified candidate tumor gene biomarkers had a 
strong correlation with glioma. The research results may 
be helpful for the diagnosis and treatment of patients 
with glioma, but these predicted candidate tumor gene 
biomarkers should be verified by further biological 
experiments. Of course, there are some problems in our 
study. For example, the results were heavily affected by 
the input gene expression data and noise in the data. In 
the future, we will integrate more omics data to perform 
further analyses, such as DNA methylation, noncoding 
RNA regulation, and protein interactions.

Conclusion
In this study, we have proposed a new framework for 
identifying candidate tumor gene biomarkers based on 
single-cell gene expression profiles and transcriptional 
regulation pairs. The framework mainly contains four 
steps: preprocessing of single-cell gene expression data, 
identification of tumor consensus genes, identification of 
tumor cell types, and identification of candidate tumor 
gene biomarkers. We have shown the framework’s per-
formance by exploring the molecular mechanisms of 
glioma. For glioma, 6 cell types and 20 candidate tumor 
gene biomarkers were identified. The Metascape enrich-
ment analysis showed that the cell types had significant 
functionality, and the analysis of candidate tumor gene 
biomarkers showed that it had a strong correlation with 
glioma. In addition, recent relevant studies have also 
shown that some candidate tumor gene biomarkers were 
recognized as targets of glioma, and 4 genes (NDUFS5, 
NDUFA1, NDUFA13, and NDUFB8) of the candidate 
tumor gene biomarkers belonged to the NADH ubiqui-
none oxidoreductase subunit gene family, indicating that 
this gene family may have a strong correlation with gli-
oma. These findings contributed to the clinical diagnosis, 
therapeutic drug development, and pathological mecha-
nisms of glioma.
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