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Abstract 

Background:  Coffin–Siris syndrome (CSS) is a multiple malformation syndrome characterized by intellectual dis-
ability associated with coarse facial features, hirsutism, sparse scalp hair, and hypoplastic or absent fifth fingernails 
or toenails. CSS represents a small group of intellectual disability, and could be caused by at least twelve genes. The 
genetic background is quite heterogenous, making it difficult for clinicians and genetic consultors to pinpoint the 
exact disease types.

Methods:  Array-Comparative Genomic Hybridization (array-CGH) and whole exome sequencing (WES) were applied 
for three trios affected with intellectual disability and clinical features similar with those of Coffin–Siris syndrome. 
Sanger sequencing was used to verify the detected single-nucleotide variants (SNVs).

Results:  All of the three cases were female with normal karyotypes of 46, XX, born of healthy, non-consanguineous 
parents. A 6q25 microdeletion (arr[hg19]6q25.3(155,966,487–158,803,979) × 1) (2.84 Mb) (case 1) and two loss-of-
function (LoF) mutations of ARID1B [c.2332 + 1G > A in case 2 and c.4741C > T (p.Q1581X) in case 3] were identified. All 
of the three pathogenic abnormalities were de novo, not inherited from their parents. After comparison of publicly 
available microdeletions containing ARID1B, four types of microdeletions leading to insufficient production of ARID1B 
were identified, namely deletions covering the whole region of ARID1B, deletions covering the promoter region, dele-
tions covering the termination region or deletions covering enhancer regions.

Conclusion:  Here we identified de novo ARID1B mutations in three Chinese trios. Four types of microdeletions cov-
ering ARID1B were identified. This study broadens current knowledge of ARID1B mutations for clinicians and genetic 
consultors.
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Background
Coffin–Siris syndrome (CSS, OMIM#135900) is a rare 
congenital anomaly syndrome characterized by intel-
lectual disability, growth deficiency, microcephaly, 
coarse facial features and hypoplastic nail of the fifth 
finger and/or toe [1]. Most of the cases were sporadic 
and showed an autosomal dominant mode of inherit-
ance. The global prevalence of this disease was esti-
mated at approximately 1:10,000–1:100,000 [2].

According to the available reports, the genetics of 
CSS is quite heterogenous. Currently, there are 12 
types of CSSs caused by pathogenic mutations in dif-
ferent genes: CSS1 (OMIM#135900) by ARID1B 
(OMIM#614556) [2], CSS2 (OMIM#614607) by 
ARID1A (OMIM#603024) [3], CSS3 (OMIM#614608) 
by SMARCB1 (OMIM#601607) [4], CSS4 
(OMIM#614609) by SMARCA4 (OMIM#603254) 
[4], CSS5 (OMIM#616938) by SMARCE1 
(OMIM#603111) [4, 5], CSS6 (OMIM#617808) by 
ARID2 (OMIM#609539) [6], CSS7 (OMIM#618027) 
by DPF2 (OMIM#601671) [7], CSS8 (OMIM#618362) 
by SMARCC2 (OMIM#601734) [8], CSS9 
(OMIM#615866) by SOX11 (OMIM#600898) [9], 
CSS10 (OMIM#618506) by SOX4 (OMIM#184430) 
[10], CSS11 (OMIM#618779) by SMARCD1 
(OMIM#601735) [11], and CSS12 (OMIM#619325) 
by BICRA​ (OMIM#605690) [12]. It is worth not-
ing that mutations in another gene, SMARCA2 
(OMIM#600014) could lead to Nicolaides–Baraitser 
syndrome (NCBRS;  OMIM#601358), which possessed 
similar phenotypes with Coffin–Siris syndrome [13–
15]. Therefore, it is a great challenge for clinicians to 
identify the disease types and genetic inheritable pat-
terns. With the application of candidate gene panels 
and whole exome sequencing (WES), the diagnostic 
yields have been improved greatly from about 15–20% 
with chromosomal microarray (CMA) to 35–50% of 
cases [16–19].

Here, through array-CGH and whole-exome sequenc-
ing (WES) techniques, we identified one 2.84 Mbp 6q25 
microdeletion in case 1, two loss-of-function (LoF) 
variants in ARID1B (AT-rich interaction domain 1B) 
in case 2 (c.2332 + 1G > A) and case 3 (c.4741C > T, 
p.Q1581X) All of the three abnormalities were novel, 
not inherited from any of their parents. Because more 
than 10 types of Coffin-Siris syndrome, and many hos-
pitalized patients with intellectual disability (ID) were 
in their childhood without distinct clinical phenotypes, 
it is difficult to identify the underlying genetic factors. 

The combination of array-CGH and WES might be an 
efficient methodology to pinpoint the causal mutations.

Methods
Sample collection
This study was conducted in accordance with the Code of 
Ethics of the World Medical Association (Declaration of 
Helsinki) for experiments involving humans. This study 
was approved by the Ethical Committee of the Shenz-
hen Bao’an Women’s and Children’s Hospital. Written 
informed consent was obtained from each individual. 
The clinical phenotypes were compiled in Table 1.

Peripheral venous blood was collected from the three 
patients and their parents. Genomic DNA was extracted 
using the TIANamp Blood DNA Kit (DP348, Tiangen 
Biotech, Beijing, China) according to the manufacturer’s 
instructions.

Array‑comparative genomic hybridization (Array‑CGH)
Array-CGH was performed using the Fetal DNA Chip 
(Version 1.2) designed by The Chinese University of 
Hong Kong (CUHK) [20, 21]. The chip contains a total 
of 60,000 probes for more than 100 diseases caused 
by known microduplication/microdeletions. It doesn’t 
include small-size chromosomal abnormalities, copy 
number polymorphism, chimerism and chromosomal 
rearrangement [22]. The experimental procedures were 
performed according to the standard Agilent proto-
col (Agilent Oligonucleotide Array-Based CGH for 
Genomic DNA Analysis, version 3.5). Hybridized slides 
were scanned with SureScan High-Resolution Micro-
array Scanner (G2505B, Agilent Technologies, Santa 
Clara, CA, USA), and the image data were extracted and 
converted to text files using Agilent Feature Extraction 
software (Version 10.5.1.1). The data were graphed and 
analyzed using Agilent CGH Analytics software.

Only gains or losses that encompassed by at least three 
consecutive oligomers on the array were considered. 
Then, the clinical relevance of observed chromosomal 
aberrations was estimated according to data found in the 
scientific literature and databases for each of the regions 
and genes involved, using the DECIPHER database for 
known microdeletion and microduplication syndromes 
and the Online Mendelian Inheritance in Man (OMIM) 
for known disease-causing genes, gene functions, and 
inheritance patterns. DNA copy alterations were con-
sidered possibly pathogenic when they involved regions 
known to be associated with microdeletion or microdu-
plication syndromes.

Keywords:  Haploinsufficiency, ARID1B, Coffin–Siris syndrome, SWI/SNF complex, Microdeletion, Loss-of-function
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Table 1  Clinical information of the three cases

Case 1 (Family1) Case 2 (Family 2) Case 3 (Family 3)

Genetic detection

ARID1B mutations − c.2332 + 1G > A
(splicing)

c.4741C > T
(p.Q1581X)

arrayCGH 6q25.3 deletion − −
Cytogenetic band deleted 46,XX 46,XX 46,XX

General information

Age at report 3y5m 2y11m 3y

Sex Female Female Female

Birth weight (g) 2950 2650 3200

Birth height (cm) NA 48 50

Head circumstances (cm) NA 32 34

Facial features

Thick hair + + +
Thick eyebrows + + +
Thick eyelashes + + +
Orbital hypertelorism − + −
Down-slanting palpebral fissure − + +
Up-slanting palpebral fissure − − −
Nasal root abnormality − + −
Low set ears − − +
Abnormal ears − − −
Midface hypoplasia + + +
Wide mouth + + +
Long philtrum − − −
Upper lip vermilion feature − + +
Thick lower lip vermilion − + +
Palatal abnormality − − −
Skeletal–limb

Transverse crease + + +
Clinodactyly + − −
Hypoplastic/absent fifth finger/toe + + −
Hypoplastic/absent nail (fifth finger/toe) + + −
Hypoplastic/absent nail (other fingers/toes) − − −
Broad thumb − + +
Prominent interphalangeal joints − − −
Prominent distal phalanges − − −
Scoliosis/spinal abnormalities − + −
Joint laxity + + +
Nervous system

Developmental delay + + +
Seizures − + −
Speech delay + + +
Structural brain abnormalities − − −
Agenesis of corpus callosum − − −
Hypotonia + + +
Hypertonia − − −
Abnormal shape of head + + +
Growth restriction + + +
Microcephaly − − −
Others



Page 4 of 14Lu et al. BMC Medical Genomics          (2021) 14:270 

Whole exome sequencing for the affected trios
To investigate the genetic cause of the disease, WES was 
performed for the trios of the two affected probands 
(case 2 and 3) at MyGenostics Co. LTD. Briefly, genomic 
DNA of each sample was quantified by NanoDrop spec-
trophotometry 8000 (Thermo Scientific, Waltham, MA, 
USA). 1  μg of genomic DNA was sheared by nebuli-
zation. Sheared DNA were ligated to the 3ʹ end of Illu-
mina adapters. Products with 350–400 bp were amplified 
by polymerase chain reaction (PCR). The quality of the 
amplified products was checked using the Agilent Bio-
analyzer (Agilent Technologies, Santa Clara, CA, USA). 
The amplified DNA was captured with Gencap Human 
whole Exon Kit (52 M) based on MyGenostics GenCap™ 
Enrichment Technologies (MyGenostics, Beijing, China). 
The capture procedure was performed according to the 
manufacturer’s protocol. Finally, the resultant libraries 
were sequenced on Illumina HiSeq 2500 platform for 
paired-end sequencing.

The sequencing depth was about 100× for each sam-
ple. Sequences were aligned to the human reference 
genome (UCSC hg19). ANNOVAR was applied to anno-
tate the VCF file. Variants with a Minor Allele Frequency 
(MAF) > 0.1% or synonymous single nucleotide variants 
(SNVs) were removed. SNVs causing splicing, frameshift, 
stop gain or stop loss were kept for subsequent analysis. 
The location, type, conservation of the identified muta-
tions was obtained from several public databases, such 
as UCSC Genome Browser, NCBI dbSNP, NCBI ClinVar, 
1000 Genome and ExAC. The pathogenicity of the vari-
ants was evaluated according to the American College 
of Medical Genetics and Genomics (ACMG) guidelines 
[23] and the online software, PolyPhen-2 and SIFT for 

functional prediction. A position was called as heterozy-
gous if 25% or more of the reads identify the minor allele.

Protein interaction analysis
The 12 genes for CSS and 1 for NCBRS listed in OMIM 
were used as input to STRING Protein–Protein interac-
tion database (http://​string-​db.​org/), that holds experi-
mental, predicted and transferred interactions together 
with interactions obtained through text mining [24]. To 
select stronger interactors, network clustering was per-
formed using k-means algorithm (number of clustering 
was set as 4).

Results
Clinical and demographic characteristics of three cases
Case 1 (Family 1)
The girl was G2P2, born by cesarean section at full-term 
of pregnancy. The birth weight was 2.95  kg. At 1  year 
6  months old, the child was unbale to speak, but not 
taken to seek medical advice. It was at the age of nearly 2 
that the child could unconsciously made a "Baba-Mama" 
sound. At 2  years 4  months old, she was still unable to 
walk without support. Now, she was 3 years and 5 months 
old, with a weight at 11.9 kg, height 88 cm, and head cir-
cumstance 48.5 cm. The pedigree and some features were 
depicted in Fig.  1a and b. Family history: Her parents 
were healthy and non-consanguineous. Her mother was 
30  years old and had a healthy living style during preg-
nancy. The patient has a healthy 6-year-old sister.

Case 2 (Family 2)
The girl was G5P2A3, born by cesarean section at 
39 + 3 weeks of gestation, with a birth weight of 2.65 kg, 

Table 1  (continued)

Case 1 (Family1) Case 2 (Family 2) Case 3 (Family 3)

Hirsutism − + +
Congenital heart defects − − −
Genitourinary defects − − −
Gastrointestinal abnormalities − − −
Sucking difficulty + − +
Feeding difficulty − + +
Frequent vomiting − − −
Hearing impairment − + −
Visual impairment − − −
Recurrent infections − − −
Family information

Siblings One sister; normal One brother; with attention deficit 
hyperactivity disorder

One brother; normal

Family history No No No

Consanguineous marriage No No No

http://string-db.org/
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birth height 48  cm and head circumstance 32  cm. Two 
months after birth, she was admitted to the Shenzhen 
Hospital affiliated to the University of Hong Kong for 
treatment due to five times of "suspicious convulsions " 
and diagnosed as "epilepsy". At 5 months old, her height 
increased to 90 cm, and weight to 11.6 kg. Her psycho-
motor development was significantly behind the chil-
dren of the same age, and also combined with hypotonia. 
The pedigree and some features were depicted in Fig. 1c 
and d. Family history: Her healthy parents were not con-
sanguineous. Her mother was 38  years old and had no 
history of smoking, drinking, long-term exposure to 
chemicals and harmful radiation during pregnancy. The 
patient has a 12-year-old brother suffered from "attention 
deficit hyperactivity disorder".

Case 3 (Family 3)
The girl was G2P2, born naturally at 39 + 1 weeks of ges-
tation with a birth weight of 3.2  kg, height 50  cm and 
head circumstance 34 cm. Her crying voice was weak at 
birth. She could not take the initiative to suck in the first 
two months after birth and was fed with dropper. On the 
4th day after birth, she was hospitalized for 1 week due 
to "neonatal hyperbilirubinemia". About 1  year ago (at 
8 months and 21 days old), the child could not sit alone 

and was treated as "developmental delay". Her cognitive 
and motor development was significantly lagging behind 
children of the same age. She could understand and 
execute simple instructions, and uttered no more than 5 
words. At this time, her height was 94 cm, with a weight 
at 12.4 kg. The pedigree and some features were depicted 
in Fig. 1e and f. Family history: She was born of healthy, 
non-consanguineous parents. Her mother was 35  years 
old and had no history of smoking, drinking, long-term 
exposure to chemicals and harmful radiation during 
pregnancy. The patient has a healthy brother.

Clinical characters of the facial, skeletal–limb, nervous 
system and other features of the three cases were com-
piled in Table 1.

A 6q25 microdeletion was identified in case 1 by array‑CGH
Oligonucleotide array-CGH was performed for the three 
patients using the Fetal DNA Chip (Version 1.2) designed 
by the Chinese University of Hong Kong (CUHK). A 
microdeletion at 6q25.3 was detected in case 1, arr[hg19
]6q25.3(155,966,487–158,803,979) × 1. The length of this 
microdeletion was about 2.84 Mbp (chr6:155,966,487–
158,803,979) (Fig. 2a). This deletion was not identified in 
her parents. Besides, there were no deletions or duplica-
tions detected in case 2 and case 3.

Fig. 1  Pedigrees of the three patients. a Trio of case 1 with 6q25.3 microdeletion; b pictures of face and hand of case 1. c Trio of case 2 with 
c.2332 + 1G > A mutation in ARID1B; d Pictures of hands and foot of case 2; e trio of case 3 with c.4741C > T (p.Q1581X) mutation in ARID1B; f 
pictures of hands and foot of case 3
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This deleted region contains 7 protein-encoding genes, 
and is highly conserved in mammals (Fig.  2b). Five of 
them (ARID1B, ZDHHC14, SNX9, SYNJ2 and GTF2H5) 
were localized on the sense strand and two (TMEM242 
and SERAC1) on the antisense strand.

Two novel pathological point mutations were identified 
by WES
As for the other two cases, WES was performed at 
MyGenostics (MyGenostics, Beijing, China). The 
aligned bases for case 2 and case 3 were 13,859.9 and 
15,678.15 Mb, respectively. The ratios of the coverage on 
target regions were 99.33% and 99.69%, respectively. The 
average sequencing depths on target regions were 109.65 
and 118.64 for case 2 and case 3, respectively.

In case 2, a heterozygous SNV was detected at 
the splicing donor site of exon 6 (c.2332 + 1G > A, 
chr6:157,431,696) of ARID1B (NM_017519) (Fig.  3a, 
Table  2). It had been confirmed by Sanger sequencing 
(Fig.  3b). After comparing the sequences from human, 
chimpanzee, rhesus, cow, dog, mouse, rat and X. tropi-
calis, this nucleotide (2332 + 1G) was strongly conserved 
during evolution. This SNV was not detected in the sev-
eral public genomic databases, such as 1000Genome 
Project (n = 2504), NHLBI Exome Sequencing Project 
(GO-ESP) (n = 6503), The Exome Aggregation Consor-
tium (ExAC) (n = 60,706), gnomAD (n = 15,708) and 
NHLBI Trans-Omics for Precision Medicine (TOPMED) 
(n = 60,000). Besides, this mutation was not identified 
in the parents’ genomes. Therefore, this mutation was 
appeared spontaneously in case 2 and should be regarded 

as ‘de novo’. According to criteria of ACMG guidelines, 
this SNV was classified as PVS1 + PS2 + PM2 and anno-
tated as “Likely pathogenic”.

In case 3, a nonsense mutation (c.4741C > T, 
chr6:157,522,259) was identified in the exon 18 of 
ARID1B (NM_017519), causing the codon (CAG) for Gln 
(Q) to be a premature stop codon (TAG, X) (p.Q1581X) 
(Fig.  3a, d, Table  2). This mutation was verified by 
Sanger sequencing (Fig.  3c). This nucleotide (4492C) 
was strongly conserved during evolution. The mutation 
was not included in the large-scale genomic databases 
mentioned above. Since this stop gain mutation was 
only identified in case 3 and not in her parents, it was 
regarded as another ‘de novo’ variant. Besides, the vari-
ant has been annotated as rs1554235831 in NCBI dbSNP 
database. According to the criteria of ACMG guidelines, 
p.Q1581X was classified as PVS1 + PS2 + PM2 and anno-
tated as “pathogenic”.

6q25 Microdeletions involving ARID1B
9 reported 6q25 microdeletions associated with ARID1B-
related disorders were recruited from published arti-
cles. We also collected individuals with developmental 
disorders whose genomes containing microdeletions 
involving ARID1B gene from DECIPHER [25, 26] and 
Developmental Delay [27, 28]. 32 were from DECI-
PHER and 5 from Developmental Delay. The microde-
letions were compared against human genome (hg19) 
using UCSC Genome Browser. Totally, 46 microdeletions 
were recruited for the subsequent analysis (Fig.  4a). 39 
of them were completely (or almost) covered the whole 

Fig. 2  A 6q25.3 microdeletion detected in Case 1. a 6q25.3 microdeletion was identified by array-CGH. b Seven protein-coding genes including 
ARID1B in the microdeletion region
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genomic region of ARID1B. As for the remaining par-
tially-covered microdeletions, the shortest one (270,613, 
chr6:157,096,761–157,101,867) was only 5.11  Kb, just 
spanning the promoter region of ARID1B, just as the 
deletions reported by Ronzoni L in 2016 and detected 
in two DECIPHER samples (282,767 and 360,703). 
There also existed a 28.79  Kb microdeletion (274,690, 
chr6:157,527,273–157,556,065), which covered the whole 
last exon of ARID1B, thus removing part of the protein 
coding sequence and the complete 3’-untranslated region 
(3’-UTR) of ARID1B. Interestingly, the microdeletion 
(266,355, chr6:157,261,502–157,336,055) located in the 
fifth intron and did not affect the protein coding region 
of ARID1B. According to the chromatin modification 
patterns from 7 cell lines (GM12878, H1-hESC, HSMM, 
HUVEC, K562, NHEK and NHLF) from ENCODE 
(Encyclopedia of DNA Elements) [29], several candidate 
enhancers were located in the region covered by this 
deletion (266,355) (Fig. 4b).

Discussion
Currently, there are 12 genes responsible for CSSs and 1 
for NCBRS, a disorder with similar phenotypes of CSSs. 
Among the 13 genes, except the two transcription factors, 
SOX4 and SOX11, proteins encoded by the remaining 11 

genes were bound with each other (Fig. 5a) to form two 
SWI/SNF-related complex, BAF (Brg/Brahma-associated 
factors) complex and/or PBAF (Polybromo BRG1 Asso-
ciated Factor) (Fig.  5b, c). The SWI/SNF complex was 
originally referred to as the protein complex critical for 
cellular responses to mating-type switching (SWI) or 
sucrose fermentation (SNF) in yeast [30, 31]. This multi-
protein complex contains more than 15 subunits to acti-
vate gene expression through its capacity to remodel and 
remove nucleosomes at gene promoters [32]. Recently, 
mutations, translocations and deletions of the subunits 
in the SWI/SNF complex have been linked to a number 
of human diseases, such as cancer [33], different types of 
CSS [4, 34–38] and NCBRS [15].

The gene for CSS1 is ARID1B [2, 4, 39], a core subu-
nit of the BAF complex. This gene is the most frequently 
mutated genes in cases with CSS [5]. The phenotypes 
caused by ARID1B mutations encompass a spectrum of 
features, including feeding difficulties, laryngomalacia, 
speech delay, motor delay, hypertrichosis, and cryptor-
chidism [40]. According to the Human Protein Atlas, 
ARID1B is expressed ubiquitously, and abundantly 
detected in never, endocrine, muscle and lymphoid sys-
tems (Fig.  5d). It is reported that meticulous coordina-
tion between the actin cytoskeleton and the microtubule 

Fig. 3  Two de novo mutations of ARID1B gene in case 2 and case 3. a Genomic structure of ARID1B gene; Thin box represents exons, line 
represents introns. b Sanger sequencing of the two single-nucleotide mutations. c Conservational analysis of the sequences around the two 
mutations in different organisms. d Location of the p.Q1581X in the protein sequence of ARID1B
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Fig. 4  Mapping of microdeletions involving ARID1B. a Mapping of the microdeletions involving ARID1B. b Zoomed-in view of the microdeletions. 
Red bar represents microdeletions
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network regulate the formation and transportation of 
secretory vesicles for proper neurite outgrowth and 
maintenance, which is critical for normal neural devel-
opment [41]. This finely-tuned coordination is regulated 
by the BAF complex [42]. ARID1B (previously named 
as BAF250B) is a core member of the BAF complex and 
plays an essential role for dendrite outgrowth and arbo-
rization in cortical and hippocampal pyramidal neurons 
during brain development in mice [43]. ARID1B defi-
ciency led to decreased dendritic branching, thus hin-
der the dendritic innervation into cortical layer I to form 
proper synapses. This might disrupt the balanced excita-
tory and inhibitory inputs and result in pathologic phe-
notypes of ID.

ARID1B is the crucial pathogenic factor behind 6q25 
microdeletion‑related disorder
In our case 1, there exists a heterozygous microdeletion 
arr[hg19]6q25.3(155,966,487–158,803,979) × 1 (Fig.  3a). 
This region contains 7 protein-coding genes, namely, 
ARID1B, TMEM242, ZDHHC14, SNX9, SYNJ2, SERAC1 
and GTF2H5. It is worth noting that several inherit-
able disease-causing genes were recruited in the OMIM 

database. ARID1B (OMIM#614556) is the causal gene 
for CSS1 (OMIM#135900). GTF2H5 (general transcrip-
tion factor IIH subunit 5, OMIM#608780) could result 
in the photosensitive trichothiodystrophy-3 (TTD3) 
(OMIM#616395) [44–46], a rare autosomal recessive dis-
order characterized by brittle sulfur-deficient hair, ichthy-
osis, developmental disabilities, decreased fertility, ocular 
abnormalities, short stature, and infections [47]. SERAC1 
(serine active site containing 1, OMIM#614725) func-
tions in phosphatidylglycerol remodeling that is essential 
for mitochondrial function and intracellular cholesterol 
trafficking [48]. Bi-allelic Mutations of this gene were 
associated with 3-methyl-glutaric aciduria, accompanied 
with deafness, encephalopathy and Leigh-like syndrome 
(MEGDHEL, OMIM#614739) [48–50]. TMEM242 was 
reported to affect the assembly of the ATP synthase 
and mitochondrial complex I, to a certain degree [51]. 
ZDHHC14 (zinc finger DHHC-type palmitoyl transferase 
14) is highly expressed in the hippocampus and is the 
only palmitoyl acyltransferase (PAT) predicted to bind 
Type-I PDZ domain-containing Membrane-associated 
Guanylate Kinase PSD93, which localizes to the axon 
initial segment (AIS) [52]. Loss of ZDHHC14 decreases 

Fig. 5  Interaction of proteins for CSS and structures of SWI/SNF-related proteins. a Interactions of the 12 proteins for Coffin–Siris syndrome and 1 
for NCBRS. b Structures of BAF. c Structures of PBAF. d Expression of ARID1B in different tissues of human (adopted from the Human Protein Atlas)
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outward currents and increases action potential firing in 
hippocampal neurons. SNX9 (Sorting nexin 9), a mem-
ber of the sorting nexin family, is required for membrane 
remodeling during endocytosis [53]. As for SYNJ2 (syn-
aptojanin 2), it is a ubiquitously expressed phosphoino-
sitol 5-phosphatase, involved in vesicular trafficking and 
actin dynamics. Although it is not clear whether SYNJ2 
played a role in the normal brain development, an associ-
ation study showed that SYNJ2 was associated with gen-
eral memory and general cognitive ability [54].

Based on the above analysis, ARID1B, GTF2H5, 
SERAC1 and ZDHHC14 might be the promising candi-
dates responsible for the 6q25 microdeletion syndrome. 
Currently, there are more than 10 reported individuals 
harboring 6q25 microdeletion [2, 55–59]. The reported 
shortest 6q25 deletion (1.1  Mb, chr6:156,004,307–
157,120,089) contained only one protein-coding gene, 
ARID1B [60]. According to the ARID1B-related deletions 
collected in DECIPHER and Developmental Delay, the 
shortest deletion (270,613) was only 5.11  Kb, just span-
ning the promoter region and first exon of ARID1B. This 
deletion made ARID1B unable to start the transcrip-
tion, just as the deletions reported by Ronzoni L in 2016 
and detected in two DECIPHER samples (282,767 and 
360,703). There also existed a 28.79  Kb microdeletion 
(274,690), which covered the whole last exon of ARID1B, 
thus removing part of the protein-coding sequence and 
the complete 3′-UTR of ARID1B. The transcription 
of ARID1B could not stop at the normal termination 
site, and might produce truncated proteins without the 
C-terminal BAF250_C domain (pfam12031). Interest-
ingly, the microdeletion (266,355) just located in the 
middle of ARID1B, just like the sample 389,566. Accord-
ing to the chromatin modification patterns from 7 cell 
lines (GM12878, H1-hESC, HSMM, HUVEC, K562, 
NHEK and NHLF) from ENCODE, several candidate 
enhancers were located in this region (Fig.  5b). Loss of 
these enhancers might affect the transcription efficiency 
of ARID1B. Therefore, the insufficient production of 
ARID1B could be caused by four types of 6q25 microde-
letions, namely whole genomic region, promoter region, 
termination region and enhancer regions.

Haploinsufficiency of ARID1B has been reported to 
be recurrently detected in intellectual disability (ID) or 
mental retardation (MRT) [60, 61], therefore, ARID1B 
might be the crucial pathogenic factor behind the 6q25 
microdeletion syndrome.

Haploinsufficiency of ARID1B caused by de novo SNVs
In case 2, a variant at the splicing site of exon 6 
(c.2332 + 1G > A) of ARID1B (NM_017519) was iden-
tified. This variant disrupted the splicing donor site 
(GT) of intron 6, which might affect the proper splicing 

of ARID1B’s mRNA during transcription to produce 
abnormal transcripts, thus to inactivate the function of 
ARID1B. It is reported that heterozygous mutations of 
splicing sites could affect splicing and lead to haploin-
sufficiency of the affected genes [62, 63]. Therefore, it is 
reasonable that c.2332 + 1G > A mutation might be det-
rimental the proper splicing and result to insufficient 
expression of ARID1B.

In case 3, the mutation (c.4741C > T) was located in 
exon 18 of ARID1B, causing the codon (CAG) for Q to 
be a premature termination codon (TAG) (p.Q1581X). 
The transcript contains two stop codons (one at position 
1581 and another at position 2237). It had been reported 
that mRNAs containing premature termination codons 
(PTC) could be detected and degrade rapidly by a spe-
cial mRNA surveillance mechanism, Nonsense-mediated 
mRNA decay (NMD). It is widely accepted that the bio-
logical purpose of NMD is to protect cells from potential 
harmful effects caused by truncated translational prod-
ucts as a consequence of frameshift or nonsense muta-
tions or by inaccurate pre-mRNA splicing [64–66]. It is 
been found that in 143 patients with CSS, all pathogenic 
variants were truncating (nonsense, frameshift, splice-
site, and deletions of various numbers of exons including 
whole-gene deletions). Therefore, these two de novo sin-
gle nucleotide variants in our project might lead to hap-
loinsufficiency of ARID1B and be pathogenic for CSS.

Treatments for ARID1B‑related disorders
Till now, there has no effective treatments for ARID1B-
related disorders. The present methods are symptomatic 
treatment and cannot cure this disease. Currently, a 
clinical trial is ongoing to investigate the effects of clon-
azepam on children with ARID1B-related intellectual 
disability in Netherlands (EudraCT: 2019-003558-98). 
The purpose of this clinical trial is to test the beneficial 
effects of clonazepam on behavior and cognitive function 
in ARID1B patients.

Animal with ARID1B haploinsufficiency (Arid1b+/−) 
would be promising models for the study of molecular 
mechanism and discovering of drugs for ARID1B-related 
disorder. The Arid1b+/− C57BL/6J mice showed reduced 
corpus callosum size, dentate gyrus size, cortex thickness, 
and proliferation [67–69]. It was found that deficiency of 
GHRH–GH–IGF1 axis was detected in Arid1b+/− mice 
[67]. Exogenous GH supplementation could significantly 
reverse the growth retardation in Arid1b+/− mice, but 
no improvement on abnormal behavioral phenotypes 
such as anxiety. This indicated there might be other 
critical unknown druggable targets for the treatment of 
ARID1B-related disorder. Or Arid1b+/− mice might not 
be the most suitable animal for the study of ARID1B-
related disorder.
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Conclusions
Here we identified a patient with haploinsufficiency of 
ARID1B caused by a 2.84  mb 6q25 microdeletion and 
two caused by loss-of-function (LoF) mutations of 
ARID1B. All of the three abnormalities were acquired 
spontaneously. ARID1B gene was the critical genetic 
factor for ARID1B-related disorder. Besides, four types 
of 6q25 microdeletion were identified by silico analy-
sis. This would broaden the knowledge about ARID1B 
mutation spectrum for clinicians and genetic counselor.
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