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Abstract 

Background & Aims:  Cancer metastasis into distant organs is an evolutionarily selective process. A better under-
standing of the driving forces endowing proliferative plasticity of tumor seeds in distant soils is required to develop 
and adapt better treatment systems for this lethal stage of the disease. To this end, we aimed to utilize transcript 
expression profiling features to predict the site-specific metastases of primary tumors and second, to identify the 
determinants of tissue specific progression.

Methods:  We used statistical machine learning for transcript feature selection to optimize classification and built 
tree-based classifiers to predict tissue specific sites of metastatic progression.

Results:  We developed a novel machine learning architecture that analyzes 33 types of RNA transcriptome profiles 
from The Cancer Genome Atlas (TCGA) database. Our classifier identifies the tumor type, derives synthetic instances 
of primary tumors metastasizing to distant organs and classifies the site-specific metastases in 16 types of cancers 
metastasizing to 12 locations.

Conclusions:  We have demonstrated that site specific metastatic progression is predictable using transcriptomic 
profiling data from primary tumors and that the overrepresented biological processes in tumors metastasizing to con-
gruent distant loci are highly overlapping. These results indicate site-specific progression was organotropic and core 
features of biological signaling pathways are identifiable that may describe proliferative plasticity in distant soils.
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Background
Metastasis accounts for 90% of cancer associated mortal-
ity [1]. While disease spread is a definitive turning point 
in patient pathology, metastasis is a long, arduous, and 
inefficient process for a primary tumor [1, 2]. To estab-
lish an overt colonization in a distant organ, metasta-
sis proceeds through multiple restrictive bottlenecks. 
Tumor sheds must first retain membrane integrity dur-
ing a violent intravasation and successfully navigate the 

circulatory vasculature. Arriving in the new settlement, 
cells must elude immune response, retain activation 
of growth signals, and survive radiotherapies or puta-
tive ablation via chemotherapeutics [3–5]. The possible 
organs sites of metastasis are tumor type specific; and 
in part determined by primary lesion anatomic location, 
intratumor metabolic reprogramming, augmented pro-
tein functions and disrupted biological pathways driving 
tumor cell fitness in the distant organs [6–10]. The dis-
semination of successful metastases is an organized pro-
cess known as metastatic organotropism.

Metastatic organotropism is a long-standing problem 
in cancer research and characterizing the metastatic pat-
terns of primary tumors is a critical step towards treating 
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patients with advanced disease [11, 12]. Experimentally 
driven investigations have focused on characterizing 
the biological underpinnings of organotropic metastasis 
while computational approaches have developed tools 
attempting to predict the sites of metastases. Previous 
research has described the patterns of bone, liver, and 
lung tropisms. Bone tropisms arise primarily from breast 
and prostate cancers [13]. In prostate cancers, three 
major clusters of pathologies have evolved, one of which 
show high androgen receptor signaling and high bone-
tropism compared to the other clusters [14, 15]. Liver 
tropisms primarily arise from breast, lung, and gastro-
intestinal cancers [13]. A 17-gene signature has been 
shown to indicate adverse outcomes for breast cancer 
patients and has some correlative evidence suggesting 
liver progression from breast tumors [16]. Lung trop-
isms are observed most commonly in breast, melanoma 
and thyroid cancers [13, 17]. Similar to liver tumors, a 54 
gene panel expression signature has been developed for 
showing correlation for organotropic metastasis from 
breast tumors progressing to the lung [18].

Studies using molecular information for retrospec-
tive analyses of tumor metastatic sites have been xeno-
graft selection studies that extrapolated organotropic 
features from metastasis microarray data. Studies lever-
aging RNA transcript profiling data have been designed 
for single tumor type progressing to a single site. We 
have found no significant study has been developed on 
classifying site-specific metastasis from human primary 
tumor transcriptomic profiling data [5, 19–28]. The most 
recent work investigating organotropic progression used 
no molecular data and instead used deep data mining of 
patient clinical data to model temporal patterns of tumor 
type site-specific progression and established a powerful 
co-occurrence based network but did not extract any bio-
logical determinants of tumor plasticity in distant organs 
[24].

Despite the significant progress made from previous 
modeling methods, a unified approach to predict site 
specific metastasis in multiple cancer types that learns 
the biological determinants of dissemination has not 
been resolved. We have leveraged the publicly avail-
able omics data and clinical annotations in the TCGA 
database to investigate metastatic organotropisms of 
multiple cancers. In this study, we build off the previ-
ous work and establish a machine learning architecture 
that models organotropic metastases by distinguishing 
the tumor type and in multiple cancer types predicts the 
loci of distant tumor metastases. We detail a migration 
from the canonical pipelines using differential expression 
for feature assessment and use statistical machine learn-
ing for feature selection to optimize classification. Our 
model systematically predicts site-specific metastases of 

primary tumors and our methods captured conserved 
core biological processes overrepresented in tumors 
of varying origin that seeded in concordant anatomic 
locations.

Methods
Review of data download of TCGA transcriptomic 
and clinical annotation data
The TCGA data portal has the clinical data commons 
that are publicly available for data mining in the clinical 
databank [29]. These data are accessible in multiple ways 
including Bulk/Batch API access, TCGA Biolinks soft-
ware via Bioconductor, and Cart-Building on the portal 
website in a patient-by-patient search [29]. Currently, 
no unified patient disease progression information is 
directly available for bulk data mining on the portal web-
site. Our progression annotation was built by text mining 
clinical files of progression annotations project by pro-
ject using the batch query function in the TCGA Biolinks 
package. Each patient has multiple unique identifiers. In 
a project-by-project manner, each Case ID was cataloged. 
Each case ID query produced a case UUID that was 
used across the data types including the gene expression 
counts, VCF files, FASTQ files, images from slides, and 
clinical annotation for each experiment for each patient. 
Each UUID produces a patient summary. Each sum-
mary was broken down into: Data category, Experimental 
strategy, clinical annotations, and clinical supplemental 
files. The transcriptome counts files for each project were 
downloaded, normalized and analyzed. Each project has 
between 53 and 261 clinical annotation columns. The 
stringr and dplyr software packages were used for clini-
cal annotation, data cleaning, and anatomical annotation 
[30]. Metastatic tumors identified in the clinical annota-
tion file were drawn from the “metastatic tissue”, “sites of 
metastases” or “metastatic tissue site” column(s). Tumor 
progression labeled as “synchronous” were not included 
in the metastatic data as the clinical timeline of diagno-
sis was ambiguous. The diagnosis allows for tumors to 
be classified as synchronous ranging between the time of 
diagnosis up to 6 months following the diagnosis in vary-
ing tumor types.

Review of synthetic sample generation
Synthetic samples were generated to balance positive and 
negative classes using the SMOTE algorithm; where posi-
tive classes were tumors that developed a metastasis in 
the tested location and negative classes were tumors that 
did not develop a metastasis in the tested locaiton [31]. 
Briefly, the Synthetic Minority Oversampling Technique 
(SMOTE) is an algorithm to increase the representa-
tion of a minority class in machine learning classification 
problems. The objective function for this approach sits 
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on top of a distance based KNN algorithm. The synthetic 
oversampling technique begins by selecting a minority 
class instance. Then finds the instance’s k nearest neigh-
bors. One of the minority class neighbors is chosen at 
random. A line is drawn between these two instances 
and a synthetic sample is generated along the line as a 
convex combination of the two real instances. This pro-
cess repeats until it has created the desired number of 
synthetic samples. The number of synthetic samples 
generated was specific for each binary comparison. The 
authors suggest that the SMOTE algorithm can be used 
to generate a large sum of representative synthetic sam-
ples, however how large that sum is without over fitting 
the model is unknown. We employed an overfit preven-
tion method during sample balancing. We measured 80% 
of the majority class and increased the representation 
of the minority to the match approximately 80% of the 
majority class rounded to the closest integer.

Review of feature selection
Feature selection is a method in model building to reduce 
the dimensionality of a dataset. Overfitting can occur 
when the number of columns (features) outnumber the 
rows (instances) we can use for the model. To reduce the 
dimensionality of the problem we have employed three 
kinds of feature selection methods: Filter based, Wrap-
per-based and Embedded feature selection. Chi-square 
filtering calculates the chi-square metric between the 
target and the numerical variable and only reduces the 
features for the variables with the maximum chi-squared 
values. The SelectKBest, Chi2 and MinMaxScaler Librar-
ies from Sklearn and feature_selection module were used 
[32]. A Recursive feature selection estimator iteratively 
reduced the dimensionality of the data set by recursively 
considering smaller and smaller subsets of each feature 
block. The RFE was trained on each initial block of fea-
tures and the importance of each feature was obtained 
through the feature_importances attribute. The RFE and 
LogisticRegression libraries from Sklearn and feature_
selection module were used [32]. For embedded meth-
ods, Random forest classifier, random forest regression 
and lasso regression with a logistic regression estimator 
and L1 penalty were employed. These algorithms have 
an embedded feature selection method to stratify and 
rank features. The SelectFromModel, RfC and RfR librar-
ies were imported from Sklearn [32, 33]. We cross vali-
dated these approaches by extracting support values in 
each using the get_support methods, summing the true 
feature support Booleans for each feature in each block 
across all five methods and sorting features by selection 
support.

Iterative Feature selection was conducted by split-
ting the 60,483 transcript features into 100 blocks of 

approximately 600 features to be assessed by the above 
algorithms. We extracted support values for each feature 
from each selection method. Each block was assessed 
independent of all other blocks in each classification. 
Transcripts were filtered for features that showed the 
highest cross-validated support in multiple or all algo-
rithms. Dimensionality was finally reduced by filtering 
out co-linear features. The top 10% of highest scoring 
features were kept from each block for a total number 
of approximately 5000 candidate transcripts (50 tran-
scripts × 100 blocks). The remaining transcripts were 
used as the input features in each binary classification. 
Tree-based models were selected as the best fit for the 
classification to account for the variability in number 
selected features in each classification and to allow model 
attributions to be extracted post-hoc.

Review of model building
Random Forest classification and Gradient boosted tree 
classifiers were built to classify site specific progres-
sion from primary tumors. The selected features in each 
binary classification were used as input attributes into 
model classification. The model is set to report rounded 
value for classification but is capable of posterior prob-
ability for class likelihood. The code and the pretrained 
models are available through the documented Github. 
Model building and usage is documented on the Github 
wiki page.

Review of feature recapture
Feature recapture was the final phase of model building 
and analysis. Testing the statistical significance of fea-
ture recapture in independently generated lists following 
bioinformatic analysis is an indirect however well docu-
mented technique to determine non-random enrichment 
[34]. Two sets of feature recapture were analyzed and dis-
played in Additional file 1: Table S7. The tests were con-
ducted; within cancer class seeding loci and the between 
cancer classes metastasizing in matching locations. The 
Fisher’s exact was used to evaluate the significance of 
recapture between lists, as the significance of deviation 
from the null hypothesis can be directly calculated. Our 
null hypothesis was that the feature recapture when ana-
lyzing matched seeding locations across cancer types was 
by chance; therefore, no biological meaning can be drawn 
from the phenomena. Our alternative hypothesis was that 
recapture of features within class and between match-
ing seeding locations indicates similar distant metastatic 
potential and offers candidate biomarkers for organo-
tropic metastasis, respectively. The contingency table 
was set as; the background of the search space for the 
information gain algorithm. The starting feature selec-
tion space for each classification was the entire human 
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transcriptome. As all of the binary compassions initially 
began considering all 60,483 transcripts, and each set of 
selected features were independently generated, the total 
transcriptome remained the background for all tests. In 
list A of each contingency table, we place the top 1000 
features for each classification of primary tumor seeding 
location. In list B, we assess a second primary tumor type 
and/or metastatic location feature list. We test the signifi-
cance of the intersection of the two lists considering the 
list sizes, background and overlap in contingency table. 
The GeneOverlap package on Bioconductor was used to 
conduct the Fisher’s exact tests [35].

Gene set overrepresentation and semantic analysis
The clusterprofiler package was used to conduct an over-
representation test in the GO database [36]. The selected 
features for each metastatic location in each cancer type 
were translated into their associated GO biological pro-
cess IDs using the bitr function in the clusterProfiler 
package [36]. The overrepresented GO biological path-
ways were passed to into the GoSemSim package and 
simplify enrichment package [37]. A similarity matrix of 
biological functions was made using the simplfyEnrich-
ment package in R [38]. A heatmap was produced by 
clustering the similarity scores of the biological functions 
using the package default binary cut function. A Fisher’s 
exact test was conducted using the base GeneOverlap in 
R [35]. The background was changed from the human 
transcriptome to the GO database to account for the 
change in the search space [39]. The UpsetR package in R 
was used to display the bar graph of overlapping biologi-
cal processes in the tumors seeding in matched locations 
[40]. All overlaps were tested between cancers metasta-
sizing in similar organs.

Data availability and code
We used public data sets drawn from the TCGA database 
using the GDC data commons for this project and its 
analyses [41, 42]. We have provided all the custom com-
puter code to produce these models.

Our code is currently available for view and use in 
a public Github repository: https://​github.​com/​micha​
elSka​ro/​Class​ifica​tion_​of_​organ​otrop​ic_​metas​tases. The 
docker image containing all relevant environment vari-
ables, dependencies and a demo test data set is also made 
publicly available on docker hub and integrated into the 
Github actions. We have a documented wiki page that is 
available, demonstrating the installations, displays visual-
ization and describes script usage within the pipeline. We 
have provided a general usage script that runs the entire 
metastatic classification pipeline. At the command line it 
can be ran using the metastasis_pipeline.py script within 
the built docker container. We have provided a general 

usage feature selection pipeline Feature_selection.py. We 
have provided the organotropic features sets for all can-
cer types selected in this study in the Additional file  1: 
data tables. We have provided all enrichment and recap-
ture code in the source code.

Results
Classification of tumor type
Each tumor type is unique and potential metastatic 
sites of progression are limited based on the tumor 
gene expression profile, anatomic location, and blood 
circulation [24]. We hypothesized that each tumor type 
has subsets of features associated with tissue specific 
progression. Therefore, classifying tumor type was con-
sidered a critical step towards extracting patterns of 
organotropic metastasis. Thirty-three tumor types were 
considered by the model and are annotated by their 
four-letter code in the tumor type column in all figures 
and tables. Figure  1 displays the confusion matrix of 
the model as a heatmap and displays the model preci-
sion, recall and f1-score with normalized performance 
for population size classifying 33 cancer types in the 
TCGA database. Our model performs in the excel-
lent range on thirty of the cancer classes, Cholangio-
carcinoma (CHOL) showed the worst performance as 
the population of 45 was too small to develop a strong 
model for cancer type classification. Esophageal carci-
noma and stomach adenocarcinoma showed some mis-
classification in between the types, given these tumors 
have been shown to be pathologically very similar in 
previous research this was unsurprising [43]. Colo-
rectal adenocarcinoma (COAD) showed considerable 
misclassification specifically misidentifying COAD for 
Renal adenocarcinoma (READ) and vice-versa. The 
COAD and READ classes are combined in the UCSC 
genome browser database, and combined COAD and 
READ in further analyses as the metastatic progres-
sions showed a considerable overlap.

Overall, the cancer type classification model per-
formed in the excellent range with a macro average 
precision of 94.2, macro average recall of 91.98 and 
macro average F1 score of 92.77. The classified results 
were used to carry forward for site specific metasta-
ses prediction. The classification of the primary tumor 
type significantly decreased the complexity of predict-
ing possible sites of metastatic progression for each pri-
mary tumor. We annotated 125 metastatic locations in 
the ten thousand patient samples separated in twenty-
three TCGA projects containing transcriptomic and 
clinical data (Fig. 2). The most observed sites of metas-
tasis were Bone, Liver, Lung and Lymph Node (Fig. 2). 
We filtered for metastatic sites with at least eight clini-
cal annotations of progression for a given site and an 

https://github.com/michaelSkaro/Classification_of_organotropic_metastases
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overall total population of over fifty patients with docu-
mented non-synonymous progression of disease arising 
from the primary tumor. Following filtering we were 
able to analyze 35 tumor metastatic site pairs.

Classification of organotropic progression
Thirty-three cancer types in TCGA were analyzed in this 
study, based on the availability of annotated metastatic 
progression in the TCGA clinical data. For sixteen cancer 
types, we predicted site specific organotropic metastases. 
The classification of the organotropic metastases in the 
sixteen cancer types occurred in three phases. First, syn-
thetic sample generation, followed by feature selection, 
and finally classification of progression. Synthetic sam-
ple generation was used to increase the representation of 
tumors that metastasized to each of the tested locations. 
Feature selection was used to reduce the dimensionality 
of the data and to find transcripts that best separated the 
tumors that metastasized to a tested locations from nega-
tive cases. We combined five feature selection algorithms 
to assess feature value discriminating between positive 
and negative classes in each classification independent of 
all other comparisons [44].

In Fig.  3 we show the performance of classification 
in sixteen cancer types. We report four metrics for the 
classification of site-specific progression in each can-
cer; precision, recall, F1 Measure and Model Accuracy. 
We observed an overall average precision of 0.82, aver-
age recall of 0.82, average F1 Measure of 0.82 and average 
accuracy of 0.82 considering all sites and all predictions. 
We performed in the excellent range on twenty six of 35 
classification pairs. The projects with the fewest errors 
were the larger projects; Bladder cancer, Breast can-
cer, Colorectal cancers, and lung cancers. Sites with the 
strongest model support for prediction were Bone, Liver, 
Lung and Lymph Node. Cancer type specific perfor-
mance is detailed in Table 1. Considering all progressions 
for each cancer type.

After the classification of the organotropic metasta-
ses, we predicted tumors metastasizing to congruent 
loci may exhibit similar biological changes in the pri-
mary tumor endowing proliferative plasticity in the 
distant organ locations. To this end, we used the top 
1000 selected features from each feature selection to 
conduct pathway enrichment. In Fig. 4A. We simulated 
the number of expected biological processes to overlap 
if 1000 randomly selected transcripts were enriched in 

Fig. 1  Classification of tumor type. Classification of Cancer type. The confusion matrix detailing sample type specific performance for the GBT 
classification of tumor transcriptomes. 33 cancer types were considered by the model as annotated by their four letter TCGA code. The scale bar on 
the right-hand vertical axis denotes the density for each tile where dark tiles indicate low number of predicted values and red/white values indicate 
high numbers of predicted values. The major diagonal denotes the cancer type match between predicted and true labels where true labels are 
annotated along the left-side vertical axis and predicted labels are annotated across the horizontal axis
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the GO database. It is known that Ensemble transcript 
IDs map to multiple GO biological process IDs and 
therefore there is a high probability of false discovery 
due to random chance. To establish that our observed 
overlap between lists of GO BP IDs were significant, we 
modified previously published gene overlap protocols 
and conducted a weighted simulation of our feature 
selection methods where IDs with the least amount of 
mapping match GO IDs are given priori over IDs with 
many matches [31]. The weighted simulation was con-
ducted by randomly selecting two sets of 1000 tran-
script features, conducting a GO over representation 
test within each list, filtering for significantly over-
represented processes in the feature sets followed by 
testing the simulated overlap of the two independently 
generated GO:ID lists. We conducted this simulation 
a total of 750,000 times using 50,000 simulations for 

each possible intersection combination. We tested all 
pairwise combinations of 5 possible lengths of GO:ID 
lists ranging from 100 GO:IDs to 500 GO:IDs. The 
simulated results are stratified by the colored lines in 
Fig.  4A. Our simulation shows that the feature selec-
tion method consistently produced significantly higher 
overlap than in random simulation. In Fig.  4B–E we 
show the number of overrepresented biological pro-
cesses in the tumors metastasizing to bone, liver, lung, 
and Lymph Node, respectively. We reported the list 
overlaps, odds ratio and adjusted p.value after Bonfer-
roni adjustment in the Additional file 1: Table S7.

In Fig. 5A–D we cluster the sematic similarity of the 
GO:ID terms that passed the selection and filtering. We 
display four heatmaps that describe the biological pro-
cesses found to be overrepresented in primary tumors 
metastasizing to concordant locations. The largest clus-
ter common among all the comparisons was regulation 

Fig. 2  Observed sites of metastatic progression in the TCGA database. Thirty-three cancers in the TCGA database have recorded RNA sequencing 
data. Within twenty-three projects 125 anatomic locations have clinically annotated metastatic progression. Unique metastatic sites of progression 
found within the population are annotated on the vertical axis. The cancer type four letter codes are annotated on the horizontal axis. The 
heatmaps are stratified by log frequency of occurrence in the data set. The right heatmap are were locations with the greatest frequency amongst 
all sites. COAD and READ have been combined in this section of the analysis
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of morphogenesis and migration. This is a significant 
result as collective cell migration is a hallmark of meta-
static cancer and further suggests a progressive tumors 
may be identified by the expression profiles  [45].

Discussion
The capacity to accurately determine the site-specific 
metastases of patients’ primary tumors is directly appli-
cable to clinical actions for patients. Following tumor 
resection; transcriptomic analysis of a patient’s tumor 
can provide valuable insight into disease progression and 
can aid clinician’s treatment interventions [46]. We pre-
sent an accurate and precise machine learning architec-
ture that can classify the tumor type and can identify if 
and where a primary tumor will metastasize. Embedded 
in our model we offer potential users the opportunity to 
report the locations of the metastases and additionally 
retain the posterior probabilities of metastatic progres-
sion to each location. This offers users the ability to inte-
grate investigation specific calibration for their data and 

report the confidence of the classification in the clinical 
setting.

The model improves on previous work in two funda-
mental ways. The model increases the scope and per-
formance comparison to previous work modeling either 
a single cancer type or single metastatic location and 
identifies biological feature determinants of organotropic 
metastasis from unified transcript profiling data. The 
model was shown to be broadly applicable in 16 differ-
ent cancer types. Our feature selection method is uncom-
mon amongst canonical bioinformatics or biomedical 
pipelines. The differentiation of the positive class feature 
space was only discernable from the negative class feature 
space following statistical machine learning centered fea-
ture selection methods. The features that are represented 
in the Additional file 1:  data tables were produced cross 
validating five feature selection method and extracting 
model attribution support for the best features in each 
comparison.

Fig. 3  Prediction of Site-specific Metastases. Displayed are the model performance metrics predicting site specific metastasis. The data was 
classified following a train test split where 30% of the annotated transcriptome population were held out. The performances reported are on out 
of bag instances that were not used as synthetic templates for training. Model performances are reported on a scale of 0 to 1. Cancer type label 
are in the four-letter code from the TCGA database. Total support are instances in the test set where a positive class was observed are reported in 
Additional file 1:  data tables
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Our model is not without clear limitations. By break-
ing down a multi-label, multi-output experiment into 
NxM binary classification experiments we sacrificed 
detecting possible features that may be present in non-
mutually exclusive progression. An example of this break 
down occurs when one patient’s tumor metastasized to 
the liver and the lung. The model will fail to find features 
that may be dictating the multi-organ expansion of the 
patient’s disease. We justify this sacrifice with an oppor-
tunity cost. While we will not find these coalescent fea-
tures as there are not enough coalescent cases to properly 
model these phenomena, we do produce a model with 
very high sensitivity and specificity to detect if and where 
both metastases will arise in a given case. Further, the 
model is built in a way, upon receipt of more data, we can 
make the necessary modifications from a binary com-
parisons list to an All vs. All classification. The transition 
to an All vs. All classification presents the clear second 
limitation of this model; the very costly overhead of data 
production. Our model relies on the largest ever unified 
conglomerate of tumor transcriptome data to produce 
the level of precision and recall we achieved on only 16 
cancer types of the 33 TCGA projects we investigated. 
This model is reliant on the high-quality data production 
pipeline in TCGA. The transcript profiling data for each 

Table 1  Average model metrics by cancer

Displayed are the cumulative model performance metrics aggregating all 
locations for each cancer type. The cancers are labeled with their four letter 
TCGA code. Model metrics reported right to left were classification precision, 
classification recall, classification F-Measure and classification accuracy. Model 
performance variance and standard deviation are reported in the Additional 
file 1. Positive and Negative class specific performance reported in Additional 
file 1:  data tables

TCGA-
Project

Avg. 
Precision

Avg. Recall Avg. 
F-Measure

Avg. Model 
accuracy

BLCA 0.93 0.87 0.89 0.90

BRCA​ 0.82 0.80 0.81 0.81

COADREAD 0.76 0.76 0.76 0.75

ESCA 0.77 0.81 0.79 0.81

HNSC 0.86 0.85 0.85 0.86

KIRC 0.93 0.95 0.94 0.95

KIRP 0.87 0.89 0.88 0.89

LIHC 0.95 0.91 0.93 0.93

LUAC​ 0.76 0.75 0.75 0.75

LUSC 0.65 0.67 0.66 0.67

PAAD 0.75 0.77 0.76 0.77

PRAD 0.88 0.87 0.86 0.87

SARC​ 0.70 0.75 0.72 0.75

SKCM 0.73 0.79 0.76 0.79

STAD 0.73 0.74 0.74 0.74

THCA 0.61 0.61 0.61 0.61
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Fig. 4  Simulated and observed overrepresented GO biological processes. Gene set enrichment analysis was conducted using the clusterProfiler 
package in R. The Go ontology database was used to investigate feature enrichment in Biological Processes for each metastatic location in each 
cancer type that was classified by the model. The upsest plots were generated using the UPsetR package. The bars represent the GO IDs with an 
adjusted p value < 0.05 after Bonferroni correction. A Simulated enrichment of randomly selected transcript features overrepresented in GO. B 
Enriched processes in Bone metastases. C Enriched processes in Liver metastases. D Enriched processes in Lung metastases. E Enriched processes in 
Lymph Node metastases. Statistical significance and GO:ID enrichment results included in Additional file 1:  data tables
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tumor were produced from sequencing of patient tumors 
of extremely high purity which is very uncommon in 
most studies. If this model is to be broadly incorporated 
into the medical community it will need a very deep and 
diverse set of transcriptomes to train on that is much 
larger than our current TCGA dataset.

Next steps
Our next steps will be to include more cancer types. As 
the publicly available data continue to grow as a super 
set of TCGA and the International Cancer Genome 
Consortium (ICGC), more projects will have clinically 
annotated tumor and normal transcriptomes. Further, 
the TCGA database documentation has become more 
unified and is continuously growing in its clarity. This 

will allow us to incorporate multiple data types into 
a multiomic approach that may illuminate genetic, 
genomic, epigenetic and transcriptomic features work-
ing to provide proliferative plasticity in metastatic soils. 
Finally, if the public data grows by a significant margin, 
we can approach characterizing organotropic metasta-
sis with an All vs. All model.

Conclusion
Our machine learning architecture expands the under-
standing of the cancer metastasis. The leading cause 
of cancer associated death is metastatic progression of 
disease, however incorporating this tool into the clini-
cal timelines for patients may offer clinicians oppor-
tunities for pre-metastatic therapeutic interventions. 

Fig. 5  Shared significantly overrepresented biological processes. Gene set enrichment analysis was conducted using the clusterProfiler package 
in R. The Go ontology database was used to investigate feature enrichment in Biological Processes for each metastatic location in each cancer 
type that was classified by the model. SimplifyEnrichment package was used to cluster the semantic similarity between shared overrepresented 
biological processes in tumors metastasizing to concordant locations. A Enriched processes in Bone metastases. B Enriched processes in Liver 
metastases. C Enriched processes in Lung metastases. D Enriched processes in Lymph Node metastases. Statistical significance and GO:ID 
enrichment results included in Additional file 1:  data tables. Similarity scores are on a scale of 0 to 1



Page 10 of 11Skaro et al. BMC Medical Genomics          (2021) 14:281 

We demonstrate our model can detect if and where 
metastases will arise. Our methods of synthetic sam-
ple generation and feature selection produced a clear 
and concise biological data-based model of metastatic 
progression in multiple tumor types. Our recaptured 
features are offered as candidate biomarkers of site-
specific metastatic organotropism.
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