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Abstract 

Background:  We previously identified differentially expressed genes on the basis of false discovery rate adjusted 
P value using empirical Bayes moderated tests. However, that approach yielded a subset of differentially expressed 
genes without accounting for redundancy between the selected genes.

Methods:  This study is a secondary analysis of a case–control study of the effect of antiretroviral therapy on apop-
tosis pathway genes comprising of 16 cases (HIV infected with mitochondrial toxicity) and 16 controls (uninfected). 
We applied the maximum relevance minimum redundancy (mRMR) algorithm on the genes that were differentially 
expressed between the cases and controls. The mRMR algorithm iteratively selects features (genes) that are maximally 
relevant for class prediction and minimally redundant. We implemented several machine learning classifiers and 
tested the prediction accuracy of the two mRMR genes. We next used network analysis to estimate and visualize the 
association among the differentially expressed genes. We employed Markov Random Field or undirected network 
models to identify gene networks related to mitochondrial toxicity. The Spinglass model was used to identify clusters 
of gene communities.

Results:  The mRMR algorithm ranked DFFA and TNFRSF1A, two of the upregulated proapoptotic genes, on the top. 
The overall prediction accuracy was 86%, the two mRMR genes correctly classified 86% of the participants into their 
respective groups. The estimated network models showed different patterns of gene networks. In the network of 
the cases, FASLG was the most central gene. However, instead of FASLG, ABL1 and LTBR had the highest centrality in 
controls.

Conclusion:  The mRMR algorithm and network analysis revealed a new correlation of genes associated with mito-
chondrial toxicity.

Keywords:  HIV, Apoptosis, Antiretroviral therapy, Mitochondrial toxicity, Machine learning, Minimum 
redundancy maximum relevance (mRMR)
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Background
Although current antiretroviral therapy (ART) has 
reduced HIV-associated morbidity and mortality [1–
4], ART-associated toxicity is still pervasive in people 
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living with HIV (PLWH) [5–7]. A recent study from Italy 
showed that the 1-year probability of discontinuation of 
ART due to toxicity was 19% for patients who initiated 
ART between 2008 and 2014 [8]. All classes of antiret-
roviral drugs are associated with toxicity. Nucleoside 
reverse transcriptase inhibitors (NRTIs), the first class 
to show anti-HIV activity, are associated with toxicities 
such as skeletal muscle myopathy, lactic acidosis, lipodys-
trophy, peripheral neuropathies, cardiomyopathies, and 
pancytopenia [9–12]. These toxicities are due to NRTI-
induced mitochondrial dysfunction through the inhibi-
tion of mitochondrial DNA (mtDNA) polymerase gamma 
(Pol-γ) [13]. Recently, Pol-γ independent mitochondrial 
dysfunction has been associated with several compo-
nents of ART [14–16]. For example, protease inhibitors 
(PIs) and non-nucleoside reverse transcriptase inhibi-
tors (NNRTIs) do not inhibit Pol-γ, and yet they cause 
toxicities commensurate with mitochondrial dysfunction 
[17, 18]. Although the underlying mechanisms are not 
well understood, most ART classes can cause apoptosis, 
a mitochondrion function [19, 20]. Thus, apoptosis bio-
markers could be used potentially to diagnose and moni-
tor ART-associated toxicity. We recently reported that in 
a case–control study (HIV + with mitochondrial toxicity 
vs. HIV uninfected controls), a total of 26 of 84 genes of 
the apoptosis pathway were differentially expressed [21].

The objectives of the current study, a secondary data 
analysis, were twofold: First, we sought to select the 
most relevant and least redundant genes in the differen-
tial expression profile of the apoptosis pathway in HIV-
infected patients with ART-associated mitochondrial 
toxicity (cases) versus HIV-uninfected individuals (con-
trols). We employed the maximum relevance minimum 
redundancy  algorithm on the 26 differentially expressed 
genes between the cases and controls. This algorithm per-
forms better than the differential gene expression analy-
ses we had previously conducted, for the latter failed to 
account for redundancy between the selected genes. Sev-
eral classification algorithms, including Linear Discrimi-
nant analysis, Quadratic Discriminant analysis, k-nearest 
neighbor, Support Vector Machine, Classification trees, 
Adaboost, Neural Networks, Random forest, Gauss-
ian process, and Logistic Regression were used to assess 
the prediction accuracy of the mRMR genes. Second, 
we conducted network analyses to estimate and visual-
ize complex associations among the genes differentially 
expressed between cases and controls. More specifically, 
we employed Markov Random Field (MRF) or undirected 
network models to identify network structures related 
to mitochondrial toxicity. That is, to examine how HIV 
alters the protective network structure of genes in the 
control group (perturbations to the protective network 
structure of genes in controls). The Spinglass model was 

used to identify clusters of gene communities in cases 
and controls. Permutation based test was used to com-
pare the networks of cases and controls.

Methods
Study design and participants
This study is a secondary analysis of data obtained from a 
previous case–control study comprising of HIV-infected 
individuals with mitochondrial toxicity (cases, n = 16) 
and HIV uninfected individuals (controls, n = 16). The 
rationale, organization, and recruitment of the subjects, 
biological procedures used have been described pre-
viously by Foli et  al. [21]. In brief, 32 individuals were 
enrolled from April 2011 to March 2013 at the Yale-New 
Haven Hospital. Cases were matched for age, race, and 
gender to HIV-negative controls. At enrollment, the par-
ticipant’s past medical history and demographic infor-
mation were obtained. For the cases, we reviewed their 
medical records for medication history, HIV RNA copy 
number, and CD4 + T-cell count. The Human Apopto-
sis RT2 Profiler PCR Array kit (SuperArray Biosciences) 
was used to investigate apoptosis pathway-specific genes 
according to manufacturer’s instructions. The insti-
tutional review board of the Yale School of Medicine 
approved the study protocol.

Statistical analysis
We previously analyzed the data and identified 26 out 
of 84 genes to be differentially expressed between the 
cases and controls [21]. We identified the 26 differentially 
expressed genes based on the false discovery rate (FDR) 
adjusted p-value using empirical Bayes moderated tests. 
In this secondary analysis, we sought to rank further the 
critical genes which contributed to profiling differences, 
using the maximal relevance and minimum redundancy  
algorithm. This algorithm chooses a subset of genes 
(features) having the most correlation with a class (rel-
evance, the outcome) and the least correlation between 
themselves (redundancy), ranking features according 
to the minimal-redundancy-maximal-relevance crite-
ria [22]. The F-statistic was used to calculate correlation 
with the class (relevance). For correlation between genes 
(redundancy), the Pearson correlation coefficient was 
used. Next, genes were selected one by one by applying 
a greedy search to maximize the objective function, a 
function that integrates relevance and redundancy infor-
mation of each gene into a single scoring mechanism 
[22]. Once computed, the algorithm ranks the variables 
according to their importance score. We estimated the 
features or genes’ predictive accuracy in distinguish-
ing class membership (case vs. control) using several 
machine learning algorithms including Linear Discrimi-
nant Analysis (LDA), Quadratic Discriminant Analysis 
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(QDA), K-Nearest Neighbor (KNN), Support Vector 
Machine (SVM), Classification Tree (CART), Adaboost 
(ADA), Neural Networks (NNET), Random Forest (RF), 
Gaussian process and Logistic Regression [23]. We used 
the leave-one-out cross-validation procedure to estimate 
the performance of the classifier algorithms. We used the 
algorithm with the highest cross-validated area under 
the receiver operating curves in evaluating the diagnostic 
performance of the mRMR genes as biomarkers of mito-
chondrial toxicity. Network analysis was used to esti-
mate and visualize the relationship among the 26 genes. 
More specifically, we employed Markov Random Field 
(MRF) or undirected network models to identify network 
structures related to mitochondrial toxicity. The network 
analysis involved estimating network models, computing 
network centrality indices, evaluating the accuracy of the 
network structures, comparing the network structures of 
cases and controls, and using spin glass models to find 
communities in the network structures of cases and con-
trols [24]. Statistical analyses were performed using the 
R package version 4.0.3 and SAS software version 9.4 
(SAS Institute, Cary, North Carolina). All P values were 
2-sided and considered statistically significant if < 0.05.

Results
The study included a total of 32 HIV-infected and HIV-
uninfected participants. Seventy-eight percent of the 
participants were whites (n = 25), and the majority of 
them were males (n = 22, 69%) [21]. The median age of 
the study participants was 49.5  years (IQR = 33–66). 
In this study, we applied a maximum relevance mini-
mum redundancy method to rank the importance of 
the 26 genes  differentially expressed  between the two 
groups. DFFA was the most relevant (positive score) and 
TNFRSF1A (redundant, least negative score), as shown 
in Fig.  1A. DFFA is a pro-apoptotic gene in the execu-
tioner pathway, and TNFRSF1A is a proapoptotic gene in 
the extrinsic pathway. To assess the discriminatory power 
of DFFA and TNFRSF1A, we then tested several classifier 
models to classify study participants based on these two 
selected genes into groups. Due to the smaller sample 
size, we used the  leave-one-out cross-validation proce-
dure to estimate the performance of the classifier models. 
We used the model with the highest cross-validated area 
under the receiver operating curve (ROC) in evaluating 
the diagnostic performance of the mRMR genes as bio-
markers of mitochondrial toxicity. Figure 1B displays the 
cross-validated areas under the ROC together with their 

95% confidence intervals. The classifier models resulted 
in cross-validated areas under the ROC curve ranging 
from 0.41 to 0.86. Logistic regression and neural network 
models had the highest performance. These two classifier 
models correctly classified 86% of the participants into 
their respective groups using the two-top ranked mRMR 
genes (Fig. 1B).

Estimating networks
We estimated a network of all the 26 genes, with edges 
connected by partial correlation values as shown in 
Fig. 2. We used a regularized Gaussian graphical model 
[25], which utilized graphical LASSO [26] in combina-
tion with tuning parameters selected by minimizing the 
Extended Bayesian Information Criterion [27] to esti-
mate the networks. We generated network plot struc-
tures with nodes representing each of the individual 
genes. In the network plots, the width of the edges rep-
resented the strength of the connections; while, the  
blue  or red edges illustrate positive or negative par-
tial correlation values, respectively. Of the 26 genes, 18 
were proapoptotic (TNFRSF1A, CYCS, DFFA, ABL1, 
LTBR, CASP7, FASLG, BAD, TRAF2, BAK1, CIDEA, 
TNFRSF11B, CASP14, BIK, GADD45A, CASP5, CD70, 
and TNFRSF9), 5 were antiapoptotic (BCL2, BRAF, 
BIRC5, IL-10, and NOL3), and 3 had dual functions 
(CD27, HRK, and TNF).

We also estimated the networks separately for cases 
and controls (Fig.  3). We obtained centrality measures 
and assessed the stability of networks for cases and con-
trols. As shown in Fig.  4, we computed three different 
centrality indices: closeness, betweenness, and strength 
[28, 29]. Perturbations to the nodes with the highest 
closeness and betweenness may affect large parts of the 
network structure, and perturbations to the node with 
the highest strength might influence many other nodes 
and are therefore considered most important within the 
network structure. Further, we carried out accuracy tests 
to assess the stability of network structures for cases 
and controls. The accuracy tests included (a) estimation 
of the accuracy of the edge-weights by drawing boot-
strapped confidence intervals (CIs); (b) investigating the 
stability of centrality indices after observing only por-
tions of the data, and (c) performing bootstrapped differ-
ence tests between edge-weights and centrality indices 
to test whether these differ significantly from each other 
[24]. The case network structure (Fig.  3—right) showed 
the strongest positive edge-weights between DFFA and 

(See figure on next page.)
Fig. 1  A Gene Importance Scores. DFFA (most relevant) and TNFRS1A (redundant) were the top two genes. The rest are shown in decreasing order 
of gene importance. B Cross-validated areas under the receiver operating curves together with their 95% confidence intervals. Ten classifier models 
for the top two mRMR genes. LDA: linear discriminant analysis, QDA: quadratic discriminant analysis, KNN: k-nearest neighbor, SVM: support vector 
machine, CART: classification tree, AdaBoost, NNET: neural networks, RF: random forest, Gaussian: Gaussian Process, Logit: logistic regression
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TNFRSF1A, CYCS and BCL2, and negative edge-weights 
between BCL2 and TNFRSF1A, BCL2 and FASLG, and 
FASLG and CIDEA. We evaluated the accuracy of con-
nections by bootstrapped CIs analysis. The bootstrapped 
CIs for the estimated edge-weights were large, suggesting 
that many of the edge-weights did not differ significantly 
from one another. However, CIs for the edges of CD27 
and FASLG, and FASLG and TNFRSF1A did not overlap 
with bootstrapped CIs of other edges and were likely the 
strongest edges. Centrality indices results revealed that 
FASLG had the highest strength, betweenness, and close-
ness (Fig.  4, red) among all 26 genes analyzed, suggest-
ing that FASLG had most interactions with other genes 
in the network structure of the cases. In the controls 
network (Fig.  3, left), LTBR and TNF, DFFA and ABL1, 
HRK and CASP7, BCL2 and BAD, CYCS and BCL2 had 
strong positive  edge-weights, with weak negative edge-
weights found between TNF and ABL1, LTBR and CD70, 
CYCS and TRAF2, and CYCS and LTBR. As was the case 
with the network structure of the cases, the edge-weight 
accuracy results revealed that most of the edge-weights 

did not differ significantly from one another. Central-
ity indices plot (Fig. 4, teal) and centrality scores showed 
that ABL1 and LTBR were the most central genes in the 
controls network.

Network comparison
To further analyze the overall differences between the 
two networks, a network comparison test (NCT) was 
performed to examine the differences in the weights of 
connection. The networks’ overall connectivity (or global 
strength), defined as the weighted sum of the absolute 
connections, was calculated for cases and controls. To 
assess the difference in overall connectivity between net-
works of both groups, we implemented a permutation-
based test for randomly regrouped genes [30, 31]. The 
test revealed that the overall connectivity was signifi-
cantly different between the two networks (p < 0.05), and 
the controls network had more significant edge-weights 
between nodes compared to the cases.
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Community detection between cases and controls
We explored a network model-based clustering to 
find communities in the network graphs of cases and 
controls (Fig.  5). A community is a set of nodes with 
many edges inside the community and a few edges out-
side (i.e., between the community itself and the rest of 
the network graph) [32]. We used the Spinglass algo-
rithm for community detection[32–34]. The algorithm 
identified 3 clusters in cases and 5 clusters in con-
trols. For cases, DFFA, TNFRSF1A, BCL2, CYCS, and 
ABL1 were in cluster one (light blue in Fig. 5), FASLG, 
BRAF, NOL3, IL10, CD70, TNFRSF9, CASP5, CD27, 
LTBR, TRAF2, CASP7, and TNF belonged to cluster 
two (green in Fig.  5), and CASP14, HRK, GADD45A, 
BIRC5, BAK1, BIK, BAD, TNFRS11B, and CIDEA 
belonged to cluster three (light red in Fig. 5). For con-
trols, DFFA, FASLG, TRAF, and ABL1 belonged to 
cluster one (orange in Fig.  5), CASP14, IL10, CD70, 
BIRC5, TNFRSF9, BIK, TNFRSF11B, CIDEA, CASP5, 
and CD27 were in cluster two (light red in Fig. 5), TNF, 
BRAF, HRK, BAK1, LTBR, and CASP7 were in cluster 
three (green in Fig.  5), TNFRSF1A, BAD, CYCS, and 
BCL2 were in cluster four (light blue in Fig.  5) and 
NOL3 and GADD45A were in cluster five (yellow in 
Fig. 5).

Discussion
In this secondary analysis, we used 26 genes that we pre-
viously identified to be differentially expressed genes of 
the apoptosis pathway among HIV infected with toxic-
ity and HIV uninfected participants. We applied a maxi-
mum relevance minimum redundancy algorithm on the 
26 genes to rank critical genes contributing to profiling 
differences between cases and controls. The algorithm 
ranked DFFA and TNFRSF1A, two of the upregulated 
pro-apoptotic genes, on the top. We implemented several 
machine learning classifiers in evaluating the diagnostic 
performance of these two genes as biomarkers of mito-
chondrial toxicity. Due to the smaller sample size, leave-
one-out cross-validation procedure was used to estimate 
the performance of the classifier models. We used the 
classifier model with the highest cross-validated area 
under the ROC curve. The cross-validated area under 
the ROC curve from the best model(s) was 0.86, thereby 
indicating the two genes correctly classified 86% of the 
study participants.

Since apoptosis is associated with almost all classes of 
ART, genes of the apoptotic pathway could serve as bio-
markers for identifying and monitoring HIV treatment-
experienced with ART-associated toxicity. Currently, 
there is no gold standard for diagnosing ART-induced 
mitochondrial toxicity. Diagnosis is based on a combi-
nation of clinical symptoms, laboratory testing, imaging 

DFF

TNFRSF1ABCL

FAS

TNF

CASP1

CASP7

TRA

CYC LTB

CD2 CASP5

CIDTNFRSF11

BAD

BIK

BAK

TNFRSF9

BIR

GAD

CD7

ABL

IL1

HRK

NOL

BRA

Controls

DFF

TNFRSF1A

BCL

FAS

TNF

CASP1

CASP7

TRA CYC

LTB

CD2

CASP5

CID
TNFRSF11

BAD

BIK
BAK

TNFRSF9

BIR

GAD

CD7

ABL

IL1

HRK

NOL

BRA

Cases

Fig. 5  Spinglass algorithms showing clusters for cases and controls. There were 3 clusters for cases and 5 clusters in controls



Page 8 of 10Bose et al. BMC Medical Genomics          (2021) 14:285 

studies, and, if available, a tissue biopsy to confirm mito-
chondrial damage. Confirmatory tissue biopsies are 
expensive, invasive, and not readily available. The use of 
the differentially expressed apoptotic genes could provide 
an accurate diagnosis of toxicity and eliminate the “trial 
and error” approach of switching around medications to 
relieve toxicity. Trial and error approach is expensive in 
the long run, as it favors the emergence of drug-resistant 
strains of HIV [35]. There is a need for a non-invasive, 
cost-effective biomarker for ART-induced mitochondrial 
toxicity to prevent unnecessary interruptions in ART and 
to guide the use of second-line regimens. If we could vali-
date our findings in a larger cohort, a quantitative PCR 
assay of these apoptotic genes could serve as biomarkers 
for ART-induced toxicity.

Our network analysis findings of the proapoptotic 
FASLG gene being highly influential due to its high cen-
trality in cases concur with several other physiologic 
studies that have found increased expression of FASLG 
in cases [35–37]. However, instead of FASLG, ABL1 and 
LTBR had the highest centrality in controls. We also 
observed that the number of more substantial edges 
(higher edge-weights) was lower in cases than the con-
trols, suggesting that perturbations to the genes in cases 
network structure were incapable of affecting multiple 
nodes (genes), unlike in controls. Whether this suggests 
that HIV alters the protective dependent network struc-
ture of genes in controls requires further testing. We 
explored how genes were related to each other within 
the clusters of the Spinglass algorithms separately for 
cases and controls. For cases, the two most critical proa-
poptotic genes (DFFA, TNFRSF1A) selected by mRMR 
belonged to cluster 1, while within discrete clusters in the 
controls network structure. The fact that the two most 
important genes belonged to the same community (clus-
ter 1) in cases along with a strong positive edge between 
two other proapoptic genes (CYCS and BCL2) warrants 
further exploration.

In homeostasis, genes of the apoptotic pathway (pro-
and anti-apoptotic) work in tandem [38]. It is there-
fore interesting that we found a deferential clustering of 
pro- and anti-apoptotic genes between cases and con-
trol. Moreover, among the cases, we found less cluster-
ing compared to controls. Less clustering might suggest 
that cases with mitochondrial toxicity have perturbation 
of the apoptotic pathway favoring apoptosis. FASLG, 
ABL1, and LTBR, all proapoptotic genes, had the highest 
strength, betweenness, and closeness in cases or controls. 
FASLG is a member of a family of proteins that signals 
the initiation of a caspase cascade—a series of steps that 
result in apoptosis. This signaling is common to both 
extrinsic and intrinsic apoptotic pathways. Thus, the high 
degree of apoptosis in cases may be due to deploying of 

both extrinsic and intrinsic pathways. In response to oxi-
dative stress, ABL1 and LTBR target the mitochondria 
and mediate mitochondrial dysfunction and apoptosis. 
The role of FASLG in apoptosis may be more global than 
the role of ABL1 or LTBR in apoptosis. The study has 
several limitations. First, as a cross-sectional study, we 
do not know the dynamic changes of these genes before 
and during ART. Second, we did not have a control group 
of HIV treatment-naive or HIV treatment-experienced 
individuals without toxicity. Third, the small sample size 
of study participants did not allow us to obtain patient-
specific risks for the upregulation of these genes.

Conclusions
This is a case–control study of the differentially expressed 
apoptosis pathway genes in HIV infected participants 
with mitochondrial toxicity and uninfected controls. We 
applied the maximum relevance minimum redundancy 
(mRMR) algorithm on the differentially expressed genes 
between the cases and controls. The mRMR algorithm 
ranked DFFA and TNFRSF1A, two of the upregulated 
proapoptotic genes, on the top. These two genes cor-
rectly classified 86% of the participants into their respec-
tive groups. Network analysis revealed that FASLG had 
the highest centrality in cases with ABL1 and LTBR in 
controls, with a new correlation of genes associated with 
mitochondrial toxicity. Our findings are consistent with 
other studies that suggest apoptosis may be a critical 
singnal in ART-induced mitochondrial toxicity. Future 
studies should validate the use of apoptotic genes, par-
ticularly DFFA and TNFRSF1A, as biomarkers of ART-
associated toxicity.

Abbreviations
HIV: Human Immunodeficiency Virus; IQR: Interquartile range; mRMR: Maxi-
mum relevance minimum redundancy; ART​: Antiretroviral therapy; PLWH: Peo-
ple living with HIV; NRTIs: Nucleoside reverse transcriptase inhibitors; mtDNA: 
Mitochondrial DNA; Pol-γ: Polymerase gamma; PIs: Protease inhibitors; NNRTIs: 
Non-nucleoside reverse transcriptase inhibitors; KNN: K-nearest neighbors; 
NCT: Network comparison test; LASSO: Least absolute shrinkage and selection 
operator.

Acknowledgements
The authors would like to thank the subjects, all the providers and staff who 
participated in the study and for making the study possible.

Authors’ contributions
E.B. analyzed data and wrote manuscript. E.P. collected data and wrote 
manuscript. M.G. conceived the study; analyzed data; wrote manuscript and 
provided guidance on data analyses and interpretation of the findings. All 
authors read and approved the final manuscript.

Funding
The study was supported by grants from Harvard University Center for AIDS 
Research (HU CFAR NIH/NAIDS P30-AI 060354) and the Ragon Institute of 
MGH, MIT and Harvard. The funding body had no role in the design of the 
study, the collection, analyses, and interpretation of data, and in writing 
manuscript.



Page 9 of 10Bose et al. BMC Medical Genomics          (2021) 14:285 	

Availability of data and materials
The datasets analyzed during the current study are available in the BMC 
Genomics Dataset repository, https://​ragon.​partn​ers.​org/​musie​biost​ats/​publi​
catio​ns.​html.

Declarations

Ethics approval and consent to participate
The Yale School of Medicine Human Investigation Committee (HIC 
#0710003129) approved the study protocol. All methods were performed in 
accordance with the relevant guidelines and regulations. The Helenski decla-
ration were followed throughout the study. All participants gave their written 
informed consent before participation in the study.

Consent for publication
Not applicable.

Competing interests
Elijah Paintsil and Musie Ghebremichael are editorial board members of BMC 
Infectious Diseases journal. Other authors do not have a commercial or other 
association that might pose a conflict of interest, i.e., authors declare that they 
have no competing interests to disclose.

Author details
1 Massachusetts General Hospital Institute of Health Professions, Boston, MA, 
USA. 2 Department of Pediatrics, Yale University School of Medicine, New 
Haven, CT, USA. 3 Harvard Medical School, Cambridge, MA, USA. 4 Ragon 
Institute of  MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 
02129, USA. 

Received: 1 May 2021   Accepted: 16 November 2021

References
	1.	 Palella FJ Jr, et al. Mortality in the highly active antiretroviral therapy era: 

changing causes of death and disease in the HIV outpatient study. JAIDS J 
Acquir Immune Defic Syndr. 2006;43(1):27–34.

	2.	 Palella FJ Jr, et al. Declining morbidity and mortality among patients 
with advanced human immunodeficiency virus infection. N Engl J Med. 
1998;338(13):853–60.

	3.	 Fang C, et al. Life expectancy of patients with newly-diagnosed HIV infec-
tion in the era of highly active antiretroviral therapy. J Assoc Physicians. 
2007;100(2):97–105.

	4.	 Egger M, et al. Prognosis of HIV-1-infected patients starting highly active 
antiretroviral therapy: a collaborative analysis of prospective studies. The 
Lancet. 2002;360(9327):119–29.

	5.	 Gonzalez-Serna A, et al. Temporal trends in the discontinuation of first-line 
antiretroviral therapy. J Antimicrob Chemother. 2014;69(8):2202–9.

	6.	 Cicconi P, et al. Insights into reasons for discontinuation according to year 
of starting first regimen of highly active antiretroviral therapy in a cohort of 
antiretroviral-naive patients. HIV Med. 2010;11(2):104–13.

	7.	 d’Arminio Monforte A, et al. Durability and tolerability of first-line regimens 
including two nucleoside reverse transcriptase inhibitors and raltegravir or 
ritonavir boosted-atazanavir or-darunavir: data from the ICONA Cohort. HIV 
Clin Trials. 2018;19(2):52–60.

	8.	 Di Biagio A, et al. Discontinuation of initial antiretroviral therapy in clinical 
practice: moving toward individualized therapy. J Acquir Immune Defi-
ciency Syndr. 2016;71(3):263.

	9.	 Gertner E, et al. Zidovudine-associated myopathy. Am J Med. 
1989;86(6):814–8.

	10.	 Brinkman K, et al. Adverse effects of reverse transcriptase inhibitors: mito-
chondrial toxicity as common pathway. AIDS. 1998;12(14):1735–44.

	11.	 Montaner JS, et al. Nucleoside-related mitochondrial toxicity among 
HIV-infected patients receiving antiretroviral therapy: insights from the 
evaluation of venous lactic acid and peripheral blood mitochondrial DNA. 
Clin Infect Dis. 2004;38(Supplement_2):S73–9.

	12.	 Moyle G. Clinical manifestations and management of antiretroviral nucleo-
side analog-related mitochondrial toxicity. Clin Ther. 2000;22(8):911–36.

	13.	 Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med. 
1995;1(5):417–22.

	14.	 Apostolova N, Blas-García A, Esplugues JV. Mitochondrial interference by 
anti-HIV drugs: mechanisms beyond Pol-γ inhibition. Trends Pharmacol Sci. 
2011;32(12):715–25.

	15.	 Apostolova N, et al. Autophagy as a rescue mechanism in efavirenz-
induced mitochondrial dysfunction: a lesson from hepatic cells. Autophagy. 
2011;7(11):1402–4.

	16.	 Blas-Garcia A, Esplugues JV, Apostolova N. Twenty years of HIV-1 non-
nucleoside reverse transcriptase inhibitors: time to reevaluate their toxicity. 
Curr Med Chem. 2011;18(14):2186–95.

	17.	 Blas-García A, et al. Inhibition of mitochondrial function by efavirenz 
increases lipid content in hepatic cells. Hepatology. 2010;52(1):115–25.

	18.	 Deng W, et al. HIV protease inhibitors elicit volume-sensitive Cl− cur-
rent in cardiac myocytes via mitochondrial ROS. J Mol Cell Cardiol. 
2010;49(5):746–52.

	19.	 Vlahakis SR, et al. HIV protease inhibitors modulate apoptosis signaling 
in vitro and in vivo. Apoptosis. 2007;12(5):969–77.

	20.	 Karamchand L, Dawood H, Chuturgoon AA. Lymphocyte mitochondrial 
depolarization and apoptosis in HIV-1-infected HAART patients. J Acquir 
Immune Defic Syndr. 2008;48(4):381–8.

	21.	 Foli Y, et al. Upregulation of apoptosis pathway genes in peripheral 
blood mononuclear cells of HIV-infected individuals with antiretroviral 
therapy-associated mitochondrial toxicity. Antimicrob Agents Chemother. 
2017;61(8):e00522.

	22.	 Radovic M, et al. Minimum redundancy maximum relevance feature selec-
tion approach for temporal gene expression data. BMC Bioinformatics. 
2017;18(1):1–14.

	23.	 Lee JS, et al. A comparison of machine learning techniques for classifica-
tion of HIV patients with antiretroviral therapy-induced mitochondrial 
toxicity from those without mitochondrial toxicity. BMC Med Res Methodol. 
2019;19(1):1–10.

	24.	 Epskamp S, Borsboom D, Fried EI. Estimating psychological networks and 
their accuracy: a tutorial paper. Behav Res Methods. 2018;50(1):195–212.

	25.	 Costantini G, et al. State of the aRt personality research: a tutorial on net-
work analysis of personality data in R. J Res Pers. 2015;54:13–29.

	26.	 Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with 
the graphical lasso. Biostatistics. 2008;9(3):432–41.

	27.	 Chen J, Chen Z. Extended Bayesian information criteria for model selection 
with large model spaces. Biometrika. 2008;95(3):759–71.

	28.	 Dalege J, et al. Network analysis on attitudes: a brief tutorial. Social Psychol 
Personal Sci. 2017;8(5):528–37.

	29.	 Robinaugh DJ, Millner AJ, McNally RJ. Identifying highly influential nodes in 
the complicated grief network. J Abnorm Psychol. 2016;125(6):747.

	30.	 Barrat A, et al. The architecture of complex weighted networks. Proc Natl 
Acad Sci. 2004;101(11):3747–52.

	31.	 Van Borkulo C, Epskamp S, Milner A. Network comparison test: permutation-
based test of differences in strength of networks. 2015.

	32.	 Newman ME, Girvan M. Finding and evaluating community structure in 
networks. Phys Rev E. 2004;69(2):026113.

	33.	 Reichardt J, Bornholdt S. Statistical mechanics of community detection. 
Phys Rev E. 2006;74(1):016110.

	34.	 Hoffman M, et al. Detecting clusters/communities in social networks. Multi-
var Behav Res. 2018;53(1):57–73.

	35.	 Gehri R, et al. The Fas receptor in HIV infection: expression on periph-
eral blood lymphocytes and role in the depletion of T cells. AIDS. 
1996;10(1):9–16.

	36.	 Sloand EM, et al. Role of Fas ligand and receptor in the mechanism of T-cell 
depletion in acquired immunodeficiency syndrome: effect on CD4+ lym-
phocyte depletion and human immunodeficiency virus replication. Blood. 
1997;89(4):1357–63.

	37.	 Badley AD, et al. Upregulation of Fas ligand expression by human immuno-
deficiency virus in human macrophages mediates apoptosis of uninfected T 
lymphocytes. J Virol. 1996;70(1):199–206.

	38.	 Packham G, Stevenson FK. Bodyguards and assassins: Bcl-2 family proteins 
and apoptosis control in chronic lymphocytic leukaemia. Immunology. 
2005;114(4):441–9.

https://ragon.partners.org/musiebiostats/publications.html
https://ragon.partners.org/musiebiostats/publications.html


Page 10 of 10Bose et al. BMC Medical Genomics          (2021) 14:285 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Minimum redundancy maximal relevance gene selection of apoptosis pathway genes in peripheral blood mononuclear cells of HIV-infected patients with antiretroviral therapy-associated mitochondrial toxicity
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Study design and participants
	Statistical analysis

	Results
	Estimating networks
	Network comparison
	Community detection between cases and controls

	Discussion
	Conclusions
	Acknowledgements
	References


