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Abstract 

Background:  Increasing amount of long non-coding RNAs (lncRNAs) have been found involving in many biological 
processes and played salient roles in cancers. However, up until recently, functions of most lncRNAs in lung cancer 
have not been fully discovered, particularly in the co-regulated lncRNAs. Thus, this study aims to investigate roles of 
lncRNA modules and uncover a module-based biomarker in lung adenocarcinoma (LUAD).

Results:  We used gene expression profiles from The Cancer Genome Atlas (TCGA) to construct the lncRNA asso‑
ciation networks, from which the highly-associated lncRNAs are connected as modules. It was found that the 
expression of some modules is significantly associated with patient’s survival, including module N1 (HR = 0.62, 95% 
CI = 0.46–0.84, p = 0.00189); N2 (HR = 0.68, CI = 0.50–0.93, p = 0.00159); N4 (HR = 0.70, CI = 0.52–0.95, p = 0.0205) and 
P3 (HR = 0.68, CI = 0.50–0.92, p = 0.0123). The lncRNA signature consisting of these four prognosis-related modules, 
a 4-modular lncRNA signature, is associated with favourable prognosis in TCGA-LUAD (HR = 0.51, CI = 0.37–0.69, p 
value = 2.00e−05). Afterwards, to assess the performance of the generic modular signature as a prognostic bio‑
marker, we computed the time-dependent area under the receiver operating characteristics (AUC) of this 4-modular 
lncRNA signature, which showed AUC equals 68.44% on 336th day. In terms of biological functions, these modules are 
correlated with several cancer hallmarks and pathways, including Myc targets, E2F targets, cell cycle, inflammation/
immunity-related pathways, androgen/oestrogen response, KRAS signalling, DNA repair and epithelial-mesenchymal 
transition (EMT).

Conclusion:  Taken together, we identified four novel LUAD prognosis-related lncRNA modules, and assessed the 
performance of the 4-modular lncRNA signature being a prognostic biomarker. Functionally speaking, these modules 
involve in oncogenic hallmarks as well as pathways. The results unveiled the co-regulated lncRNAs in LUAD and may 
provide a framework for further lncRNA studies in lung cancer.
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Background
Lung cancer is one of the leading causes of cancer mor-
tality around the globe [1]. Although a few oncogenic 
alterations can be targeted by certain medications, which 
showed greater therapeutic efficacy than chemotherapy 
[2, 3], the prognostic biomarkers assessing lung cancer 
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patients are rather limited currently [3]. Therefore, fur-
ther exploration in biomarkers that assess the prognosis 
of lung cancer patients is warranted.

LncRNAs, transcripts with length greater than 200 
nucleotides [4], regulate gene expression through various 
mechanisms, including cis- [5–7], trans-[8, 9], and post-
transcriptional regulation. Aberrant lncRNA regulations 
were found in various cancers [10]. These perturbations 
in transcriptome can be revealed by lncRNA-mRNA co-
expression networks, resulting in the discovery of several 
key lncRNAs and mRNAs that contributed to cancer 
progression [11, 12]. Subsequent in silico and clinical 
studies further suggested that multiple lncRNAs can be 
integrated into singular signatures to better predict can-
cer patients’ survival [13–16], tumour relapse [17, 18] 
and response to immunotherapy [15]. Given that the 
underlying biological explanation of combining multiple 
lncRNAs into one signature may still be unclear, it was 
speculated that functionally similar lncRNA may co-
appear within cells. Therefore, identifying highly associ-
ated lncRNAs and their roles in LUAD is crucial.

A lncRNA-mRNA co-expression network is a bi-par-
tite network. The association between each lncRNA can 
be measured in a lncRNA-mRNA bi-partite network via 
computing the association index, a quantitative metric 
measuring the similarity between two lncRNAs accord-
ing to the overlapping correlated mRNAs. By construct-
ing the lncRNA association networks, similar lncRNAs 
would be clustered as modules [19]. Functions of the 
lncRNA modules can then be deduced by the module-
correlated mRNAs under the norm of ‘guilt by associa-
tion’ [20].

However, our understanding regarding the associ-
ated lncRNAs in LUAD has been primitive. The roles 
of LUAD-specific modules are to be confirmed. Fur-
thermore, whether lncRNA modules signature can be a 
decent prognostic biomarker needs further investiga-
tion. Hence, we postulated that lncRNA modules are 
composed of co-regulated lncRNAs, and these modules 
play crucial roles in LUAD. To validate the hypothesis, 
we gathered gene expression profile from TCGA-LUAD 
project, constructed the lncRNA association networks, 
deduced impact of modules on patients’ survival, and 
analysed biological roles of these lncRNA modules. In 
this study, we provided a module-based approach to 
uncover a novel biomarker in LUAD.

Results
Overview of the analytical pipeline
We proposed a computational pipeline (Fig.  1) to con-
struct LUAD-specific lncRNA association networks and 
identify prognosis-related lncRNA modules. Firstly, the 
correlation between lncRNA and mRNA was quantified 

with Spearman correlation coefficient (SCC), which 
was then transformed to mutual rank (MR) index. The 
mRNAs within top- and bottom- MR index were selected 
as positive- and negative- correlated mRNAs respectively. 
Second, the association between each lncRNA was quan-
tified by the association index. Next, we selected lncRNA 
pairs with top-scoring association index and constructed 
lncRNA association networks. Finally, we assessed roles 
of lncRNA modules in LUAD through survival analy-
sis, time-dependent AUC, and functional enrichment 
analysis.

Construction of the lncRNA association networks
The gene expression profile of 553 LUAD samples were 
obtained from TCGA. After pre-processing, 4342 
lncRNAs and 16,618 mRNAs remained. We quanti-
fied the correlation between lncRNAs and mRNAs 
with SCC (Fig.  2A). To identify the lncRNA-correlated 
mRNAs, SCCs were transformed to MR index [21]. 
The mRNAs with top and bottom 0.1% of MR index 
( MR ≤

√
4342× 16619× 0.001 ∼= 8.49 ) were selected as 

the lncRNA- positively or negatively correlated mRNAs. 
The number of co-expressed mRNA of each lncRNA was 
shown in Fig. 2B. The mRNAs that are highly correlated 
with lncRNAs were chosen to calculate the association 
index between lncRNAs (Fig.  2C). Several association 
indices are popular and commonly used, such as Jaccard 
index. We used Pearson Correlation Coefficient (PCC) in 
this study because PCC can group the associated genes 
(AUC = 0.903) and can best separate highly co-expressed 
gene pairs from the others (AUC = 0.750) [20]. We col-
lected the lncRNA-lncRNA pairs having PCCs > 0.7 and 
constructed the lncRNA association networks (LAN). 
The LAN constructed from the positively or negatively 
correlated mRNAs were coined as positive lncRNA asso-
ciation network (PLAN) or negative lncRNA association 
network (NLAN), respectively (Fig. 3).

Characteristics of the lncRNA association networks
To verify the scale-free property of generic lncRNA asso-
ciation networks, we inspected the relation between the 
degree (k) of nodes and the degree density (pk) (Fig. 4A). 
The power law distribution was revealed when plotting 
k against pk. Further, when taking the logarithm on both 
axes, the regression line significantly fit the data points, 
with the slope coefficient = − 1.96, p value = 0.000292 on 
PLAN; the slope coefficient = − 2.24, p value = 6.51e-05 
on NALN. (Fig. 4B). The above results suggested that the 
lncRNA association networks were non-random, and had 
the scale-free property. We selected modules with nodes 
no less than 12 for further analysis (Fig. 4C). Six modules 
were selected from the NLAN, and three modules were 
from PLAN (Additional file 1: Table S1). Characteristics 
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of each module were visualized with box plots, including 
the expression of lncRNAs (Additional file  1: Fig. S1A), 
node degree (Additional file 1: Fig. S1B), clustering coef-
ficient (Additional file 1: Fig. S1C), and betweenness cen-
trality (Additional file 1: Fig. S1D).

LncRNAs within the modules are highly associated
Since we postulated that modules are composed of highly 
associated lncRNAs, we compared the association index, 
PCC, between intra- and inter-module lncRNAs. It was 
found that intra-module PCCs are significantly higher 
than that in inter-module PCCs (Fig.  5A, B), implying 

lncRNAs within the modules are more alike. The PCC 
of each lncRNA pair was then visualized with a heat 
map (Fig. 5C, D). It can be seen that lncRNAs within the 
same modules are highly associated. The above findings 
suggested that the association index is can group highly 
associated lncRNAs together as modules.

LncRNA modules are associated with the prognosis 
of LUAD patients
To confirm the effects of the modules on patients’ prog-
nosis, we firstly screened the lncRNAs in the selected 
nine modules by univariate survival analysis (log-rank 

Fig. 1  The flowchart of prognostic lncRNAs module discovery in LUAD. The expression profile of lncRNA and mRNA as well as clinical data were 
retrieved from TCGA. To determine the lncRNA-correlated mRNAs, the lncRNA-mRNA correlation was quantified by SCC and MR. The lncRNA 
association was computed by PCC. The lncRNA pairs with PCC > 0.7 were selected to construct the lncRNA association networks. LncRNAs that 
affect prognosis were selected and pooled to evaluate the impact lncRNA modules on survival. To evaluate the performance of generic modular 
lncRNA signature, we conducted time-AUC analysis. Finally, functional enrichment analysis was used to reveal potential mechanisms that lncRNA 
modules involved in. LUAD, lung adenocarcinoma; TCGA, the cancer genome atlas; SCC, Spearman’s rank correlation coefficient; MR, mutual rank; 
PCC, Pearson correlation coefficient
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test). Because the results from univariate analysis may be 
confounded by factors that affect the outcome, we next 
utilised multivariate Cox proportional hazard model to 
adjust the cancer stage and the age of patients. After-
wards, we excluded the survival-related lncRNAs that 
were cancer-stage independent or not differentially 
expressed between cancer and normal tissue (see Addi-
tional file  1: Fig. S2). Finally, nine prognosis-related 
lncRNAs were selected (Table  1). Specifically, there are 
five prognostic lncRNAs (AC073655.2, AL031775.2, 
AL122010.1, AC079210.1, and AL391834.2) in module 

N1, two lncRNAs (AL683813.2 and AC005759.1) in 
N2, one lncRNA (AC008937.3) in N4, and one lncRNA 
(AC099343.4) in P3. The modular expression was calcu-
lated by summing the coefficient-adjusted expression of 
the prognostic lncRNA(s). These four lncRNA modules 
are significantly associated with overall survival (OS) as 
shown in the Kaplan–Meier plots (Fig.  6A–D). We also 
inspected the impact of lncRNA modules on patients’ 
progression free survival (PFS) (Fig. 6E–G). When adjust-
ing the effects of cancer stage and patients’ age on sur-
vival, the association between OS and lncRNA module is 

Fig. 2  Identification of correlated lncRNA-mRNA pairs and associated lncRNAs. A The distribution of the SCCs of lncRNA-mRNA pairs. B The 
distribution of the number of correlated mRNAs per lncRNA. The lncRNA-positively correlated mRNAs are defined as top 0.1% of mutual rank index 
(yellow) of lncRNA-mRNA pairs; the lncRNA-negatively correlated mRNAs are defined as bottom 0.1% of mutual rank index (blue) of lncRNA-mRNA 
pairs. C The PCC between each lncRNA was calculated considering the number of their correlated mRNAs. The distribution of PCC according 
to the lncRNA-positively correlated mRNAs (blue) and lncRNA-negatively correlated mRNAs (yellow) were plotted. N, measurement according 
to lncRNA-negatively correlated mRNAs; P, measurement according to lncRNA-positively correlated mRNAs; SCC, spearman’s rank correlation 
coefficient

Fig. 3  The lncRNA association networks. A The lncRNA-lncRNA pairs with PCC greater than 0.7 were selected to construct the positive lncRNA 
association network (PLAN). The calculation of PCC is based on the mRNAs that are positively correlated with lncRNAs. Modules P1-P3 (green 
square) are selected for following analyses. B As the above method, we measured the PCC based on the mRNAs that are negatively correlated 
with lncRNAs. The lncRNA pairs with PCC greater than 0.7 were collected to construct the negative lncRNA association network (NLAN). N1-N6 are 
modules selected for following analyses. C The number of nodes in each selected module

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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still significant. (Fig. 7A). Next, since combining multiple 
lncRNAs into one signature can better predict the out-
comes [13, 14, 16], four lncRNA modules (N1, N2, N4, 
and P3) were pooled into one lncRNA signature. The OS 
(p < 0.0001) and PFS (p = 0.021) are significant (Fig.  7B, 
C). The hazard ratio of the 4-module signature in the 
multivariable model is 0.51 (95% CI = 0.37, 0.69), and p 
value = 2.00e−05 (Fig. 7A).

Assessment of the lncRNA modular signature as a novel 
prognostic biomarker in LUAD
To assess the lncRNA modules as a prognostic biomarker 
in LUAD, we interrogated patients’ OS and compared 
the AUC at several time intervals (Fig.  7D). The results 
were consistent with the former survival analyses. The 
4-module lncRNA signature is better than individual 

Fig. 4  Identification of the scale-free property of the lncRNA 
association networks. A The degree of each node in the networks 
were plotted against the degree density (pk). The fitted curve 
showed power law distribution. B The value in both axes underwent 
logarithm transformation. The fitted regression lines were significant, 
with p = 6.51e−05 in NALN and p = 0.000292 in PLAN respectively

Fig. 5  Comparison of intra-module lncRNAs and inter-module lncRNAs. A, B The PCC between intra-modular lncRNAs and inter-modular lncRNAs 
were compared in NLAN and PLAN respectively. Wilcoxon test was used to compare two groups. C, D The PCCs of each lncRNA were visualized in 
heatmaps. The clusters in heatmpas were highly correspond to lncRNA modules identified in the association networks



Page 7 of 14Li et al. BMC Medical Genomics          (2021) 14:290 	

lncRNA modules at all time points. The highest AUC of 
the 4-module lncRNA signature appears on the 336th day 
(AUC = (0.68)).

The lncRNA modules are related to cancer hallmarks
Until recently, functions of many lncRNAs in cancer 
have still not been fully characterized [22]. We used pre-
ranked gene set enrichment analysis to deduce the func-
tions of the prognostic lncRNA modules [23]. It was 
found that Myc targets, E2F targets, and cell cycle were 
enriched in module N1, N2 and P3. Further, in module 
N4, inflammation/immunity-related terms, androgen/
oestrogen response, and KRAS signalling were revealed. 
Of note, several pathways of other cancer types were 
enriched in the module P3, implying the involvement of 
other cancer types as well (Fig.  8). Some of our enrich-
ment results were consistent with the findings validated 
in other published literatures, where the expression of 
the lncRNAs were linked to cancer-related processes 
such as E2F [24], c-Myc [25, 26], androgen receptor [27, 
28] and oestrogen receptor [29]. All in all, the enrichment 
analysis revealed cancer hallmarks in which lncRNA 
modules involve. The enriched terms not only reproduce 
the characters of lncRNAs found previously, but as well 
reveal several novel mechanisms in which lncRNA mod-
ules may participate.

Discussion
This study utilized an association network approach to 
group similar lncRNAs, identify four prognosis-related 
lncRNA modules and assess the performance of the 
modular signature as a novel biomarker in LUAD. Bio-
logically, these lncRNA modules involve in various 
oncogenic mechanisms. Altogether, this study not only 
revealed the roles of lncRNA modules but also came up 
with a new module-based biomarker in LAUD.

The genetic regulation of lncRNA is complex. Thus far, 
we merely made a correlation and association analyses to 
model the relation between lncRNAs and mRNAs. It may 
not be proper to infer the causal relationship between 
lncRNAs and mRNAs from this study. In fact, lncRNA 
can regulate mRNAs through cis- and trans- regulation, 
while mRNAs can also regulate the expression of lncR-
NAs through other mechanisms [30, 31]. The direction of 
regulation between lncRNAs and mRNAs still need fur-
ther investigation in the future.

Numerous studies also focused on the issue regarding 
the competing endogenous RNA (ceRNA) networks [32–
34]. Via constructing a lncRNA–miRNA–mRNA ceRNA 
network, the molecular mechanisms of certain diseases 
can be further clarified. A LUAD-specific ceRNA net-
work revealed that seven lncRNAs were associated with 
the prognosis through interacting with one miRNA 
(hsa-mir-31) and 16 mRNAs [35]. Zhang et al. identified 
a LUAD-specific ceRNA network through curating the 
experiment-supported databases. Based on this ceRNA 
network, they used random walking and restart algo-
rithm to rank lncRNAs that are associated with LUAD. 
An in  vitro validation was subsequently conducted to 
prove their prediction that MAPKAPK5-AS1, a novel 
LUAD-related lncRNA, plays crucial roles in tumour 
growth [36]. Compared with the construction of ceRNA 
network in LUAD, our approach mainly used the corre-
lation between lncRNAs and mRNAs to infer the asso-
ciation network of lncRNAs, without considering the 
roles of miRNAs. However, the advantages of our study 
include using the real-world data to assess the impact of 
the lncRNA signature on patients’ survival, and evaluat-
ing the lncRNA signature as a biomarker in LUAD.

Network biology has become popular in biomedical 
researches. Analysing networks can model the complex 
interactions of the biomolecules, providing more accu-
rate predictions [19, 21, 37–41]. Furthermore, it was 
revealed that networks can delineate dissimilar molecules 
and gather similar nodes as modules [42, 43]. Therefore, 
in this study, we conjectured that similar lncRNAs would 
co-appear as modules and are highly associated. We fur-
ther tested the biological functions of these generic mod-
ules, and discovered module-based biomarkers in LUAD. 
It is not denying that surveying the biomarkers within 
the lncRNA association networks may miss the progno-
sis-related lncRNAs that are not appear in the networks. 
However, the goal of this study was to construct a LUAD-
specific lncRNA association network and assess whether 
these modules play important roles in LUAD, instead of 
revealing all lncRNAs related to the prognosis in LUAD.

One of the future applications of this study is that the 
distance of modules in the networks can be quantified by 
the shortest path length (proximity), which was proved to 

Table 1  Survival-related lncRNAs in each prognostic lncRNA 
module and the overall survival

ID Name Module Survival

ENSG00000258365 AC073655.2 N1 Favourable

ENSG00000272402 AL031775.2 Favourable

ENSG00000230163 AL122010.1 Favourable

ENSG00000267461 AC079210.1 Favourable

ENSG00000273226 AL391834.2 Favourable

ENSG00000232611 AL683813.2 N2 Favourable

ENSG00000268650 AC005759.1 Favourable

ENSG00000271828 AC008937.3 N4 Favourable

ENSG00000271646 AC099343.4 P3 Favourable
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Fig. 6  Survival analysis of prognostic lncRNA modules. The median of modular gene expression was used to assign patients into high or low 
expression groups. Log-rank test was used to test statistical significance. A–D. Kaplan–Meier curve of the overall survival (OS) in module N1, N2, N4, 
and P3. E–G. Kaplan–Meier curve of the event-free survival (EFS) in module N1, N2, N4, and P3
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be a successful method to judge the relatedness between 
clusters of nodes [38]. This fact can be further applied to 
the cancer drug repurposing. For instance, a recent study 
found that the proximity between disease-related proteins 
and drug targets in the protein interactome is an effective 
measure to predict the response to the drugs [39]. The 
accuracy of the proximity method even outweigh the tra-
ditional expression-based perturbation methods, such as 
The Library of Integrated Network-Based Cellular Signa-
tures (LINCS) [39]. In reality, according to the latest LUAD 
guideline [3], targeting lncRNA modules is not feasible. 
Therefore, the drug repurposing method that interrogating 
the proximity between lncRNA module-related proteins 
and drug targets may be one of the solutions.

We referred our findings to The Cancer LncRNome 
Atlas [44], a database collecting lncRNA alterations across 
multiple human cancer types (http://​fcgpo​rtal.​org/​TCLA/​
search.​php). It can be seen that the lncRNAs revealed in 
this study were novel. Copy number variation (CNV) dele-
tion were found in AC073655.2 and AC099343.4, but the 
alterations in expression level have been unclear. Four lncR-
NAs (AC008937.3, AL683813.2, AL031775.2, AL122010.1, 
and AC005759.1) were detectable in LUAD. The other two 
lncRNAs, AL391834.2, and AC079210.1, were not detect-
able in LUAD (Additional file 1: Table S2). It is believed that 
gene expression can be affected by CNV, where decreased 
gene expression may be attributed to deletions [45]. In our 
study, we found that decreased expression of AC073655.2 
and AC099343.4 are associated with poorer prognosis in 
LUAD patients. Therefore, it may not be inappropriate to 
postulate that the underlying mechanisms might be associ-
ated with the deletions. However, further investigations will 
be needed to validate this hypothesis.

Conclusions
In conclusion, by mining the expression profile from 
TCGA, we constructed lncRNA-association networks 
and revealed four crucial LUAD-specific lncRNA mod-
ules. These modules involve in several cancer-related 
biological mechanisms and affect patients’ survival. The 
4-module lncRNA signature can be used as a prognostic 
biomarker for LUAD. As far as we know, this is the first 
study using lncRNA association network to discover prom-
ising lncRNA modular biomarkers in LUAD. This method 
offered a novel insight into the co-regulated lncRNAs in 

lung cancer and may become a framework for future stud-
ies, such as the lncRNA module-based target therapy.

Methods
Pre‑processing of lncRNA and mRNA expression profiles
We retrieved the transcriptome data of lung adenocarci-
noma (LUAD) from Genomic data commons (GDC) data 
portal. The lncRNA and mRNA expression profile were 
collected from the HTSeq-FPKM-UQ workflow of TCGA-
LUAD project (n = 553) in February 2018. The pre-process-
ing procedure of the gene expression profile was adjusted 
from our previous work [21]. In brief, genes with more than 
20% of values to be NAs were removed. Next, the remain-
ing NAs were filled with 0. We then adjusted the expression 
of genes with log2 transformation. To link the Ensembl 
gene ID with gene type, we used Ensembl 92 (GRCh38.
p12) as the reference genome. Finally, The Ensembl gene 
ID was converted to gene symbol by referring to BioMart 
database [46]. The pre-processed gene expression file con-
tained 4342 lncRNAs and 16618 mRNAs.

We also used identical pre-processing steps to gather 
the expression profile of adjacent normal tissue for subse-
quent analyses. These samples were used as control group 
and pooled from the adjacent normal tissue in both LUAD 
and lung squamous cell carcinoma (LUSC) project from 
TCGA, consisting of 108 samples in total.

Identification of LncRNA‑correlated mRNAs
To model the relation between lncRNAs and mRNAs, we 
used Spearman’s correlation coefficient (SCC) (1) to quan-
tify the correlation of lncRNA and mRNA.

where di = the difference between the two ranks of each 
investigated gene, and n = sample size.

The SCCs were then transformed to mutual rank (MR) 
index. The MR is the geometric average of the SCC rank 
[21]. That is, for the gene pair lncRNA X and mRNA Y, the 
mutual rank is defined as follow:

In order to select negatively and positively lncRNA-
correlated mRNAs, we ranked the SCCs in ascending and 

(1)SCC = 1−
6
∑

d2i
n
(

n2 − 1
)

(2)MRXY =
√

RankX→Y × RankY→X

Fig. 7  Evaluation of multi-module lncRNA signature. A A forest plot showing the HR and p-value under multivariable Cox PH model to assess 
overall survival of LUAD patients with high v.s. low expression of the four lncRNA modules (N1, N2, N4, P3) and the 4-module signature. Age and 
TNM stage were adjusted. B Kaplan–Meier curve of the OS in the 4-module Signature. Log-rank test was used. C Kaplan–Meier curve of the EFS in 
the 4-module Signature. Log-rank test was used. D The comparison of AUC of module N1, N2, N4, P3 and the 4-module signature in five different 
time points

(See figure on next page.)

http://fcgportal.org/TCLA/search.php
http://fcgportal.org/TCLA/search.php
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Fig. 7  (See legend on previous page.)
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Fig. 8  Comparing functions of prognostic lncRNA modules. A GSEA was used to conduct functional enrichment analysis where top 10 biological 
processes, based on normalized enrichment score (NES), in each module were shown (FDR q-value < 0.001). B Biological functions regarding KEGG 
pathways were investigated. Terms with top 15 NES were shown in each module (FDR q-value < 0.001)
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descending order to represent negatively and positively 
correlated mRNAs respectively. We then defined lncRNA-
mRNA pairs with top one percent of MR index as highly 
correlated lncRNA-mRNA pairs.

Construction of lncRNA association networks
We used the lncRNA mRNA correlation bi-partite net-
works to deduce the association between lncRNAs. 
Pearson correlation coefficient (PCC) (3), an asso-
ciation index, was computed to define the association 
between each lncRNA.

where N(X) is the number of mRNAs correlated with 
lncRNA X, N(Y) is the number of genes correlated with 
lncRNA Y, ny is the number of mRNAs correlated with 
both lncRNA X and lncRNA Y. We defined two lncR-
NAs being associated if and only if they shared PCC > 0.7. 
We then collected lncRNA pairs with this criterion into 
a lncRNA-lncRNA edge list and visualized the lncRNA 
association network with Cytoscape [47]. The lncRNA 
association network constructed from negatively cor-
related mRNAs were coined as negative lncRNA asso-
ciation network (NALN). On the other hand, those 
considered positively correlated mRNAs were termed 
positive lncRNA association network (PLAN).

Survival analysis and biomarker assessment
To select lncRNA modules that determine prognosis of 
LUAD patients, we designed a three-step selection proce-
dure, implemented with the R package: survival (https://​
CRAN.R-​proje​ct.​org/​packa​ge=​survi​val) and survminer 
(http://​www.​sthda.​com/​engli​sh/​rpkgs/​survm​iner/). 
Firstly, the survival time, age at diagnosis, TNM stage, 
event type (cancer progression or death), and censoring 
information of TCGA LUAD were collected from clini-
cal data in GDC data portal. We divided patients into two 
subgroups based on the median of lncRNA expression. 
The univariate survival analysis was conducted by log-
rank test. Secondly, to adjust known confounding factors, 
including patients’ age and cancer stage, the genes that 
passed log-rank test were subsequently examined by mul-
tivariable Cox-proportional hazard model. Finally, the 
remaining lncRNAs without stage-dependency or differ-
ential expression were discarded. The stage-dependency 
analysis was conducted by comparing lncRNA expres-
sion across different TNM stage (from stage I to stage 
IV). Kruskal–Wallis test was used for hypotheses testing. 

(3)

PCCXY =
|N(X) ∩ n(Y)|ny − |N(X)||N(Y)|

√

|N(X)||N(Y)|
(

ny − |N(X)|
)(

ny − |N(Y)|
)

For the differential expression analysis, we compared the 
gene expression between cancer and adjacent normal tis-
sue with Wilcoxon test.

For the biomarker assessment, time-dependent area 
under the receiver operating characteristic (time-AUC) 
was calculated by using the R package ‘time ROC’ [48].

Functional gene set enrichment analysis
To investigate functions of prognostic lncRNA mod-
ules, we interrogated lncRNA-correlated mRNAs to 
conduct pre-ranked GSEA [23]. The mRNAs were 
ranked based on the correlation (MR index) with the 
lncRNAs within each module. In PLAN, since the posi-
tively correlated mRNAs were more important, the 
SCCs were arranged in the ascending order, from small 
to large, which led to higher MR index in the positively 
correlated mRNAs. By contrast, SCCs were arranged in 
descending order, which resulted in higher MR index 
in negatively correlated mRNAs. Gene sets database, 
Hallmark and KEGG pathway, from MSigDB v7.1 [49, 
50] were selected. The chip platform was from Human_
ENSEMBL_Gene_MSigDB.v7.1.chip. The top 10 and 
15 were selected from Hallmark and KEGG pathway 
respectively. All selected terms were significant, with 
FDR-q value < 0.001.
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