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Abstract 

Corona virus disease 2019 (COVID-19) increases the risk of cardiovascular occlusive/thrombotic events and is linked 
to poor outcomes. The underlying pathophysiological processes are complex, and remain poorly understood. To this 
end, platelets play important roles in regulating the cardiovascular system, including via contributions to coagula-
tion and inflammation. There is ample evidence that circulating platelets are activated in COVID-19 patients, which 
is a primary driver of the observed thrombotic outcome. However, the comprehensive molecular basis of platelet 
activation in COVID-19 disease remains elusive, which warrants more investigation. Hence, we employed gene co-
expression network analysis combined with pathways enrichment analysis to further investigate the aforementioned 
issues. Our study revealed three important gene clusters/modules that were closely related to COVID-19. These cluster 
of genes successfully identify COVID-19 cases, relative to healthy in a separate validation data set using machine learn-
ing, thereby validating our findings. Furthermore, enrichment analysis showed that these three modules were mostly 
related to platelet metabolism, protein translation, mitochondrial activity, and oxidative phosphorylation, as well as 
regulation of megakaryocyte differentiation, and apoptosis, suggesting a hyperactivation status of platelets in COVID-
19. We identified the three hub genes from each of three key modules according to their intramodular connectivity 
value ranking, namely: COPE, CDC37, CAPNS1, AURKAIP1, LAMTOR2, GABARAP MT-ND1, MT-ND5, and MTRNR2L12. 
Collectively, our results offer a new and interesting insight into platelet involvement in COVID-19 disease at the 
molecular level, which might aid in defining new targets for treatment of COVID-19–induced thrombosis.
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Introduction
The coronavirus SARS-CoV-2 is a highly contagious 
infection that causes a severe respiratory disease known 
as COVID-19. This disease that has reached a pandemic 
level, is impacting tens of millions of people world-
wide. In the United States, there are around 78 million 

reported cases, over 4 million hospital admissions, and 
900 thousand deaths as of February 2022 [1]. It is now 
known that COVID-19-induced thrombosis increases 
the incidence of cardiovascular occlusive events in 
infected patients, a fact that has been reported in several 
studies [2–4], Indeed, abnormal hemostasis responses 
were observed in COVID-19 hospitalized patients, which 
was linked to poor prognosis [2, 5, 6] In addition, studies 
have shown that COVID-19 leads to increase in platelet 
activation through alterations of platelet transcriptome 
and proteome [7, 8]. In this connection, it is now well 
established that platelets play roles beyond vascular 
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hemostasis, including innate immunity and tumor metas-
tasis [9]. Moreover, platelets were shown to be activated 
in the septic state, and antiplatelet therapy has been used 
as a strategy to prevent organ damage in sepsis [10]. To 
this end, evidence has indicated that viral infections are 
associated with coagulation disorders, and thrombotic 
cardiovascular events [11, 12], which is consistent with 
the thrombotic phenotype seen in COVID-19 patients/
SARS-CoV-2 viral infection. While there has been some 
progress, our understanding of the pathways that govern 
platelet participation in COVID-19–induced thrombosis 
remains limited, but clearly warrants investigation.

To obtain a comprehensive insight into the pathogen-
esis of specific disease states, several computational and 
research methods have been developed [13]. Some of 
these approaches were employed to examine the poten-
tial gene networks, which are very instrumental to 
guide understanding of diseases and their mechanistic 
pathways. Notably, co-expression analysis is one such 
approach, which clusters genes into coexpressed groups 
known as modules. These genes that belong to the same 
module are thought to share functional properties [14]. 
This approach relies on using graph theory concepts that 
allow researchers to understand in a systematic way the 
relations between the genes of a module and the phe-
notype based on the module eigingene [14]. In fact, co-
expression using weighted correlation network analysis 
(WGCNA) has been used for analyzing a number of 
biological processes, including cancer [15, 16] and cog-
nitive and mental disorders [17, 18]. In short, gene net-
works provide the utility to move beyond individual-gene 
comparisons and comprehensively identify biologically 
meaningful relationships between gene products and 
phenotypes.

At the same time, machine learning and artificial intel-
ligence are getting extensively used in biology [19], espe-
cially for feature selection. “Feature selection” is used to 
select the minimum number of features to predict the 
biological phenomenon or correctly classify the biologi-
cal samples. This approach facilitates understanding of 
the underlying disease mechanisms and other factors 
that reasonably could have affected the disease status. 
One particular approach for results validation is to build 
a classifier using the information derived from the identi-
fied set of biomarkers (e.g., gene expression) and test the 
performance of that classifier on totally different data set 
to examine its ability to classify two status (e.g. disease vs 
healthy). successful classifier gives strong evidence sup-
porting the biomarkers validity [20, 21].

Previous studies on the mechanisms of thrombosis in 
COVID-19 disease have primarily concentrated on spe-
cific pathophysiological functions, with relatively fewer 
studies identifying comprehensive regulatory networks. 

Therefore, in the present study, WGCNA was used to 
determine gene networks associated with COVID-19 
disease in platelets. PRJNA634489 data set- which con-
tained a total of 15 samples from COVID-19 patients and 
health controls [7] was used in the present study. Three 
modules with the highest level of significance in correla-
tion with COVID-19 disease were identified. Of note, the 
three aforementioned modules were validated as a pre-
dictor of COVID-19 phenotype using another set, and 
the three genes with the highest intramodular connectiv-
ity were selected as the hub genes in the respective mod-
ules for COVID-19. Gene enrichment analysis was also 
conducted to determine enrichments in the key modules. 
The results of this study may provide novel information/
insights into the underlying mechanisms of COVID-19 
disease and may assist in the identification of potential 
biomarkers for diagnosis and/or targets for treatment.

Methods
Data preprocessing and differentially expressed genes 
screening
RNAseq data is publicly available and were downloaded 
from BioProject accession #PRJNA634489 [7]. Data com-
prised of ten COVID-19 patients in addition to age- and 
sex-matched five healthy controls. Of note, while the 
original paper included a total 58 subjects divided as 41 
COVID-19 patients and 17 healthy controls, samples 
from only 15 subjects were sequenced, and hence used 
in our analysis. The Kallisto program was employed for 
pseudoalignment of reads and quantification to obtain 
the counts and the transcript per million (TPM) [22]. 
Log2CPM (log transformed counts per million) was 
used for the differential expression analysis by employ-
ing Voom normalization [23] and Limma R package [24] 
TPM normalized and filtered to exclude low variance 
transcripts ( ≤ 0.001) [25] was used for the weighted gene 
co-expression network analysis. All methods were per-
formed in accordance with the relevant guidelines and 
regulations.

RNA seq data for validation was downloaded from 
the publicly NCBI SRA repository under accession: 
#PRJNA736410, analyzed and normalized by following 
the same steps as first data set.

Weighted gene coexpression network analysis
The weighted co-expression network was produced 
using R package “WCGNA” [14]  as per the flowchart in 
Fig. 1. To weight highly correlated genes, the soft thresh-
olding power ( β ) was set at 12, and the minimal module 
size was set at 30. To define clusters of genes in the data 
set, the adjacency matrix was used to calculate the topo-
logical overlap matrix (TOM), which shows the degree of 
overlap in shared neighbors between pairs of genes in the 
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network. The resulting gene network was visualized as a 
heatmap.

Screening for key modules and hub genes
Correlation between module eigengenes and the 
COVID-19 status was calculated to identify key mod-
ules that have significant correlation. The correlation val-
ues were displayed within a heatmap. The modules that 
correlated with COVID-19 most significantly were con-
sidered as the key modules. Gene significance (GS) was 
defined as the correlation between gene expression and 
the COVID-19 status. Module membership (MM) was 
defined as the correlation between gene expression and 
each module’s eigengene, and intramodular connectiv-
ity (K.in), which measures how connected a given gene 
with respect to the genes of a particular module, was also 

calculated using WGCNA. Subsequently, the correlation 
between GS and MM as well as GS and k.in were exam-
ined to verify module-COVID-19 status associations. The 
correlation analyses in this study were performed using 
the Pearson correlation as described in the “WGCNA” 
package [14]. All module genes were ranked according to 
their intramodular connectivity, and only the top three 
genes were selected as hub genes.

Validation of key modules using machine learning
To validate the results of the above mentioned analysis, 
multiple classification models (Lasso, Naiive Bayes, Ran-
dom forest, SVM and XGBboost) were trained using the 
key modules of the original data set. Those models were 
employed to classify the samples of a second data set [26] 
of platelets gene expression in COVID-19 patients and 

Fig. 1  Flowchart illustrating the major step of the study
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healthy subjects. The second data was totally isolated 
from the training process.

Functional enrichment analysis of key modules
The genes in each key modules were extracted from the 
network and enrichment analysis was performed to fur-
ther explore the functions of the respective modules. 
Targetmine [27] which is a web-based integrative data 
analysis platform for target prioritisation and broad-
based biological knowledge discovery- was used to 
perform Gene Ontology (GO) and Reactome pathway 
enrichment analysis. In this analysis, a benjamini hoch-
berg adjusted P-value of 0.05 was set as the significance 
threshold to identify the most significant functional path-
ways/GO terms. Only top results of enriched terms are 
reported.

Statistical and visualization tools
We used R statistical programming language [28] ver-
sion 4.1.0, with the following packages: “WGCNA” [14] 
for coexpression analysis; “Scikit-learn” [29] for machine 
learning building and evaluation; “circlize” [30] for chord 

diagram building; “ggplot2” [31] and “seaborn” [32] for 
visualization ; “Igraph” for network analysis [33] and 
“ggraph” [34] for network visualization.

Results
Construction of co‑expression network
The transcript per million (TPM) gene expression data 
set were filtered based on variance, and 7119 genes in the 
15 samples of ten COVID-19 patients and five healthy 
controls were used to construct the co-expression net-
work. The results of cluster analysis of the samples are 
demonstrated in (Fig.  2A). To construct the network, a 
soft-threshold of 12 was used to obtain the approximate 
scale-free topology (Additional file  1: Fig. S1). Genes 
across the 15 samples were hierarchically clustered based 
on topological overlap (Fig.  2C, D). We identified 16 
modules in which genes are coexpressed, random colors 
were assigned to the modules to distinguish between 
them. The size (number of genes/module) of each mod-
ule is presented in (Fig.  2B). To demonstrate how these 
modules were relatively distinctive, we plotted the net-
work heatmap of 400 randomly selected genes based on 

Fig. 2  Construction of weighted co-expression network. A Sample dendrogram and trait heatmap. B Module size. C and D Cluster dendrogram 
block 1 and block 2. Each color represents one specific co-expression module, and branches above represent genes. Plots produced by WGCNA R 
package Version 1.70-3)
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topological overlap matrix dissimilarity and their cluster 
dendrogram (Fig.  3A) indicating relative independence 
among these clusters.

Correlation between modules and COVID‑19 disease status
To examine the relation of COVID-19 status with the 
emerged modules, we built the eigengene adjacency 
matrix by calculating the correlation of the eigengenes 
matrix after inserting COVID-19 status to the matrix. 
The heatmap (Fig. 3B) showed the modules’ relationship 

and the correlation between the modules namely black, 
cyan, yellow, blue, and magenta and COVID-19 status.

Identification of key modules in relationship to COVID‑19 
disease status
To further determine the closest modules to COVID-19 
status, we re-clustered the eigengenes using single linkage 
method with absolute correlation as a distance function; 
the single linkage clustering algorithm looks for closest 
pair of modules to form a cluster, then cluster them with 
the next nearest module progressively until one cluster 

Fig. 3  Co-expression module analysis. A Interaction of co-expression genes based on TOM dissimilarity and the cluster dendrogram of 1000 
randomly selected genes. The colors of the axes represent respective modules. The intensity of the yellow inside the heatmap represents the degree 
of overlap, with a darker yellow representing an increased overlap. B Eigengene adjacency heatmap of different gene co-expression modules. C An 
eigengene dendrogram identified groups of correlated modules. D Heatmap of the correlation between COVID-19 status and module eigengenes. 
Column corresponds to a clinical trait, and each row corresponds to a module. Each row contains the correlation coefficients which correspond to 
the cell color; green represents negative correlation and red represents positive correlation. The P-values are stated in the brackets
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is formed [35]. As demonstrated in Fig.  3C, the closest 
three modules to COVID-19 status are magenta, yellow 
and black. Three essential measurements can help con-
firm the importance of the module to a specific trait, 1) 
Module membership (MM), which increases for a par-
ticular gene, when the module eigengene accurately rep-
resents this gene, 2) gene significance (GS) is measured 
by calculating the correlation of gene expression with 
the specific trait and 3) intramodular connectivity (K.in) 
for a gene within the module, reflecting the centrality of 
the gene to the module expression network. Based on 
WGCNA, if a gene is higher with GS, MM, and K.in, it is 
more meaningful to the clinical trait of interest [36, 37].

Explicitly, the higher the correlation between gene sig-
nificance of genes in a module and their module member-
ship, the higher its importance. Similarly, when the gene 
centrality in the network increases in parallel with gene 
significance, that also is strong evidence that key modules 
are essential in that trait. The correlations between gene 
significance and module membership as well as between 
gene significance and intramodular connectivity show 
that yellow, black, and magenta modules have the high-
est correlation values with a substantial difference to the 
next nearest module (Blue R =  0.61) (Additional file  1: 
Fig. S2). For those reasons, we selected yellow, black, and 
magenta modules for further investigation and will refer 
to them using the term key modules.

Key modules show high correlation to COVID‑19 disease 
status
The module-trait relationship was determined by cor-
relating module eigengenes with COVID-19 disease 
status to identify significant correlation. The yellow and 
the black modules exhibited the highest positive correla-
tion (R=0.91; p-value=3× 10

−6 , and R=0.86; p-value= 
3× 10

−5 , respectively; Fig.  3D). On the other hand, the 
magenta module (R=-0.96; p-value=1× 10

−8 ) exhib-
ited the highest negative correlation (Fig. 3D). Therefore, 
these three modules were identified as key modules for 
COVID-19 disease and its impact on platelets. The sig-
nificant correlations between the different GS, MM, and 
K.in for COVID-19 are illustrated in (Fig. 4A, B). We also 
showed the GS, MM, and K.in of the green module that 
showed the low correlation to COVID-19 disease status 
(Fig. 4A, B).

In summery, although all samples were used to iden-
tify the co-expression modules, the top modules were 
selected based on meeting the following criteria: 1) high 

correlation between module eigengene and COVID-19 
status, 2) close clustering with COVID-19 status using 
single linkage with absolute correlation distance, 3) 
high correlation between genes significance and module 
membership, and 4) high correlation between gene sig-
nificance and intramodular connectivity. Together those 
measures confirm the importance of the key modules in 
COVID-19 status

Key modules’ genes can differentiate COVID‑19 
from normal subjects
The classification models trained using data from key 
modules genes showed high performance in terms of 
high balanced accuracy, sensitivity, specificity, Matthews 
correlation coefficient, as well as, area under the receiver 
operating characteristic curve (AUC) (Fig.  5), suggest-
ing that the genes of these three modules are important 
in the pathology of COVID-19 disease. Furthermore, the 
accurate classification of the external validation set sam-
ples suggests that these results can be generalized and 
not limited to the analyzed data set.

Gene hub detection and visualization of module networks
Genes in the selected key modules were ranked accord-
ing to the intramodular connectivity and the top 20 genes 
of each key modules were used to visualize the network 
of each specific module (Fig.  6). Subsequently, the top 
three genes of the yellow, black, and magenta modules 
were labeled as the hub genes in their modules that are 
important for COVID-19 disease. Thus, the protein cod-
ing genes COPE, CDC37 and CAPNS1 were selected as 
the hub genes in the yellow module, whereas AURKAIP1, 
LAMTOR2, and GABARAP protein coding genes were 
selected as the hub genes in the black module. Regard-
ing the magenta module, MT-ND1, MT-ND5, and 
MTRNR2L12 were selected as hub genes. All of these 
hub genes exhibited a high intramodular connectivity, 
which established their network centrality and potentially 
vital roles in the COVID-19 disease. We also observed 
that not all of hub genes  show differential gene expres-
sion (Table 1). A full list of genes and their modules can 
be found in the supplementary tables (Additional files 2, 
3, 4, 5, 6).

Enrichment analysis of key modules
Gene ontology (GO) pathway enrichment analyses were 
performed on the yellow, black, and magenta modules 
using Targetmine platform, and the top relevant terms 

(See figure on next page.)
Fig. 4  Module features of GS, MM and K.in. A Module Membership (MM) and Gene significance (GS) are significantly correlated in the key modules 
(magenta, black, and yellow). Each point represented an individual gene within each module, which was plotted by GS on the y-axis and MM on 
the x-axis. The regression line, correlation value, and p-value were shown for each plot. B Correlation of the K.in (x-axis) and the GS (y-axis). Green 
module is not a key module and was added here for sake of comparison
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Fig. 4  (See legend on previous page.)
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of each category are presented in (Fig.  7A). The path-
way enrichment results demonstrated that the genes in 
both yellow and black modules were primarily enriched 
in pathways associated with metabolic process, protein 
translation, energy substance metabolism, mitochon-
drial activity, and oxidative phosphorylation. Genes in 
the magenta module were enriched in several pathways 
that are primarily associated with regulation of mega-
karyocyte differentiation and apoptosis, including the 
regulation of the execution phase of apoptosis. Reac-
tome showed enriched pathways of metabolism, plate-
let degranulation, and response to elevated platelet 
cytosolic Ca2+ in the yellow module. The black module 
shows enrichment of respiratory electron transport, ATP 
synthesis by chemiosmotic coupling, heat production by 
uncoupling proteins, citric acid (TCA) cycle, and respira-
tory electron transport just to name a few (Fig. 7B) (More 
detailed results are shown in Additional file 1: Fig. S3 and 
cross check of hubgenes with Disgenet database is shown 
in Additional file 6: Table: S5 [38]).

Discussion
The underlying pathophysiological mechanisms of 
thrombosis in COVID-19 are extremely complicated [39], 
and hence clearly require more examination. Inspecting 
gene co-expression patterns is proven to be an effective 
method to analyze and uncover complicated genetic net-
works. To address the aforementioned issues, in the pre-
sent study, gene co-expression analysis was performed 
on platelet RNAseq data set containing gene expression 
data from ten COVID-19 patients and five healthy con-
trols. There were three modules that were identified as 
the key modules in COVID-19, with the highest level of 

significant association. The top three genes of each key 
module with the highest intramodular connectivity were 
identified as hub genes for COVID-19 in platelets. The 
results of the enrichment analysis suggest that the key 
modules and the pathological processes underlying the 
disease are associated with energy metabolism, mito-
chondrial processes, and apoptosis. Furthermore, we also 
saw enrichment of platelet secretion and activation path-
ways. These results provide- at least in part- an insight 
into the comprehensive platelet regulatory network in 
COVID-19, which should improve the current under-
standing of the mechanisms underlying immunothrom-
bosis in COVID-19 patients. Ultimately, these findings 
might help in finding appropriate therapeutic targets.

The present study used the data in BioProject accession 
#PRJNA634489 [7] to perform the co-expression analysis 
using WGCNA. The data used in this study, which was 
generated by Manne et  al. [7], revealed that COVID-19 
disease leads to changes in platelet transcriptional pro-
files in comparison to control. Manne et al. showed that 
platelet differential gene expression in COVID-19 is asso-
ciated with enrichment of protein ubiquitination, antigen 
presentation, and mitochondrial dysfunction. The major 
differences in the genes or modules obtained in the pre-
sent study, compared with the results from other studies 
including the one by Manne et. al. [7] is that the present 
study used a more comprehensive method by employing 
WGCNA. Using this method, we were able to identify/
pull-out co-expression modules of genes, namely the 
yellow and black modules, which represent important 
regulatory modules of platelet function in COVID-19. 
In addition, we were able to identify the magenta mod-
ule, which represents genes that are negatively correlated 

0.00

0.25

0.50

0.75

1.00

Lasso Naiive Bayes Random Forest SVM XGboost

va
lu

e

AUC

Balanced Accuracy

Matthew Correlation

Sensitivity

Specificity
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with the  COVID-19 disease state and show enrichment 
in megakaryocyte differentiation and apoptotic pathways. 
This systematic and in-depth analysis  should comple-
ment results obtained from conventional DEGs analy-
sis, and therefore allow for a better understanding of the 
pathophysiological mechanisms of COVID-19 disease.

Notably, the co-expression analysis revealed a total 
cluster of 16 modules with the yellow and black mod-
ules exhibiting the strongest positive correlation and the 
magenta exhibiting the strongest negative correlation to 
COVID-19 disease. These three modules were selected as 
key modules and their genes deemed important for the 
COVID-19 disease state. This result was validated when 
the genes of these three key modules/clusters were used 
to accurately classify the subjects from another recently 
published platelet data set (Barrett et. al 2021) to either 
COVID-19 or healthy using machine learning classifiers. 
The high accuracy of this classification underscores the 
importance of these platelet gene clusters in the patho-
genesis of COVID-19 disease.

Enrichment analysis indicated that the genes in the yel-
low and black modules were primarily associated with 
platelet metabolism, energy, and oxidative phospho-
rylation. Furthermore, the analysis of the yellow mod-
ule showed enrichment of a host of platelet functional 
responses/activities, such as platelet degranulation/secre-
tion and increased platelet response to Ca2+. Indeed, 
other studies showed the COVID-19 disease to be associ-
ated with platelet activation and increased platelet alpha 
granule secretion, which are critical in the development 
of thrombosis seen in those patients [7, 8]. It is notewor-
thy that the platelet alpha granule secretion response is 
not only important for thrombus formation, but also in 
inflammation by releasing receptors that facilitate adhe-
sion of platelets with other vascular cells as well as releas-
ing a wide range of inflammatory chemokines [40].

The yellow and black modules show strong enrich-
ment in platelet metabolic processes, which is in agree-
ment with the increase in platelet activation. To this end, 
previous data have shown that platelet transition from 
inactive to active state requires alteration in ATP avail-
ability [41], and  furthermore, substrate metabolism (e.g. 
glucose) was shown to be essential for platelet activa-
tion [42], and thrombosis [43]. This seems to suggest that 
altered platelet metabolism may play a critical role in the 
pathophysiology of thrombosis in COVID-19 patients. 

COPE

CDC37

CAPNS1
ARPC1B

NUCB1

TYK2

RNH1

VBP1

RPS11

PSMC5

DBNLATP6AP1

PSMB4

SHARPIN

ILK

PACS2 TPI1

PEF1

JOSD2

CHP1

Yellow module

AURKAIP1

GABARAP

LAMTOR2

MRPL28

NDUFB10

EGLN2

MSRB2

NDUFA1

FAM134C

ARAF

WDR13

C19orf53

COASY

UBXN6

PRR14

TSSC4

SCAND1

GMPR

TRAPPC5

HDAC6

Black module

MT−ND1

MT−ND5

MTRNR2L12

MT−ND4L

MT−CYBMTATP6P1

MTRNR2L8

VWA8

MTRNR2L6

MT−ND3

MT−ND2

MT−ATP6
MT−CO3

MT−CO2

MTRNR2L5

MT−ND6

C12orf50

MTRNR2L4

MAGOHB

MTRNR2L7

Magenta module

Fig. 6  Interaction of gene co-expression patterns in the key 
identified module and hub gene abundance. The module was 
visualized using R package “ggraph” software. The node size 
corresponds to the K.in level. and the thickness of the link represents 
the strength of correlation between genes. For sake of visualiztion 
clarity, edges of weight less than 0.6 were not drawn



Page 10 of 15Alarabi et al. BMC Medical Genomics           (2022) 15:83 

It is important to note that reports have suggested that 
a state of hypermetabolic demand is one of COVID-19 
disease features, especially when sepsis develops [44]. 
Like other viruses that can impact cellular metabolism in 
human cells and utilize them to their advantage, SARS-
CoV-2 virus appears to have the ability to localize pro-
teins to mitochondria and hijack the host’s mitochondrial 
function [45]. This mechanism might explain the enrich-
ment of platelet mitochondrial processes we observed 
in the yellow and black modules. This finding is in fact 
supported by a recent study that reported that SARS-
CoV-2 impacts mitochondria in platelets, which affects 
their involvement in the pathophysiology of thrombosis 
in COVID-19 patients [46]. The enrichment of protein 
translation in the yellow and black modules suggests an 
alteration in protein synthesis and possible hijacking of 
the translation machinery of platelet by the virus. In line 
with this observation, one study suggested that the cells 
infected with SARS-CoV-2 might exhibit a faster protein 
synthesis rate, which implies a higher translation rate 
[47]. This notion requires further investigation to deter-
mine the exact mechanism underlying enhancement of 
translation in platelets of COVID-19 patient.

One particular characteristic of platelet apoptotic 
processes is phosphatidylserine (PS) exposure, which is 
essential for the generation of thrombin [48]. PS expo-
sure is found to be downregulated in activated platelets 
from COVID-19 patients due to mitochondrial dysfunc-
tion [46]. This observation is supported by the negative 
regulation of apoptotic processes in platelet enrichment 
in the negatively correlated magenta module. On the con-
trary, another report showed that COVID-19 increases 
PS externalization, which is linked to thrombosis [49]. 
The impact of platelets mitochondrial damage on hemo-
stasis seems to  depend on its severity. Thus, it leads to 

bleeding by progressing toward apoptosis if it is severe; 
or toward platelet activation pathways and development 
of thrombosis risk in case of mild damage [50]. Based 
on this reasoning, COVID-19 disease-caused mitochon-
drial damage in platelets is probably mild; and hence the 
thrombotic phenotype still prevails in these patients. 
Based on these considerations, more investigation is 
needed to confirm these observations and to understand 
the underlying mechanisms.

Additionally, we identified hub genes in each of the key 
modules. For example, in the yellow module the COPE, 
CDC37, and CAPNS1, which are protein coding genes 
involved in vesicle-mediated transport, positive regula-
tion of cellular processes, and regulation of interferons. 
Furthermore, some of these protein coding genes have 
also been investigated in platelets and shown to regulate 
important aspects of their function [51–54], Interest-
ingly, although our co-expression analysis showed that 
CAPNS1 is an important hub gene in the yellow module, 
this gene was not differentially expressed in our differ-
ential gene expression analysis. Furthermore, CAPNS1 
was found to play a significant role in regulating platelet 
activity and thrombosis under hypoxia [53], a condition 
commonly seen in severe COVID-19 patients [55]. This 
observation might indicate that some of the important 
genes in establishing thrombotic phenotype in COVID-
19 may not necessarily be differentially expressed.

The hub genes of the black module, AURKAIP1, LAM-
TOR2, and GABARAP are linked to regulation of mito-
chondrial activity, regulation of signaling processes, and 
protein targeting. Data on the role of these genes in plate-
lets is limited, thus, further investigation is warranted. It 
is noteworthy that LAMTOR2 is a known regulator of 
the MAPK/ERK and mTOR signaling pathways [56, 57], 
both of which were shown to be important in regulating 
platelet function [58, 59]. Moreover, the p14/LAMTOR2 
deficiency- which is associated with one of the primary 
immunodeficiency diseases that also include “Herman-
sky–Pudlak syndrome type 2”- has been linked to platelet 
defects [60]. However, more needs to be done to exam-
ine the exact role of LAMTOR2 in platelets of COVID-19 
patients.

In the magenta module, MT-ND1 [61], MT-ND5 [62], 
and MTRNR2L12 protein coding genes are related to 
NADH dehydrogenase activity and apoptotic processes. 
According to our analysis, all hub genes in the magenta 
module are differentially expressed and downregulated 
in COVID-19 patients in comparison to healthy con-
trols. Down regulation of MT-ND1 and MT-ND5 protein 
coding genes might, at least in part, explain the mito-
chondrial dysfunction seen in platelets of COVID-19 
patients. With respect to MTRNR2L12, it was observed 
that it is one of the differentially expressed genes in 

Table 1  Differential expression of hub genes identified in the 
key modules

(LogFC log2 transformed fold change, AveExpr Average expression, Adj.P.Val 
Adjusted P-value)

Gene LogFC AveExpr Adj.P.Val Module

MT-ND5 [62] [[-]] 3.2 14.0 2.12× 10
−5 Magenta

MT-ND1 [61] [[-]]3.1 15.2 2.32× 10
−6 Magenta

MTRNR2L12 [63, 65] [[-]]3.1 15.5 5.83× 10
−7 Magenta

AURKAIP1 [71] 1.6 3.1 4.29× 10
−3 Black

GABARAP [72] 1.2 6.4 2.75× 10
−3 Black

LAMTOR2 [56, 57, 60] 0.9 3.4 4.08× 10
−2 Black

COPE [51–54] 0.9 4.5 3.04× 10
−2 Yellow

CAPNS1 [51–54] 0.6 8.3 1.14× 10
−1 Yellow

CDC37 [51–54] 0.6 6.9 1.33× 10
−1 Yellow
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Fig. 7  Gene ontology (GO) terms and Reactome enrichment analysis of the key modules. Chord plots depicting the enriched top significant GO 
terms of biological process (A), and top significant Reactome pathways (B) in the key modules. Thickness of the connection is corresponding to the 
number of involved genes. Figures are produced using circlize R package Version 0.4.13)
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bronchoalveolar lavage fluid samples from patients 
with severe COVID-19 in comparison to control [63]. 
MTRNR2L12 is a paralog of the protein coding gene 
MTRNR2L8, and both are expressed in platelets [64]. It 
is of note that MTRNR2L12 was shown to be among the 
top 10 RNA with differential splice junctions in platelets 
of patients of multiple sclerosis [65].

In addition to the identified hub genes, a number of 
other canonical platelet genes in the yellow and black 
modules were also associated with platelet function. For 
example, SLEB and ITGA2B protein coding genes were 
present in the yellow module with high intramodular 
connectivity (ranked in the top 50) and both proteins 
are critical for platelet function [66]. Moreover, another 
canonical platelet gene that was also identified in the yel-
low module, namely ITGB3 was ranked 132 with regard 
to its intramodular connectivity, which is considered 
high in the yellow module of 681 genes. Furthermore, we 
also noticed that the protein coding gene IFITM3 shows 
high module membership (black module). The protein 
encoded by this gene is an interferon-induced mem-
brane protein that was shown to be important in immu-
nity against influenza A H1N1 virus, West Nile virus, 
and dengue virus [67–69]. Most recently, IFITM3 was 
also found  to be upregulated protein in COVID-19 dis-
ease [7, 70], which importantly was also demonstrated/
confirmed by Western blot [7].

The present study has certain limitations that should 
be noted. Firstly, the analysis focused on only one data 
set, due to limited access to platelet gene expression data 
that were collected from COVID-19 patients. Therefore, 
additional data sets should be analyzed, if available, to 
validate our findings and/or obtain more representative 
results. Also, the number of samples was 15, which may 
be associated with some noise, albeit it is the minimum 
number of samples recommended for co-expression 
analysis by WGCNA. Finally, any limitations in the origi-
nal study, from which the data was obtained will also be 
reflected in the results of this study.

In conclusion, our co-expression analysis of a plate-
let RNAseq data set from COVID-19 patients and 
healthy controls revealed 16 modules, amongst which 
the yellow, black, and magenta were identified as the 
most critical in COVID-19 disease and validated using 
machine learning. Additionally, nine hub genes were 
determined to potentially serve key roles in the patho-
physiological mechanisms of COVID-19 in the context 
of platelet biology. The positively associated yellow and 
black modules were identified to be involved in platelet 
degranulation, energy metabolism, and mitochondria. 
The negatively associated magenta module was asso-
ciated with interactive pathways of apoptosis. These 
data should help expand our understanding of the 

underlying mechanisms of thrombosis in COVID-19 
disease and help promote and guide future experimen-
tal studies to investigate the roles of the protein coding 
genes in the pathophysiology of this disease. Addition-
ally, these genes may serve as novel therapeutic targets 
for treating patients.
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