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Abstract 

Background:  The recent development and enormous application of parallel sequencing technology in oncology 
has produced immense amounts of cell-specific genetic information. However, publicly available cell-specific genetic 
variants are not explained by well-established guidelines. Additionally, cell-specific variants interpretation and clas‑
sification has remained a challenging task and lacks standardization. The Association for Molecular Pathology (AMP), 
the American Society of Clinical Oncology (ASCO), and the College of American Pathologists (CAP) published the first 
consensus guidelines for cell-specific variants cataloging and clinical annotations.

Methods:  AMP–ASCO–CAP recommended sources and information were downloaded and used as follows: relative 
knowledge in oncology clinical practice guidelines; approved, investigative or preclinical drugs; supporting literature 
and each gene-tumor site correlation. All information was homogenized into a single knowledgebase. Finally, we 
incorporated the consensus recommendations into a new computational method.

Results:  A subset of cancer genetic variants was manually curated to benchmark our method and well-known 
computational algorithms. We applied the new method on freely available tumor-specific databases to produce a 
clinically actionable cancer somatic variants (CACSV) dataset in an easy-to-integrate format for most clinical analytical 
workflows. The research also showed the current challenges and limitations of using different classification systems or 
computational methods.

Conclusion:  CACSV is a step toward cell-specific genetic variants standardized interpretation as it is readily adaptable 
by most clinical laboratory pipelines for somatic variants clinical annotations. CACSV is freely accessible at (https://​
github.​com/​tsoba​hytm/​CACSV/​tree/​main/​datas​et).

Keywords:  Somatic genetic variants, AMP–ASCO–CAP recommendations, Tumor site(s), Genetic variant class, Gene-
tumor consensus
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Introduction
Next-generation sequencing (NGS) is a major techno-
logical advancement in biological sciences. NGS is a 
high-throughput, efficient and cost-effective method in 

contrast to single sequence or gene-by-gene techniques 
and it has replaced most hybridization assays for genetic 
variants screening and detection. NGS technology has 
created a multi-dimensional data space. Indeed, sequenc-
ing has allowed for the identification of new genetic 
determinants for multiple physiological phenotypes [1, 
2]. It has quickly become a component of diagnostic ser-
vices in healthcare [3]. Genetic-based disease diagnosis, 
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prognosis and management can improve clinical out-
comes and patient care [4, 5].

Genetic variants represent differences in the deoxyri-
bonucleic acid (DNA) molecule (ISBN: 978-0-12-404748-
8). A genetic variant is an observable change from the 
most commonly known nucleotide(s) at a given loci and 
could be perceived as constitutional or somatic [6]. Con-
stitutional or germline variants occur within germ cells 
and may pass to offspring [7, 8]. Germline variations are 
used as predictive biomarkers in tumor diagnostics, for 
predisposition and for disease risk estimations [9–12]. 
Conversely, somatic variants occur post-fertilization and 
are cell specific [7, 8]. Cell-specific variants harbor many 
genomics locations including cancer driver genes [13, 
14]. Cancer drivers’ genes behavior can be: tumor inten-
sifying (oncogenes), tumor suppressing, and some genes 
with a dual nature. For instance, the NOTCH gene is an 
established tumor suppressor in many solid tumors such 
as hepatocellular carcinoma and non-melanoma skin 
cancer while it behaves like an oncogene in T-cell acute 
lymphoblastic leukemia [15]. This highlights the impor-
tance of the gene-tumor site dimension in identifying 
actionable somatic variants.

Small nucleic acid variations involving single, double 
or triple nucleic acid bases are more readily detectable 
by most NGS platforms and bioinformatics workflows 
compared to structural changes such as copy number 
variations (CNVs) or other chromosomal abnormalities. 
For this reason, developing “trouble-free” accumulative 
large somatic databases such as The Cancer Genome 
Atlas (TCGA) (https://​portal.​gdc.​cancer.​gov/) is feasible. 
The spatial catalogue of cell and tissue types in cancer 
genomic research has revealed the complexity of carcino-
genesis and tumor heterogeneity [16].

Cancer heterogeneity is defined as the presence of a 
subpopulation of cancer cells with various phenotypes 
and genotypes that may lead to contrastive biological 
behaviors within the primary tumor known as intra-
tumor heterogeneity. When this occurs between tumors 
of the same histopathological subtype, it is defined as 
inter-tumor heterogeneity [1, 16]. The characterization 
of intra-tumor heterogeneity for multiple tumor sam-
ples obtained from the same patient can be referred to 
as spatial heterogeneity if different cancer cells exist in 
the same tumor site. If different cancer cells are distantly 
recurrent or subsequently local in the same patient, this 
is referred to as temporal heterogeneity [17].

Challenges in analyzing information in cancer genom-
ics have been addressed by the development of specific 
tumor databases and computational tools [13, 18–20]. A 
wealth of genomic data has been generated and consoli-
dated into public repositories and has stimulated ideas 
from data and machine-learning researchers. The list of 

database examples includes the Catalogue of Somatic 
Mutations in Cancer (COSMIC) (https://​cancer.​sanger.​
ac.​uk/​cosmic) [18] and cBioPortal (https://​www.​cbiop​
ortal.​org/) [19]. However, somatic-specific hubs may 
include impoverished or non-specific tumor diagnoses 
and lack genetic clinical annotations [21]. Subsequently, 
thoroughly reviewed cancer resources have been devel-
oped to provide more clinically actionable information. 
For instance, My Cancer Genome (https://​www.​mycan​
cerge​nome.​org) [22] and Personalized Cancer Therapy 
(PCT) (https://​pct.​mdand​erson.​org) are highly curated 
with potential clinical utility. Though, it is not readily to 
incorporate into analysis pipelines or available for bulk 
downloads.

Several in silico algorithms have been developed to 
measure the impact of small genetic variants on gene 
function [20, 23–26]. Some methods perform differently 
in estimating the effect of germline and somatic variants 
such as FATHMM-MKL [20] which could be related to 
a lack of cell-specific molecular background knowledge. 
Other predictive models do equally well with general and 
cell-specific variants (CADD, DANN, & ClinPred) [20, 
23]. In addition, oncogenic-specific computational meth-
ods like CScape have been created to precisely evaluate 
the consequences of somatic variants [20]. Other meth-
ods predict the causality of genes in cancers using dif-
ferent molecular and genetics background knowledge. 
Truly, there is no gold standard for computational tools 
used for classifying and interpreting cell-specific variants 
in tumors [16, 21].

The lack of standardization in the interpretation of 
cancer genetic variants in clinical settings is fairly notice-
able [15]; a survey of over 44 labs revealed a discernible 
degree of variation in the reporting and interpretation 
of cancer variants [21]. The tier-systems used for vari-
ants clinical interpretation were found to have unique 
proportions among the labs surveyed. While 40% applied 
tier five, 30% used tier three, and 30% implemented other 
classification systems. Uniformity in clinical interpreta-
tion and reporting of results among different laborato-
ries is crucial for reaching a common standard. In 2017, 
a multidisciplinary working group tasked with assess-
ing the current status of NGS–based cancer testing and 
establishing a standardized consensus for classification, 
annotation, interpretation, and reporting conventions for 
somatic sequence variants was convened by the Associa-
tion for Molecular Pathology with representation from 
the American College of Medical Genetics and Genom-
ics, the American Society of Clinical Oncology, and the 
College of American Pathologists [21]. Jointly the first 
recommendations for somatic variants interpretation in 
cancer was published (known as the AMP–ASCO–CAP 
recommendations).

https://portal.gdc.cancer.gov/
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
https://www.cbioportal.org/
https://www.cbioportal.org/
https://www.mycancergenome.org
https://www.mycancergenome.org
https://pct.mdanderson.org
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The recommendations provide a four-tier classifi-
cation system for cancer genetic (somatic) variants 
based on the availability and significance of clinical and 
genomic information (Fig. 1). Class I includes variants 
with strong clinical significance, class II covers vari-
ants with potential clinical significance, class III is for 
variants with unknown clinical significance, and class 
IV includes variants with significant allele frequencies 
in the general population. The level of evidence is also 
catalogued into four groups. Group A contains genetic 
knowledge in oncological professional guidelines or 
therapeutic information for an FDA-approved drug for 
a particular type of cancer. Group B includes reported 
knowledge in well-powered studies with consensus 
(gene-tissue vector) by specialists. Group C includes 

knowledge about a drug investigation for a specific 
tumor type, an FDA-approved drug for any given tumor 
type, or knowledge from a few small studies with lim-
ited gene-tissue consensus. Finally, group D includes 
data about preclinical trials or preliminary publications 
with no consensus [21].

We incorporated the AMP–ASCO–CAP recommen-
dations into a new computational method (Fig. 2). A list 
of genetic variants was manually curated for the clinical 
annotations for the method evaluation. The new classi-
fier was applied to annotate publicly available somatic 
variants that are trouble-free on most NGS platforms 
and we developed a clinically actionable cancer somatic 
variants (CACSV) dataset in easily incorporated for-
mats (JSON).

Fig. 1  The current (2017) consensus guidelines for genetic variant interpretation in tumors
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Methods
Level of evidence
Identifying the source for each evidence level is impor-
tant for genetic variants classification systems. We used 
the National Comprehensive Cancer Network Clinical 
Practice Guidelines in Oncology (NCCN Guidelines®) as 
the professional guidelines for variants clinical informa-
tion. Precision Oncology Knowledge Base (OncoKB) was 
our source of druggable genetic variants with approved, 
investigative treatments or preclinical evidence. The type 
and the level of supportive literature were collected from 
cBioPortal and COSMIC. Finally, the level of concur-
rence (of the gene-tissue dimension) was measured by 
cataloging the knowledge of genes in the Cancer Gene 
Census (CGC) (https://​cancer.​sanger.​ac.​uk/​census) and 
the Candidate Cancer Gene Database (CCGD) (http://​
ccgd-​starr​lab.​oit.​umn.​edu/) in comparison to their tissue 
involvement (Fig. 3, Additional file 1: Table S1).

Text mining
Information about actionable genetic variants in the 
NCCN guidelines was collected manually, solely for sin-
gle genetic variants (SNVs). There were non-specific 

descriptions for some variants in the NCCN guidelines; 
for instance, the NCCN panel suggested the use of KRAS 
activation variants (codon 12 and others) as therapeutic 
and prognostic biomarkers for non-small-cell lung car-
cinoma (NSCLC) patients. Consequently, only kinase 
domain KRAS variants with high confidence predictive 
scores (CScape) and predicted tumor drivers (intOgen) 
were selected. Other examples are hyper-mutated genes 
like the BRCAs (1/2) variants in ovarian cancers. The 
NCCN panel discussed the use of BRCA changes (ger-
mline or somatic) to inform maintenance therapy and 
TP53 variants in acute myeloid leukemia (AML) patients. 
The AML panel suggested the use of such variants as 
prognostic biomarkers. Genes known to harbor mixed 
genetic variants (germline and somatic) require care-
ful curation. We used single-gene expert-reviewed data-
bases (BRCA Exchange (BRCAEx) and the International 
Agency for Research on Cancer (IARC)) to carefully 
review such genetic variants. Only BRCAEx (https://​
brcae​xchan​ge.​org/) summary view pathogenic variants 
were selected. IARC-TP53 (https://​p53.​iarc.​fr/) somatic 
variants were selected only if reported from the hemat-
opoietic system as the primary site. In addition, MET 
exon 14 skipping variants in NSCLC guidelines were 

Fig. 2  The adaptive algorithm for the AMP–ASCO–CAP recommendations

https://cancer.sanger.ac.uk/census
http://ccgd-starrlab.oit.umn.edu/
http://ccgd-starrlab.oit.umn.edu/
https://brcaexchange.org/
https://brcaexchange.org/
https://p53.iarc.fr/
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recommended to be used as therapeutic biomarkers for 
Crizotinib (as category 2A). These types of genetic vari-
ants require specific laboratory validation. We collected 
only the skipping variants with known experimental 
validation [27, 28]. As a result, an expanded list for the 
unspecified genetic variants in the NCCN guidelines was 
developed (Additional file 2: Table S2).

Data acquisition and integration
OncoKB (https://​www.​oncokb.​org/) was used as an infor-
mation source on therapeutic options (Nov, 2020). We 
encountered the same challenge for some genetic vari-
ants that have generic or non-specific descriptions. For 
example, EGFR gene exon 19 deletion and NRAS onco-
genic mutations were listed as actionable variants. Only 
variants that mentioned the same consequence and were 
predicted to be deleterious by tumor-specific methods 
CScape (http://​cscape.​bioco​mpute.​org.​uk/) and IntOgen 
(https://​www.​intog​en.​org/​search) were selected (Table 1, 
Additional file 3: Table S3) (Nov, 2020).

Cancer genetic variant hubs were downloaded. The 
Oncotree model (http://​oncot​ree.​mskcc.​org/) was used 
as a standard tissue spatial tree for all tumors. For each 
database, tumor primary locations were mapped to 

the same or nearest histopathology and cell type on the 
Oncotree model (Table  2). We focused on seven major 
cancer sites in our work: bowel, breast, brain/central 
nervous system (CNS), esophagus/stomach, skin, lung 
and pancreas. The latest COSMIC version dataset was 
obtained in July 2020, intOgen’s latest version, and the 
bulk dataset of cBioPortal was downloaded in August 
2020. In the cBioPortal dataset, genetic variants with no 
specified tumor origin sites or in samples with low tumor 
cellularity were deemed “problematic” and excluded.

PanCan studies were classified as well-powered while 
the others (single-center) were considered as small 
studies. A genetic variant supported by more than 5 
single studies was considered as variant with multiple 
findings while those with fewer than 5 studies were 
classified as variants with a few reports (Fig.  2). Con-
sensus was defined based on a gene’s candidacy as a 

Fig. 3  The developed algorithm for measuring cancer gene 
consensus in different cells of origins. CGC tiers I and II are equally 
ranked

Table 1  List of single nucleotide variants with specific 
consequence on OncoKB in the selected tumors

OncoKB alteration Gene Tumor site

Exon 14 splice mutation MET Non-Small Cell Lung Cancer 
(NSCLC)

Exon 17 mutations KIT Melanoma

Exon 19 deletion EGFR Non-Small Cell Lung Cancer 
(NSCLC)

Exon 19 insertion EGFR Non-Small Cell Lung Cancer 
(NSCLC)

Exon 20 insertion EGFR Non-Small Cell Lung Cancer 
(NSCLC)

Oncogenic Mutations KRAS Colorectal cancer, All solid tumors

Oncogenic Mutations NRAS Colorectal cancer, Melanoma

Oncogenic Mutations ALK NSCLC

Oncogenic Mutations BRCA1 Breast Cancer (BC)

Oncogenic Mutations BRCA2 BC

Oncogenic Mutations ERBB2 BC, NSCLC

Oncogenic Mutations FGFR2 All solid tumors

Oncogenic Mutations FGFR3 All solid tumors

Oncogenic Mutations KIT Melanoma

Oncogenic Mutations PIK3CA BC

Oncogenic Mutations TSC1 CNS

Oncogenic Mutations TSC2 CNS

Oncogenic Mutations ARAF NSCLC

Oncogenic Mutations ESR1 BC

Oncogenic Mutations FGFR1 All solid tumors

Oncogenic Mutations MAP2K1 Melanoma, NSCLC

Oncogenic Mutations MTOR All solid tumors

Oncogenic Mutations ATM All solid tumors

Oncogenic Mutations CDKN2A All solid tumors

Oncogenic Mutations NF1 All solid tumors

Oncogenic Mutations PTEN All solid tumors

Oncogenic Mutations SMARCB1 All solid tumors

https://www.oncokb.org/
http://cscape.biocompute.org.uk/
https://www.intogen.org/search
http://oncotree.mskcc.org/


Page 6 of 11Sobahy et al. BMC Medical Genomics           (2022) 15:95 

tumor driver given tissue type using expert-curated 
resources. Census scores were developed to reflect 
the degree of consensus per tumor site for each gene. 
The score criteria is based on consistency of reviewed 
knowledge between a gene and a distinct cancer tis-
sue. For this purpose, we used the Cancer Gene Cen-
sus (CGC), and Candidate Cancer Gene Database 
(CCGD). A list of all available genes from both sources 
was made. Next, all tissue types were aligned with the 
Oncotree model (Table 2), and then multiple gene-tis-
sue vectors were generated. CGC-based vectors were 
given higher ranking (consensus score = 1) and CCGD 
vectors were given consensus scores of 2, otherwise 
vectors were denoted with a value of zero. (Additional 
file 1: Table S1).

Results
Testing dataset
We collected all somatic variants on the aforementioned 
databases into a single collective list. All variants that 
intersected with the gnomAD (https://​gnomad.​broad​insti​
tute.​org/) database were removed, returning 2,952,167 
somatic variants. We simulated the list with the selected 
tumor sites, producing eleven specific tumor-site data-
sets (Fig. 4).

Classification
Every simulated dataset was interpreted and catalogued 
by the new algorithm. Since germline-based filtration 
was performed, our classifier ranked only the first three 
tiers of the AMP–ASCO–CAP guidelines (Table 3). The 
tumor tissue with the most potentially actionable genetic 
variants (tiers I & II) was the CNS with 413 variants while 
4 tumor sites—anal, esophageal, gastric and pancreas—
showed no genetic variants on tier I and had the lowest 
potentially actionable genetic variants (338). All of the 
class II variants in the tumors had level D evidence of 
preclinical trials or biological attestation in solid tumors. 
Most of the tier I variants were ranked that way because 
of relative discussion in the NCCN guidelines in non-
specific manner and predicted as tumor drivers by intO-
gen and CScape (Additional file 2: Table S2).

Comparison
Publicly available software that build-in for the AMP–
ASCO–CAP recommendations [29] is limited. Two 
methods were selected for comparative analysis: the 
Variant Interpretation for Cancer (VIC) (https://​github.​
com/​HGLab/​VIC) [29] and the Cancer Genome Inter-
preter (CGI) (https://​www.​cance​rgeno​meint​erpre​ter.​org/​
home) [1]. VIC, which was developed to provide clinical 
annotations for somatic genetic variants according to the 

Table 2  Mapped tumor sites for the used public database with the Oncotree model

Origin Sub NCCN COSMIC intOgen cBioPortal OncoKB

Breast breast breast breast BRCA​ ACBC, BLPT, BPT, BRCA, 
BRCNOS, BREAST, DCIS, 
IDC, ILC, IMMC, MBC, 
MDLC, MPT, PD, SPC

Breast Cancer

Bowel anal anal large_intes‑
tine > SS1 = anus

COREAD NA Colorectal Cancer

Bowel rectal rectal large_intes‑
tine > SS1 = rectum

COREAD READ, COADREAD Colorectal Cancer

Bowel colon colon large_intes‑
tine > SS1 = colon

COREAD COAD, MACR, COAD‑
READ

Colorectal Cancer

CNS or Brain cns cns central_nervous_sys‑
tem

GBM, LGG, MB, NB, PA AASTR, AOAST, AODG, 
ASTR, DIFG, GB, GBM, 
LGGNOS, MBL, OAST, 
ODG

CNS Cancer, Glioma, 
Embryonal Tumor

Esophagus or Stomach esophageal esophageal oesophagus ESCA ESCC, ESCA, STES Esophagogastric Cancer

Esophagus or Stomach gastric gastric stomach STAD DSTAD, ESCA, ISTAD, 
MSTAD, STAD, STOM‑
ACH, TSTAD

Esophagogastric Cancer

Skin melanoma melanoma PH = malignant_mela‑
noma

CM ACRM, DESM, MEL, 
SKCM, SKLMM

Melanoma

Pancreas pancreas pancreas pancreas PAAD IPMN, MCN, PAAD NA

Lung nsclc nsclc lung > HS1 = non_
small_cell_carcinoma

NSCLC LUAD, LUSC, NSCLC Non-Small Cell Lung 
Cancer, Lung Squamous 
Cell Carcinoma

Lung sclc sclc lung > HS1 = small_
cell_carcinoma

SCLC NA NA

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://github.com/HGLab/VIC
https://github.com/HGLab/VIC
https://www.cancergenomeinterpreter.org/home
https://www.cancergenomeinterpreter.org/home


Page 7 of 11Sobahy et al. BMC Medical Genomics           (2022) 15:95 	

recommended 4-tier system, was published in Aug 2019. 
The CGI ranks somatic genetic variants by a different 
4-tier metric (Table 4). CGI provides a hierarchical struc-
ture for the tumor sites, while VIC lays out a list of tumor 
sites for the user input [1, 29].

To evaluate the new method and the other computa-
tional tools, a subset of genetic variants were collected 
for manually curation by clinical geneticist. Fifteen 

Fig. 4  Summary of the testing data acquisition and processing

Table 3  The number of ranked somatic variants per class per 
tumor site-specific data-set

*The total is not a unique list

Tumor site I II III Actionable

breast 53 338 2951776 391

colon 7 338 2951822 345

anal 0 338 2951829 338

gastric 0 338 2951829 338

esophageal 0 338 2951829 338

cns 73 340 2951754 413

sclc 19 324 2951824 343

rectal 25 330 2951812 355

melanoma 41 314 2951812 355

pancreas 0 338 2951829 338

nsclc 53 300 2951814 353

Total* 271 3636 32469930 3907

Table 4  Somatic variant interpretation catalogs by the 
consensus guidelines and their equivalent on CGI

Class VIC/AMP–ASCO–CAP CGI

I Strong clinical significance Predicted driver

II Potential clinical significance Predicted passenger

III Uncertain significance Known in

IV Benign or likely bening Not protein-affecting or 
likely neutral for onco‑
genesis
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genetic variants were randomly selected from each can-
cer site-dataset, returning a list of 186 mutations. The 
curated subset resembled the ground “truth” for genetic 
variants clinical annotations. The selected subset had a 
small number of significant genetic variants (4%). Only 
two genetic variants were annotated as tier one, and six 
mutations were classified as tier two. Both tiers were 
recognized as true positives (TP), while the remaining 
variants were classified as “true” negatives (TN) for com-
parison purposes (Additional file 4: Table 4).

The results of the computational methods were incon-
sistent with each other. Individually, VIC and CGI did not 
provide clinical annotation for a significant number of 
the genetic variants (~ 60% of the subset). VIC classifica-
tion had the highest accuracy and specificity (0.89, 0.99). 
Our method showed the best sensitivity, availability of 
clinical annotation (coverage), area under the receiver 
operating characteristic (auROC), and negative predic-
tive value (NPV). The positive predictive value (PPV) was 
not considered due to the limited number of TP (8 vari-
ants). The curated subset had an imbalanced ratio of TP 
and TN (1:23) which could be challenging for methods 
evaluation. To examine the effect of this disproportional 
ratio on the ability an algorithm to maintain a good pre-
cision-recall trade-off, the area under the precision-recall 
curve (auPRC) was used (Table 5, Fig. 5).

Discussion
The application of parallel sequencing in oncology for 
research and diagnostics has resulted in the creation of 
immense size of databases [30–32]. The availability of 
multiple, expert-reviewed sources for onco-genetics 
has deepened our understanding of tumorigenesis and 
expanded the tumor-molecular networks. In addition, the 
development of genetic variants predictive models and 
classifiers has helped in filtering, classifying, and inter-
preting cancer genetic variants in clinical settings. None-
theless, observable inconsistencies between analytical 
workflows have created a demand for a clinical standard 
[21]. The AMP–ASCO–CAP recommendations provide 
the first standardized approach for cataloguing cancer 
genetic variants. The guidelines suggest extrapolating 
the ACMG/AMP recommendations [33] for interpreting 
constitutional variations and proposing a new algorithm 

for tumor-specific variants classification. In this study, 
the AMP–ASCO–CAP recommendations were incorpo-
rated and applied to publicly available somatic variants.

In our attempt to build-in the recommended guide-
lines, we needed to define some of the requirements for 
achieving amenable adherence and for reducing ambi-
guity. The AMP–ASCO–CAP recommendations sug-
gested the use of medical guidelines to provide a source 
of accurate clinical utility; however, multiple oncologi-
cal professional guidelines are used in clinical practice. 
The list includes: American Society of Clinical Oncol-
ogy (ASCO), European Society for Medical Oncology 
(ESMO), and National Comprehensive Cancer Network 
Clinical Practice Guidelines in Oncology (NCCN Guide-
lines®). Understandably, subtle yet detectable variations 
in regional and institutional guidelines exist, in particu-
lar with regards to the guidelines descriptions of genetic 
screening and treatment options [34]. For example, 
eight guidelines suggested treatments for breast cancer 
(BC) patients with BRCA variants or with high famil-
ial risk for developing BC. Three guidelines suggested 
the use of platinum therapy as neoadjuvant therapy for 
BRCA-mutated metastatic BC for women under the age 
of 40 while the NCCN guidelines recommended the use 
of the PARP inhibitor olaparib for treatment of BRCA-
mutated HER2-negative BC [34]. Ideally, congruent clini-
cal protocols would provide improved and standardized 
healthcare delivery. In this study, we chose only a single 
oncological professional guideline.

The ground “truth” subset had a considerably small 
size relative to the “original” cancer datasets and only 8 
genetic variants with known/potential clinical signifi-
cance or TP. Additionally, a significant number of genetic 
variants (~ 60%) had no clinical interpretation by the 
used in silico algorithms, except our method. However, 
the lack of clinical annotations in bioinformatics tools 
or cancer genomic databases is fairly common in cancer 
genetics. VIC, CGI, and our method performances were 
significantly disparate on the curated genetic variants. 
VIC had the highest accuracy (0.89), however it only pro-
vided classification for 73 genetic variants (of 186). Our 
method provided full clinical annotation for the subset 
and had the best sensitivity and auROC. CGI was not 
designed to follow the 2017 guidelines (Table 4), however, 

Table 5  Computational methods evaluation in comparison to the clinically-classified subset

Negative predictive value (NPV) is the proportion of true negative to all negatives (true or false), and coverage appraise the availability of clinical annotation by the 
method

Method Sensitivity Specificity NPV Accuracy auROC Coverage

CACSV 1 0.6 1 0.53 0.75 1

VIC 0 0.99 0.90 0.89 0.49 0.4

CGI 0.14 0.19 0.67 0.19 0.16 0.38
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its inclusion in the results may reflect the potential dis-
crepancies when different classification systems are 
implemented.

The discrepancy between our classifier and other 
methods is not unexpected. The CGI ranks somatic 
genetic variants based on level of evidence from manu-
ally curated genomic databases, including ClinVar [31]. 
In addition, tumor-driver genes were predicted using 
the analysis of large cancer cohorts such as The Cancer 
Genome Atlas and the International Cancer Genome 
Consortium (https://​icgc.​org/) [35] and then verified by 
the availability of experimental or computational valida-
tion. While ClinVar provides clinical and experimental 
evidence for germline genetic variants, it lacks informa-
tion concerning somatic alterations. The AMP–ASCO–
CAP guidelines suggested the use of ClinVar for tumor 
germline variants in the current state [21]. The guidelines 
also do not count in silico analysis for any cohort size or 
the score of predictive models as sufficient evidence for 
clinical action [21]. VIC uses prediction scores from mul-
tiple methods and uses consistency threshold of at least 

four in their algorithm criteria. We used only somatic 
genetic variant predictive models (as they are shown 
to have better false positive rates [20]) and we used 
them only to verify oncogenic variants in genes that are 
reported in the professional guidelines. We suggest cau-
tion in interpreting these variants as they may require 
additional experimental verification. In addition, VIC 
provides a more dynamic option for variant interpreta-
tion through manual inputs by users which would change 
variant classifications from the “default” settings.

We acknowledge some limitations in the CACSV 
database. First, there was no consideration for tumor 
pathway involvement. Cancer molecular networks are 
complex and frequently evolving; a good implementa-
tion of tumor-specific networks would allow for better 
variant classification. In addition, consensus guidelines 
recommend fine mapping to the nearest cell type: the 
analytical principal in the interpretation of variants 
with unknown significance. We plan to address these 
shortcomings in future updates of the CACSV. Also, 
oncologists’ professional guidelines provide a range 

Fig. 5  Computational tools performance evaluation. a Graph chart analysis for the methods’ clinical annotation performance. b Precision-recall 
trade-off curve

https://icgc.org/
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of therapeutic biomarkers including gene expressions, 
fusions and translocations while our approach covers 
only small DNA genetic variants as some of the other 
biomarkers are not easily detectable by current parallel 
sequencing methods and are screened by other molecu-
lar assays. Prospective CACSV releases will cover other 
complex biomarkers: the availability of tumor-specific, 
FDA-approved treatments or investigative therapies is 
a key criterion in the AMP–ASCO–CAP guidelines. In 
our current work, OncoKB was used for existing infor-
mation about active or approved treatments. Adapting 
consensus guidelines should provide a global knowl-
edgebase of all available treatments. We will include 
other international resources in the future, e.g. the Uni-
versity Hospital Medical Information Network (UMIN) 
(https://​www.​umin.​ac.​jp/​engli​sh/) [36]. We are also 
working on developing a user graphical interface to the 
CACSV to reach a wider range of users that would also 
provide a sharable genetic variants hub for the clinical 
and research communities.

Conclusion
We’ve developed a simulated database (CACSV) for mul-
tiple tumors that provides clinical annotations for pub-
licly available cancer genetic variants by a new algorithm 
that incorporates AMP–ASCO–CAP recommendations. 
The fully classified dataset is available as built-in formats 
(JSON) by most bioinformatics pipelines in clinical and 
research settings. CACSV is freely available at https://​
github.​com/​tsoba​hytm/​CACSV/​tree/​main/​datas​et.
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