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Abstract 

Background:  For the most part, genome-wide association studies (GWAS) have only partially explained the herit‑
ability of complex diseases. One of their limitations is to assume independent contributions of individual variants to 
the phenotype. Many tools have therefore been developed to investigate the interactions between distant loci, or 
epistasis. Among them, the recently proposed EpiGWAS models the interactions between a target variant and the 
rest of the genome. However, applying this approach to studying interactions along all genes of a disease map is not 
straightforward. Here, we propose a pipeline to that effect, which we illustrate by investigating a multiple sclerosis 
GWAS dataset from the Wellcome Trust Case Control Consortium 2 through 19 disease maps from the MetaCore 
pathway database.

Results:  For each disease map, we build an epistatic network by connecting the genes that are deemed to interact. 
These networks tend to be connected, complementary to the disease maps and contain hubs. In addition, we report 
4 epistatic gene pairs involving missense variants, and 25 gene pairs with a deleterious epistatic effect mediated by 
eQTLs. Among these, we highlight the interaction of GLI-1 and SUFU, and of IP10 and NF-κ B, as they both match 
known biological interactions. The latter pair is particularly promising for therapeutic development, as both genes 
have known inhibitors.

Conclusions:  Our study showcases the ability of EpiGWAS to uncover biologically interpretable epistatic interactions 
that are potentially actionable for the development of combination therapy.
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Background
The development of Genome-Wide Association Studies 
(or GWAS) has made it possible to explore the genetic 
causes of the heritability of complex diseases. In such 
studies, large cohorts of cases and controls are jointly 
studied in order to discover loci associated with the dis-
ease. This is typically achieved through a series of uni-
variate statistical tests of association between a Single 
Nucleotide Polymorphism (SNP) and the phenotype [1]. 
Though the statistical validity of this approach is indis-
putable, it suffers from a lack of statistical power because 

of high dimensionality and multiple hypothesis testing 
[2]. Another limitation of this approach is that the lack 
of direct biological explanations for the significant SNPs 
hinders the interpretability of GWAS.

In addition, single-locus analyses, by design, do not 
take into account interactions between distinct genes, 
or epistasis [3]. This is restrictive because genes do not 
act in isolation but interact with each others. In recent 
years, many approaches to epistasis detection have 
been proposed. Among them, the recently proposed 
EpiGWAS [4] focuses on interactions between a spe-
cific SNP and the rest of the genome. This contrasts 
with the more frequent strategy of exhaustive pairwise 
testing. The target SNP is chosen on the basis of an 
already established linked with the phenotype, which 
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facilitates interpretation and reduces the number of 
interactions to study. In addition, rather than studying 
interactions between two SNPs, EpiGWAS models the 
interaction of the target SNP with all other variants in 
the genome at once.

In practice, one is likely to be interested in querying 
more than one target SNP. A possible source of target 
SNPs is so-called disease maps, that is to say high-qual-
ity, expert-curated representations of the mechanisms 
involved in a disease. Disease maps contain signalling, 
metabolic and gene regulatory pathways and can be 
represented as pairs of interacting genes. Any SNP con-
nected to these genes is therefore a reasonable target 
SNP. In this article, we show how to apply EpiGWAS with 
a set of disease maps to identify pairs of genes that are 
likely to be interacting towards the disease of interest. We 
illustrate our approach on a case study of multiple sclero-
sis (MS), a chronic disease damaging the central nervous 
system [5].

A number of marketed drugs [6] attenuate the symp-
toms of multiple sclerosis. However, an efficient drug tar-
geting its root causes is still elusive. This is partially due 
to our limited understanding of the mechanisms govern-
ing the diseases. Several studies have demonstrated that 
heritability is a major component in multiple sclerosis [7, 
8], motivating the use of GWAS to study it. At least four-
teen GWAS on multiple sclerosis have been published so 
far [9], identifiying hundreds of loci [10, 11] statistically 
associated with the disease. The biology behind some of 
these loci has been clarified [12–14], although it remains 
unexplained for the majority of associated loci [9].

At least two gene–gene interactions have been dis-
covered in multiple sclerosis: high levels of c-Jun may 
cause enhanced myelinating potential in Fbxw7 [15], and 
DDX39B is both a potent activator of IL7R exon6 splic-
ing and a repressor of sIL7R [16]. An additional tripartite 
genic interaction has also been reported [17]: epistasis 
between the HLA-DRB1, HLA-DQA1, and HLA-DQB1 
loci increases susceptibility. This further motivates the 
study of epistasis to understand the genetic basis of mul-
tiple sclerosis.

In this article, we use EpiGWAS on the multiple scle-
rosis GWAS from the Wellcome Trust Case Control 
Consortium 2 [18] to score interactions between all 
pairs of genes contained in 19 multiple sclerosis disease 
maps from MetaCore [19]. Our analysis yields 4 gene 
pairs involving missense variants, and 25 gene pairs with 
epistasis mediated by eQTLs. Among these interactions, 
two are already known: the direct binding interaction 
between GLI-I and SUFU, involved in oligodendrocyte 
precursor cells differentiation, and the regulation of 
IP10 transcription by NF-κ B. This confirms the capac-
ity of the statistical study of epistasis to detect biological 

interactions that further our understanding of disease 
mechanisms.

Methods
Data
GWAS data from WTCCC2
The Wellcome Trust Consortium Case Control 2 
(WTCCC2) multiple sclerosis data set consists of 9 772 
cases and 17  376 controls analyzed with the Illumina 
Human 660-Quad and Illumina 1.2M platforms. All 
data sets are composed of samples of European descent, 
but hailing from 15 different countries. The presence of 
population structure, confirmed by a genomic inflation 
factor (GIF) of 3.72, is poised to lead to inference issues. 
To avoid this problem, we restrict ourselves to Caucasian 
British samples in both cases and controls. The resulting 
dataset consists of 2 048 cases and 5 733 controls with a 
GIF of 1.06, which proves the homogeneity of the data-
set. The selected controls come from two distinct cohorts 
from the UK Blood Services (NBS) and the 1958 British 
Birth Cohort (58C). The imbalance between the numbers 
of cases and controls may distort the results. We there-
fore randomly subsample controls to obtain a number 
of controls equal to the number of cases. We also note 
that we discarded the samples singled out for quality con-
trol by the WTCCC, as well as the low quality SNPs as 
flagged by the WTCCC.

Disease maps from MetaCore
MetaCore is a commercial resource containing high-
quality, manually curated biological pathway data from 
peer-reviewed literature. This information is organized in 
pathway maps, which are made of potentially multi-step 
interactions defining a well-established signaling mecha-
nism. Each step is experientially validated and accepted 
in the research field.

Pathology maps, or disease maps, are maps created spe-
cifically for a disease mechanism. We present in Table 1 
the full list of the 19 multiple sclerosis disease maps we 
used. The number of genes within each map greatly var-
ies. It ranges from 13 genes for disease map (DM3305) to 
100 genes (DM4593).

We now detail our processing pipeline. An overview is 
given in Fig. 1.

Variant filtering
The first step of our study is to map SNPs to the genes 
involved in the 19 multiple sclerosis maps. For this pur-
pose, we considered two kinds of mapping, so as to facili-
tate functional interpretation:

•	 Physical mapping, which corresponds to retriev-
ing all genotyped SNPs located on a given gene. We 
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use the accompanying R package metabaser [20] to 
first define the boundaries of a given gene, and then 
subset all SNPs according to their positions, as ref-
erenced in dbSNP version 144 [21].

•	 eQTL mapping, which corresponds at mapping 
a SNP to all genes that it is known to regulate (in 
cis). For this purpose, we used the cis-eQTL data-
set from the eQTLGen consortium [22], which pro-
vides for each gene a list of significant eQTL-SNPs. 
The dataset combines 31 684 whole blood samples 
from 37 cohorts.

For the present study, we limit ourselves to cis-eQTLs 
and ignore trans-eQTLs because of their higher degree 
of association to gene expression. The higher associa-
tion can be attributed to the proximity of the SNPs to 
the genes: cis-eQTL are located within 1 Mb window 
from a gene and they often closely map to either the 
transcription start site or the transcription end site of 
a gene.

Even though the two analyses are unrelated and use 
different sets of SNPs, some concordance for the top-
scoring genes is to be expected. In fact, for the eQTLGen 
consortium, Võsa et al. [22] show that out of 15 317 trait-
associated SNPs, 15.2% were in high LD with the lead 
eQTL SNP showing the strongest association for a cis-
eQTL gene. Although the mentioned association is far 
from perfect, it demonstrates the often-overlooked link 
between the two analyses.

SNP‑level epistasis detection with EpiGWAS
EpiGWAS [4] is a framework for targeted epistasis that 
scores interactions between a given SNP, denoted by A, 
and a set of p SNPs X = {X1, . . . ,Xp} . X can cover either 
the whole genome or a predetermined region. Using a 
binary encoding for A: A ∈ {−1,+1} , the phenotype Y is 
written as

where ǫ is a zero-mean random variable and

The first term in Eq. 2, µ(X) , models the average effect of 
the target A on the expected phenotype, conditionally on 
X. The second term, δ(X) , accounts for the interactions 
between A and X. If δ(X) is sparse, that is to say, that it 
only depends on a subset of the p elements of X, then the 
SNPs in this subset are the ones interacting with A.

The estimation of δ(X) is made difficult by the fact 
that for any given sample, only one of the two cases 
A = +1 and A = −1 is observed. EpiGWAS leverages 
on the literature of causal inference on observational 
data [23] to conduct this estimation. In observational 
studies and particularly in clinical trials, only one of the 
two states of the treatment A is observed and a different 

(1)Y = µ(X)+ δ(X) · A+ ǫ,

(2)











µ(X) =
1

2
(E(Y |A = +1,X)+ E(Y |A = −1,X))

δ(X) =
1

2
(E(Y |A = +1,X)− E(Y |A = −1,X)) .

Table 1  Titles and internal IDs of MetaCore disease maps related to MS

Internal ID Title

3302 Notch signaling in oligodendrocyte precursor cell differentiation in multiple sclerosis

3305 SHH signaling in oligodendrocyte precursor cells differentiation in multiple sclerosis

3306 Inhibition of oligodendrocyte precursor cells differentiation by Wnt signaling in multiple sclerosis

4455 Inhibition of remyelination in multiple sclerosis: regulation of cytoskeleton proteins

4593 Axonal degeneration in multiple sclerosis

4693 Role of Thyroid hormone in regulation of oligodendrocyte differentiation in multiple sclerosis

4703 Demyelination in multiple sclerosis

4791 Role of CNTF and LIF in regulation of oligodendrocyte development in multiple sclerosis

4794 Retinoic acid regulation of oligodendrocyte differentiation in multiple sclerosis

4843 Growth factors in regulation of oligodendrocyte precursor cells proliferation in multiple sclerosis

4846 Growth factors in regulation of oligodendrocyte precursor cells survival in multiple sclerosis

4901 Inhibition of remyelination in multiple sclerosis: role of cell-cell and ECM-cell interactions

5199 Cooperative action of IFN-γ and TNF-α on astrocytes in multiple sclerosis

5288 Impaired inhibition of Th17 cell differentiation by IFN-β in multiple sclerosis

5378 Role of IFN-β in the improvement of blood-brain barrier integrity in multiple sclerosis

5398 Role of IFN-β in activation of T cell apoptosis in multiple sclerosis

5518 Role of IFN-β in inhibition of Th1 cell differentiation in multiple sclerosis

5601 IL-2 as a growth factor for T cells in multiple sclerosis

5611 Role of IL-2 in the enhancement of NK cell cytotoxicity in multiple sclerosis
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encoding has to be applied to estimate the term δ(X) . 
Indeed, using for the target SNP an encoding in {0, 1} , 
obtained as Ã = (A+ 1)/2, we can rewrite δ(X) as

This suggests obtaining a sparse model for δ(X) by using 
a penalized regression approach (in EpiGWAS, an elas-
tic net) to fit a sparse linear model between the modified 
outcome

δ(X) =
1

2
E

[

Y

(

Ã

P(Ã = 1|X)
−

1− Ã

P(Ã = 0|X)

)

∣

∣

∣

∣

X

]

.

and X. The regression coefficient of SNP Xi in this sparse 
linear model can then be interpreted as a score of the 
interaction between this SNP and target SNP A,   that 
accounts for interactions between A and all SNPs in X.

To compute the modified outcome, we need an esti-
mate of the propensity scores P(Ã = 1|X) . This can 
be achieved using the hidden Markov Model from 

Ỹ = Y

(

Ã

P(Ã = 1|X)
−

1− Ã

P(Ã = 0|X)

)

Fig. 1  Epistatic interaction discovery pipeline



Page 5 of 14Slim et al. BMC Medical Genomics          (2022) 15:100 	

fastPHASE [24]. In this model, the observed states cor-
respond to SNPs and the hidden states correspond to 
structural dependence states. After fitting this model in 
a chromosome by chromosome fashion, the propensity 
scores are obtained through application of the forward 
algorithm [25].

If the estimation error of P(A|X) is large or severe over-
fitting occurs, the use of the inverse of the estimated 
scores can result in numerical instability and bias the 
results. EpiGWAS addresses this issue by resorting to an 
adjustment of the modified outcome called the robust 
modified outcome. This approach is known to have small 
large-sample variance in the causal inference literature, 
and was empirically superior to other corrections [4].

From SNP‑level EpiGWAS scores to gene‑level epistasis 
scores
Given a set of p SNPs X1,X2, . . . ,Xp mapped to the 
genes of a given disease map, we use EpiGWAS to 
obtain scores for the interaction of each of the SNPs in 
{X1, . . . ,Xi−1,Xi+1, . . . ,Xp} with target SNP Xi. The 
interpretability and usability of such an output is lim-
ited, because of the large number of interactions, but also 
because scores obtained against different target SNPs 
are not comparable, as the set of SNPs in X is different 
for each target A. Furthermore, despite their robustness, 
these scores have limited biological meaning.

A first step to improve interpretability is to use rank-
ings. From a practical point of view, rankings are a sen-
sible choice because only the highest-ranking SNPs are 
used. Rankings also improve comparability between dif-
ferent targets because of the similarity of scale and insen-
sitivity to the underlying parameterization. For a target 
SNP i, we therefore denote by rij ∈ {1, . . . , p− 1} the rank 
of the score of SNP j among all scores against target SNP 
i, in decreasing order.

Another immediate benefit of the use of rankings is the 
possibility of combining different rankings. For example, 
for two SNPs i and j, we can define the following epistasis 
interaction score:

The interaction score in Eq. 3 has the advantages of sym-
metry and boundedness. The scores are comprised 
between 1√

2(p−1)
 and 12 . If p = 1 000, this corresponds to a 

range of 0.02− 0.05 . Additionally, combining two pair-
wise scores rij and rji can help control the estimation 
errors for one of the targets. For example, if two SNPs i 
and j are in interaction and the result rij is not sufficiently 
high to reflect that, a good ranking of rji can help com-
pensate this effect.

(3)inter (i, j) =
1

√

rij + rji
.

We can further aggregate the rankings to detect inter-
actions between genes. More generally, the rankings can 
be combined to detect interactions between any disjoint 
sets of SNPs, such as biological pathways or regulatory 
regions. Let p′ be the total number of genes in the disease 
map, and let us denote by Gi′ the set of SNPs mapped to 
gene i′ . The interaction score between two genes i′ and 
j′ can be computed by considering all pairwise scores 
between SNPs mapped to i′ and SNPs mapped to j′ , and 
we define

Thanks to the symmetry of SNP-SNP scores in Eq. 3, the 
gene–gene scores in Eq. 4 are symmetric, too. Averaging 
over all SNPs mapped to the genes reduces the impact of 
the size of the genes.

Direction of the epistatic effect
An epistatic interaction can be either positive or nega-
tive, depending on whether it increases or decreases dis-
ease susceptibility. To study the direction of this effect, 
we focus on the top-scoring pair of SNPs, as it has the 
largest effect on the global gene–gene score. More spe-
cifically, following [26], for a binary outcome Y and two 
explanatory variables X1 and X2 , the direction of the epi-
static effect is given by the sign of the interaction coeffi-
cient α12 in the logistic model

When the SNPs have been obtained through eQTL map-
ping, this methodology can be refined. Indeed, the effect 
of SNP Xi on the expression level ei of the gene Gi to 
which it is mapped can be modeled as ei = γi + βiXi . The 
direction of the epistatic effect between genes G1 and G2 
can be deduced from the sign of the following ratio:

Indeed, the logistic model in Eq (5) becomes

and the ratio of Eq. (6) indeed governs the effect on the 
phenotype of the interaction between the expression of 
the two genes.

To the best of our knowledge, this is the first study 
which studies epistasis from such a perspective by 
including eQTL scores in this way and by moving back 

(4)inter (Gi′ ,Gj′) =
1

|Gi′ ||Gj′ |

∑

i∈Gi′

∑

j∈Gj′

1
√

rij + rji
.

(5)
logit P(Y |X1,X2) = α0 + α1X1 + α2X2 + α12X1X2.

(6)dir (G1,G2) = sign
α12

β1 · β2
.

(7)
logit P(Y |X1,X2) =α0 + α1

e1 − γ1

β1
+ α2

e2 − γ2

β2

+
α12

β1 · β2
(e1 − γ1)(e2 − γ2)
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and forth between SNP-level and gene-level epistasis. 
Furthermore, the synergy score in Eq. 6 can also be inter-
preted as an extension of Mendelian randomization [27] 
to second-order interaction effects.

The eQTLGen consortium [22] does not directly sup-
ply the effect sizes β1 and β2 in the linear expression mod-
els. For each SNP, the effect size β is derived from the 
corresponding Z-score using the following relationship:

where q is the MAF of the SNP of interest, as reported 
in the 1kG v1p3 ALL reference panel and m is the cohort 
size.

Significance of network topological properties
A list of epistatic interactions among a set of genes can 
be represented as network where the vertices are the 
genes and each gene corresponds to an epistatic interac-
tion. We can then observe some topological properties of 
these networks, such as whether they form a single con-
nected component; whether they contain nodes of high 
degree; or whether they correspond to known biological 
interactions.

To evaluate whether these properties are significant or 
are likely to happen by chance, we propose a permutation 
procedure. More particularly, to evaluate the significance 
of an epistatic network of m edges (over a total of n genes 
considered) forming a single connected component, we 
sample S times m pairs of vertices from a set of n ver-
tices. Denoting by S′ the number of times these m pairs 
also form a connected component, we then compute the 
p-value as S′/S.

To evaluate whether the epistatic network contains 
nodes of high degree, we compute its maximum node 
degree dmax , and repeat the above procedure, denoting 
by S′ the number of times the m sampled pairs form a 
network with maximal degree at least as large as dmax.

Results
We exhaustively compute the gene–gene interaction 
scores of Eq.  4 to obtain p′(p′ − 1)/2 interaction scores 
per disease map, where p′ is the number of genes in the 
map. Given the size of the maps (see Table 1), the inter-
pretation of the full results is rather difficult. We instead 
focus on the 2% top-scoring pairs for the two analyses. 
Our rationale is that this is a number large enough to 
retain at least one gene pair on each map, without yield-
ing so many pairs that their study is made difficult.

It would of course be preferable here to use p-values 
for the significance of the interactions, but there does 
not seem to be any other way than permutation testing 

(8)β =
Z

√

2 q(1− q) (m+ Z2
)

,

to obtain those, and this is computationally unfeasible. 
Indeed, when evaluating the 703 gene pairs of DM4455, 
one would require a significance level of, for example, 
α = 0.05/703 (accounting for multiple hypotheses). The 
number of permutations would have to be greater than 
1/α , so around at least 15  000 in our example, which is 
out of reach.

We show in Additional file  1: Appendix  A that the 
results obtained do not vary much with the choice of 
strategy to select a small number of pairs per map.

eQTL mapping yields more SNP pairs to test 
than the physical mapping
The number of SNPs obtained through eQTL mapping 
is larger than that obtained through physical mapping: 
the median number of SNPs per disease map is 392 for 
the physical mapping analysis and 999 for the eQTL-
mapping analysis. In Table 2, we give the exact number of 
SNPs per disease map for each type of mapping.

Topology of gene–gene interactions detected 
with EpiGWAS
Figure  2 shows the epistatic interactions we obtain for 
two disease maps. All other maps can be found in Addi-
tional file  1: Appendix  B. These two examples illustrate 
properties we observe more generally across all disease 
maps and that we discuss in more details below: connect-
edeness (the epistatic pairs form connected components), 
complementarity (of the epistatic interactions obtained 
through eQTL mapping with the interactions obtained 
through physical mapping, as well as the epistatic inter-
actions with the known biological interactions), and high 
centrality of some nodes in those networks.

Gene–gene epistatic interactions form connected 
components
Most of the epistatic interaction networks we obtained 
form a single connected component, as seen for example 
on Fig. 2b. The only exceptions are DM 4834 for the epi-
static network obtained through physical mapping (two 
components, one of which is formed by a single edge) 
and DM 4593 for the union of the epistatic networks 
obtained through physical and eQTL mappings (each of 
the networks form a separate connected component).

We report in Table 3 the significance of these observa-
tions (see “Significance of network topological proper-
ties” section). Given the number of nodes in the maps 
and epistatic edges selected between them, the only cases 
where it can be expected to obtain a single connected 
component are those where the number of selected edges 
is lower than 3 (DM 3305 with a single edge for either 
mapping, DM 4593 with 3 edges for the eQTL mapping, 
and DM 4794 with 2 edges for the physical mapping and 
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1 edge for the eQTL mapping). Hence all large connected 
components, obtained on larger maps, are significant.

Such large connected components indicate joint effects 
in large sets of SNPs. They point to a multiplicity of ways 
in which the same biological process may be perturbed 
to result in multiple sclerosis, capturing the complex 
architecture of the disease. This suggests new drug devel-
opment strategies against multiple sclerosis, either by tar-
geting the most druggable gene in the component, or by 
targeting several of its genes through combination ther-
apy so as to maximize effect on the biological process.

Connectedness and centrality in epistatic networks was 
already observed at the SNP level for other phenotypes 
with a different methodological approach (see for exam-
ple [28]).

eQTL and physical mappings yield complementary gene–
gene epistatic interactions
With the exception of DM 4593, the epistatic networks 
obtained through the two mappings are connected, that 
is to say, they share at least one common node/gene. In 
fact, they are often connected through multiple nodes, 
without an overlap in edges. This can again be observed 
for example on Fig. 2b. The last column of Table 3 shows 
that this connection between the two epistatic networks 
is not expected by chance.

Table 2  Number of SNPs, genes, gene pairs and top 2% of gene pairs for each mapping and disease map

Map ID Physical mapping eQTL mapping

#SNPs #genes #gene pairs top 2% #SNPs #genes #gene pairs top 2%

3302 416 21 210 4 833 19 171 3

3305 70 10 45 1 238 8 28 1

3306 383 21 210 4 869 19 171 3

4455 755 38 703 14 1813 36 630 13

4593 1295 24 276 6 1647 17 136 3

4693 544 34 561 11 912 27 351 7

4703 331 28 378 8 999 27 351 7

4791 252 24 276 6 1264 23 253 5

4794 84 15 105 2 331 12 66 1

4843 984 32 496 10 1401 29 406 8

4846 1318 36 630 13 1555 32 496 10

4901 1173 35 595 12 1209 24 276 6

5199 656 28 378 8 1320 32 496 10

5288 515 27 351 7 724 22 231 5

5378 257 22 231 5 907 22 231 5

5398 141 21 210 4 1050 24 276 6

5518 392 29 406 8 1474 27 351 7

5601 348 28 378 8 742 25 300 6

5611 224 22 231 5 906 24 276 6

Table 3  Connectivity: whether the epistatic interactions form 
a single connected component, for the networks obtained by 
physical mapping, eQTL mapping, and joining both

The bold values correspond to p-values below the significance threshold of 0.05

Map ID Physical mapping 
(p-value)

eQTL mapping 
(p-value)

Joint (p-value)

3302 Yes (0.035) Yes (0.077) Yes (0.020)

3305 Yes (1.000) Yes (1.000) Yes (0.377)

3306 Yes (0.034) Yes (0.078) Yes (0.016)

4455 Yes (0.000) Yes (0.001) Yes (0.018)

4593 Yes (0.009) Yes (0.092) No (NA)

4693 Yes (0.001) Yes (0.006) Yes (0.006)

4703 Yes (0.004) Yes (0.005) Yes (0.011)

4791 Yes (0.013) Yes (0.018) Yes (0.014)

4794 Yes (0.256) Yes (1.000) Yes (0.098)

4843 No (NA) Yes (0.004) Yes (0.009)

4846 Yes (0.001) Yes (0.002) Yes (0.017)

4901 Yes (0.001) Yes (0.009) Yes (0.004)

5199 Yes (0.003) Yes (0.001) Yes (0.011)

5288 Yes (0.005) Yes (0.014) Yes (0.012)

5378 Yes (0.018) Yes (0.023) Yes (0.018)

5398 Yes (0.032) Yes (0.011) Yes (0.014)

5518 Yes (0.004) Yes (0.005) Yes (0.011)

5601 Yes (0.004) Yes (0.008) Yes (0.013)

5611 Yes (0.018) Yes (0.012) Yes (0.015)
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a

b

Fig. 2  Examples of epistatic pairs detected on two disease maps. a The 2% top-scoring pairs in DM 3306for eQTL and physical mappings. b The 2% 
top-scoring pairs in DM 4455for eQTL and physical mappings
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Therefore, the two types of mappings recover distinct, 
though connected, interactions. This suggests that they 
yield complementary information about the genetic 
architecture of the disease.

We therefore consider the union of the two epistatic 
networks for further study.

Gene–gene epistatic interaction networks contain hubs
We report in Table 4 the maximum degree in the gene–
gene interaction network obtained as the union of all 
epistatic pairs detected either through physical or eQTL 
mapping. Fifteen out of the nineteen epistatic networks 
contain at least one hub, which we identify as a node of 
degree greater than expected by chance. Others [28, 29] 
have shown the role of such hubs in epistasis. In par-
ticular, nodes with high centrality can be observed on 
Fig.  2b (WASF2, FAK1) and Fig.  2a (GSK3-beta). Three 
of the remaining networks correspond, as for the maps 
where connectivity is not significant, to small maps with 
few selected edges (DM 3305, DM 4593, and DM 4794). 
Finally, in DM 4703, JNK3 (MAPK10), AKT (PKB) and 
Caspase-8 form the backbone of the epistatic network, 
but none of them accumulates sufficiently many connec-
tions to have significantly high centrality.

Gene–gene epistatic interactions detected with EpiGWAS 
mostly complement known biological interactions
As can be observed on Fig. 2a, b, most of the gene–gene 
interactions we detected do not fall along edges already 
present in the original disease maps. On the one hand, 
the few interactions that are potentially very interesting, 
as they combine prior biological evidence with statisti-
cal evidence. Nonetheless, drawing conclusions about the 
underlying biology is challenging given the potential mis-
match between biological epistasis and statistical epista-
sis [30].

On the other hand, this indicates that approaches 
that restrict themselves to testing for interactions along 
already known biological interactions [31], although facil-
itating interpretation, may miss out relevant interactions.

4 of the epistatic gene pairs involve missense variants
In total, we obtain 136 epistatic interactions based on 
physical mapping (see Table  2). As an exhaustive inves-
tigation of all these pairs is out of reach, we propose to 
focus on interactions where at least one of the SNPs can 
lead to a loss of function at the protein level. We are 
restricting ourselves here to interactions corresponding 
to a change of protein structure in at least one of the two 
genes, as they are the easiest to interpret. Other mecha-
nisms are however possible, including splicing altera-
tions, regulatory effects, or merely for the SNP to be in 
linkage disequilibrium with a missense variant.

The filtering yielded 4 gene pairs where one of the 
genes presents a variant reported as missense in BioMart 
[32] (Table 5). For each of those gene pairs, we also list 
the impact (activation, inhibition, or unspecified) on the 
MS phenotype, as given in the disease maps. Among 
these 4 pairs, the interaction between GLI-1 and SUFU 
is particularly interesting, since it matches a known bio-
logical interaction. Both genes are in direct binding inter-
action in DM 3305 (see Fig.  3), which describes Sonic 
Hedgehog signaling in oligodendrocyte precursor cells 
differentiation in MS. This map is described in more 
detail in Additional file 1: Additional file 1: Appendix C.2. 
In addition, GLI-1 is an important therapeutic target in 
cancer, including through its interaction with SUFU [33].

Twenty‑five of the epistatic gene pairs involve 
the up‑regulation of both genes
Our pipeline selects a total of 112 epistatic interactions 
based on the eQTL mapping strategy (see Table  2). 
Again, as with physical mapping, additional filtering is 
needed to focus on a smaller number of pairs. Here we 
use the study of the direction of the epistatic effect (see 
“Direction of the epistatic effect” section) and select the 
gene pairs for which the coefficients β1,β2,β syner share 
the same sign (that is to say, either all are positive, or all 
are negative). If all three coefficients are positive, inhibit-
ing both genes reduces the risk for MS. On the contrary, 
if all three coefficients are negative, the two genes should 
be jointly activated to reduce MS risk.

This filtering leads to 25 gene pairs of interest across 
13 maps (see Additional file 1: Table 1). We further list in 
Table 6 the pairs involving at least one gene with known 
or suspected effect on MS-related phenotypes, such 
as demyelination, remyelination failure, oligodendro-
cyte death, or damage of neural axons. This procedure 

Fig. 3  The 2% top-scoring pairs in DM 3305 for eQTL and physical 
mappings. Note the GL1–SUFU pair
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highlights one specific pair, NF-κ B and IP10, where both 
genes are already known to have an impact on multiple 
sclerosis.

NF‑κ B and IP10 form a promising pair of interacting 
therapeutic targets for multiple sclerosis
In what follows, we further explore the potential of 
NF-κ B and IP10 as interacting therapeutic targets for 
multiple sclerosis. As stated in the previous section, the 
impact of both genes on the phenotype has already been 
specified, which justifies investigating their synergistic 
effect on the physiopathology of multiple sclerosis. Our 
analysis is focused on DM 5199 (see Fig. 4 and Additional 
file 1: Appendix C.4) where both genes belong to essen-
tial pathways.

Interferon-Inducible Cytokine IP10, also called 
CXCL10 (C-X-C motif chemokine ligand 10), is an anti-
microbial gene which encodes a chemokine of the CXC 
subfamily, and is a ligand for the receptor CXCR3. This 
pro-inflammatory cytokine is involved in a wide variety 
of processes, including chemotaxis, differentiation, and 
activation of peripheral immune cells [34–36].

NF-κ B (nuclear factor kappa-light-chain-enhancer of 
activated B cells) is a protein complex involved in tran-
scription, cell growth, and cytokine production. It plays 
a key role in the immune response to infection and has 

been linked to a number of diseases, including cancer, 
autoimmune disorders and sepsis.

NF-κ B upregulates the transcription of several genes, 
including IP10 [37]. Hence the two genes are in direct 
interaction on DM 5199. Figure 5a illustrates the impact 
of IP10 activation on T cells recruitment on the Cen-
tral Nervous System. This allows intercellular contact 
between T cells and astrocytes presenting myelin anti-
gens, which reactivates those T cells [38]. Reactivated T 
cells secrete pro-inflammatory cytokines; demyelination 
occurs and macrophages are activated. This further dam-
ages myelin and releases cytokines, which leads to the 
damage of neural axons [39] (see Fig. 5b).

There is currently no drug inhibiting IP10. However, 
two antibodies targeting IP10 are currently listed in 
ChEMBL [40] as having undergone clinical trials. The 
first one is NI-0801, which successfully passed Phase I 
for allergic contact dermatitis and Phase II for primary 
biliary cirrhosis. The second is Eldelumab (or MDX-
100), which has completed Phase II trials for rheumatoid 
arthritis, Crohn’s disease and ulcerative colitis. While nei-
ther drug achieved its primary endpoint in clinical trials, 
they were both well-tolerated [41, 42], which is encourag-
ing as to their potential use for other indications.

The inhibition of NF-κ B is a topic of major interest [43, 
44]. The earliest example of FDA-approved inhibitor of 
NF-κ B is Bortezomib (also known as Velcade or PS-341) 

Fig. 4  The 2% top-scoring pairs in DM 5199 for eQTL and physical mappings. Note the NF-κ B – IP10 pair
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[45], indicated against multiple myeloma, mantle-cell 
lymphoma, and neoplasms. Most research on inhibiting 
NF-κ B focuses on its upstream regulators. For example, 
inhibitors of IKKB-beta (Inhibitor Of Nuclear Factor 
Kappa B Kinase Subunit Beta) aim at blocking the kinase 
which phosphorylates inhibitors of NF-kappa-B on two 
critical serine residues. Several small molecules antago-
nists targeting IKBKB have reached phase I, II and III 
clinical trials for several diseases [40].

Altogether, these clinical assays for IP10 and NF-κ B 
pathway inhibitors strengthen the potential of the pair as 

MS targets, where their simultaneous inhibition lowers 
the risk for MS.

Conclusion
Targeted epistasis detection, which identifies interactions 
between a specific SNP and the rest of the genome, is an 
efficient way to reduce the statistical and computational 
burden of exhaustive pairwise testing. In addition, focus-
ing on a single target SNP makes it possible to model its 
interactions with all other SNPs in the genome at once. 
However, the choice of a target SNP is not trivial. This 
SNP can for example be a top hit in a previous GWAS, or 
a SNP mapped to a gene that has an established biologi-
cal relationship with the phenotype. In practice, one is 
likely to have a list of such target SNPs, rather than a sin-
gle SNP to test. Targeted epistasis detection then yields a 
list of interacting SNPs (and their interaction scores) for 
each target SNP that is evaluated.

In this paper, we showed how to transform such an out-
put into gene–gene interaction scores. This allows us to 
use targeted epistasis detection to obtain a list of pairs 
of genes in a given disease map that are likely to have a 
joint effect on disease risk. We illustrated our pipeline on 
multiple sclerosis, using a GWAS dataset from the Well-
come Trust Case Control Consortium, 19 multiple scle-
rosis disease maps from MetaCore, and EpiGWAS as a 
targeted epistasis detection tool.

The epistatic networks formed by the pairs of inter-
acting genes we detected have several interesting topo-
logical properties: they form connected components; 
the epistatic networks obtained from physical and from 
eQTL mappings are complementary; they contain hubs; 
and they mostly complement known biological interac-
tions from the disease maps.

Filtering the highest-scoring gene pairs allowed us to 
highlight two interactions as particularly promising in 
terms of therapeutic targeting in multiple sclerosis. The 
first one is the interaction between SUFU and GLI-1, 

Table 4  Centrality: Node(s) of maximum degree in the epistatic 
network obtained by joining the physical epistatic network and 
the eQTL epistatic network

The bold values correspond to p-values below the significance threshold of 0.05

Map ID Max node 
degree

p-value Node(s) of max degree

3302 4 0.033 ADAM17, CNTN1 (F3)

3305 2 0.365 SUFU

3306 6 0.000 GSK3 beta

4455 11 0.000 WASF2

4593 4 0.086 NCX1

4693 10 0.000 mTORC1

4703 5 0.056 AKT(PKB), Caspase-8

4791 5 0.018 AKT(PKB), PI3K reg class IA

4794 2 0.553 DHA2, GALC

4843 8 0.000 SHP-2

4846 11 0.000 Neuregulin 1

4901 12 0.000 FAK1

5199 7 0.001 JAK2

5288 6 0.001 IL-1RI, ROR-alpha

5378 5 0.013 JNK(MAPK8-10)

5398 6 0.001 TRADD

5518 6 0.004 AKT(PKB)

5601 7 0.000 Bcl-XL

5611 5 0.018 Granzyme B, KLRK1 (NKG2D)

Table 5  Pairs of genes identified by physical mapping, and selected because at least one of the SNPs involved has a direct 
consequence as protein dysfunction

Map ID Gene pair Type of interaction

3305 GLI-1 and SUFU Direct interaction between the genes

Uunspecified impact on MS

4703 AKT (PKB) and MEKK1 (MAP3K1) No direct interaction between the genes

AKT has a specified impact on MS

5611 Granzyme B and KLRK1 (NKG2D) No direct interaction between the genes

Unspecified impact on MS

Granzyme B and PI3K cat class IA No direct interaction between the genes

Unspecified impact on MS
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which involves two potentially function-modifying vari-
ants. Although a more thorough investigation of the joint 
impact of these mutations on multiple sclerosis is war-
ranted, GLI-1 is a therapeutic target of much interest in 

cancer, including through its interaction with SUFU, sug-
gesting a starting point for further research.

The second one is the interaction between 
NF-κ B and IP10. Indeed, it corresponds to a 
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Fig. 5  Schematic representation of the role played by the gene pairs NF-κB/IP10 in the development of demyelination in MS. a  Transformation of 
astrocytes in immuno-competent cells and T-cells recruitment following the NF-B/IP10 axis activation in MS. b After recruitment of T-cells, adhesion 
of T-cell/astrocyte leads to in ammatory and immune response inducing neuron damage
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well-characterized biological interaction. In addition, 
the analysis of the direction of their epistatic effect 
suggests that inhibiting both genes simultaneously 
has a negative impact on multiple sclerosis. Finally, 
several inhibitors of either genes have already been 
identified and passed Phase I clinical trial, suggesting 
promising drug candidates.

Identifying interactions between existing therapeutic 
targets directly allows for the development of combina-
tion therapies. Because of its focus on epistatic effects 
rather than independent effects, our pipeline can be of 
special interest in light of FDA guidance for the co-devel-
opment of two or more drugs.1

Hence, an additional way to identify the most rele-
vant interactions among those we select with EpiGWAS 
would be to explicitly look for pairs involving genes that 
are already therapeutic targets in other diseases. This 
could be achieved by crossing our epistatic networks 
with a data base such as OpenTargets [46].

Finally, hubs being the most influential nodes in a 
network, another potential strategy for therapeutic 
development would be to investigate whether the most 
central nodes of the epistatic networks could make good 
therapeutic targets. One example would be FAK1, with 
12 interactions in DM 4901 (see Table 4).
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