Skip to main content


Table 4 Formulas of six proposed weights to quantify the T_CC and N_CC simultaneously

From: Clustering analysis of microRNA and mRNA expression data from TCGA using maximum edge-weighted matching algorithms

Weight name Formula
integrated mean value weight \( \left\{\begin{array}{c}{\uplambda}_1\times T\_ CC+\left(1-{\uplambda}_1\right)\times \left|N\_ CC\right|,\mathrm{if}\ \mathrm{T}\_\mathrm{CC}>0\\ {}{\uplambda}_2\times \left|T\_ CC\right|+\left(1-{\uplambda}_2\right)\times N\_ CC,\mathrm{if}\ \mathrm{T}\_\mathrm{CC}<0\end{array}\right. \)
all negative value weight \( \left\{\begin{array}{c}\left|N\_ CC\right|,\mathrm{T}\_\mathrm{CC}>0\\ {}\left|T\_ CC\right|,\mathrm{T}\_\mathrm{CC}<0\end{array}\right. \)
all positive value weight \( \left\{\begin{array}{c}T\_ CC,\mathrm{T}\_\mathrm{CC}>0\\ {}N\_ CC,\mathrm{T}\_\mathrm{CC}<0\end{array}\right. \)
arithmetic mean value weight \( \frac{\left|T\_ CC\right|+\left|N\_ CC\right|}{2} \)
geometric mean value weight \( \sqrt{\left|T\_ CC\right|\times \left|N\_ CC\right|} \)
maximum absolute value weight max(|T _ CC|, |N _ CC|)