Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wunsch A, Wolf E: Transgenic pigs as models for translational biomedical research. J Mol Med. 2010, 88: 653-664. 10.1007/s00109-010-0610-9.
Article
PubMed
Google Scholar
Lunney JK: Advances in swine biomedical model genomics. Int J Biol Sci. 2007, 3: 179-184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shultz LD, Ishikawa F, Greiner DL: Humanized mice in translational biomedical research. Nat Rev Immunol. 2007, 7: 118-130. 10.1038/nri2017.
Article
CAS
PubMed
Google Scholar
Hammer RE, Pursel VG, Rexroad CE, RJ W, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL: Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 1985, 315: 680-683. 10.1038/315680a0.
Article
CAS
PubMed
Google Scholar
Walters EM, Bauer BA, Franklin CL, Evans TJ, Bryda EC, Riley LK, Critser JK: Mutational insertion of a ROSA26-EGFP transgene leads to defects in spermiogenesis and male infertility in mice. Comp Med. 2009, 59: 545-552.
CAS
PubMed
PubMed Central
Google Scholar
Rijkers T, Peetz A, Ruther U: Insertional mutagenesis in transgenic mice. Transgenic Res. 1994, 3: 203-215. 10.1007/BF02336773.
Article
CAS
PubMed
Google Scholar
Brem G, Besenfelder U, Aigner B, Muller M, Liebl I, Schutz G, Montoliu L: YAC transgenesis in farm animals: Rescue of albinism in rabbits. Mol Reprod Dev. 1996, 44: 56-62. 10.1002/(SICI)1098-2795(199605)44:1<56::AID-MRD6>3.0.CO;2-S.
Article
CAS
PubMed
Google Scholar
McKnight RA, Spencer M, Wall RJ, Hennighausen L: Severe position effects imposed on a 1 kb mouse whey acidic protein gene promoter are overcome by heterologous matrix attachment regions. Mol Reprod Dev. 1996, 44: 179-184. 10.1002/(SICI)1098-2795(199606)44:2<179::AID-MRD6>3.0.CO;2-K.
Article
CAS
PubMed
Google Scholar
Barash I, Ilan N, Kari R, Hurwitz DR, Shani M: Co-integration of beta-lactoglobulin/human serum albumin hybrid genes with the entire beta-lactoglobulin gene or the matrix attachment region element: repression of human serum albumin and beta-lactoglobulin expression in the mammary gland and dual regulation of the transgenes. Mol Reprod Dev. 1996, 45: 421-430. 10.1002/(SICI)1098-2795(199612)45:4<421::AID-MRD3>3.0.CO;2-T.
Article
CAS
PubMed
Google Scholar
Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, et al: Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem. 2009, 284: 17634-17640. 10.1074/jbc.M109.008938.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM: Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A. 2009, 106: 10993-10998. 10.1073/pnas.0905284106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, et al: Generation of Pig Induced Pluripotent Stem Cells with a Drug-Inducible System. J Mol Cell Biol. 2009, 1: 46-54. 10.1093/jmcb/mjp003.
Article
CAS
PubMed
Google Scholar
Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN: Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 2002, 295: 1089-1092. 10.1126/science.1068228.
Article
CAS
PubMed
Google Scholar
Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, et al: Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest. 2008, 118: 1571-1577. 10.1172/JCI34773.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, et al: Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science. 2008, 321: 1837-1841. 10.1126/science.1163600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramsoondar J, Mendicino M, Phelps C, Vaught T, Ball S, Monahan J, Chen S, Dandro A, Boone J, Jobst P, et al: Targeted disruption of the porcine immunoglobulin kappa light chain locus. Transgenic Res. 2010, 20: 643-653.
Article
PubMed
CAS
Google Scholar
Mendicino M, Ramsoondar J, Phelps C, Vaught T, Ball S, Leroith T, Monahan J, Chen S, Dandro A, Boone J, et al: Generation of antibody- and B cell-deficient pigs by targeted disruption of the J-region gene segment of the heavy chain locus. Transgenic Res. 2011, 20: 625-641. 10.1007/s11248-010-9444-z.
Article
CAS
PubMed
Google Scholar
Lorson M, Spate L, Samuel M, Murphy C, Lorson C, Prather R, Wells K: Disruption of the Survival Motor Neuron gene in pigs using ssDNA. Transgenic Res. 2011, 20: 1293-1304. 10.1007/s11248-011-9496-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS: Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev. 2011, 78: 2-10.1002/mrd.21271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, et al: Generation of PPAR[gamma] mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res. 2011, 21: 979-982. 10.1038/cr.2011.70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitworth KM, Prather RS: Somatic cell nuclear transfer efficiency: how can it be improved through nuclear remodeling and reprogramming?. Mol Reprod Dev. 2010, 77: 1001-1015. 10.1002/mrd.21242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thein SL, Menzel S: Discovering the genetics underlying foetal haemoglobin production in adults. Br J Haematol. 2009, 145: 455-467. 10.1111/j.1365-2141.2009.07650.x.
Article
CAS
PubMed
Google Scholar
Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, et al: Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med. 2010, 2: 29-31.
Article
CAS
Google Scholar
Swanson KS, Mazur MJ, Vashisht K, Rund LA, Beever JE, Counter CM, Schook LB: Genomics and Clinical Medicine: Rationale for Creating and Effectively Evaluating Animal Models. Exp Biol Med. 2004, 229: 866-875.
CAS
Google Scholar
Douglas WR: Of pigs and men and research: a review of applications and analogies of the pig, sus scrofa, in human medical research. Space Life Sci. 1972, 3: 226-234.
CAS
PubMed
Google Scholar
Larsen MO, Rolin B: Use of the Gottingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J. 2004, 45: 303-313.
Article
CAS
PubMed
Google Scholar
Johnson DK, Wisner ER, Griffey SM, Vessey AR, Haley PJ: Inclair miniature swine melanoma as a model for evaluating novel lymphography contrast agents. Advances in swine in biomedical research. Edited by: Tumbleson ME, Schook L. 1996, New York City: Plenum Press, 607-612.
Chapter
Google Scholar
Du ZQ, Vincent-Naulleau S, Gilbert H, Vignoles F, Crechet F, Shimogiri T, Yasue H, Leplat JJ, Bouet S, Gruand J, et al: Detection of novel quantitative trait loci for cutaneous melanoma by genome-wide scan in the MeLiM swine model. Int J Cancer. 2007, 120: 303-320. 10.1002/ijc.22289.
Article
CAS
PubMed
Google Scholar
Grunwald KA, Schueler K, Uelmen PJ, Lipton BA, Kaiser M, Buhman K, Attie AD: Identification of a novel Arg– > Cys mutation in the LDL receptor that contributes to spontaneous hypercholesterolemia in pigs. J Lipid Res. 1999, 40: 475-485.
CAS
PubMed
Google Scholar
Quilter CR, Gilbert CL, Oliver GL, Jafer O, Furlong RA, Blott SC, Wilson AE, Sargent CA, Mileham A, Affara NA: Gene expression profiling in porcine maternal infanticide: a model for puerperal psychosis. Am J Med Genet B Neuropsychiatr Genet. 2008, 147B: 1126-1137. 10.1002/ajmg.b.30734.
Article
CAS
PubMed
Google Scholar
Egidy G, Jule S, Bosse P, Bernex F, Geffrotin C, Vincent-Naulleau S, Horak V, Sastre-Garau X, Panthier JJ: Transcription analysis in the MeLiM swine model identifies RACK1 as a potential marker of malignancy for human melanocytic proliferation. Mol Cancer. 2008, 7: 34-10.1186/1476-4598-7-34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Archibald A, Bolund L, Churcher C, Fredholm M, Groenen M, Harlizius B, Lee KT, Milan D, Rogers J, Rothschild M, et al: Pig genome sequence - analysis and publication strategy. BMC Genomics. 2010, 11: 438-10.1186/1471-2164-11-438.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F, Staerfeldt HH, Christensen OF, Mailund T, Hornshoj H, Klein A, et al: Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics. 2005, 6-70.
Google Scholar
Cabot RA, Kuhholzer B, Chan AW, Lai L, Park KW, Chong KY, Schatten G, Murphy CN, Abeydeera LR, Day BN, et al: Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim Biotechnol. 2001, 12: 205-214. 10.1081/ABIO-100108347.
Article
CAS
PubMed
Google Scholar
Park KW, Cheong HT, Lai L, Im GS, Kuhholzer B, Bonk A, Samuel M, Rieke A, Day BN, Murphy CN, et al: Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Anim Biotechnol. 2001, 12: 173-181. 10.1081/ABIO-100108344.
Article
CAS
PubMed
Google Scholar
Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, et al: Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep. 2003, 4: 1054-1060. 10.1038/sj.embor.7400007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitelaw CB, Radcliffe PA, Ritchie WA, Carlisle A, Ellard FM, Pena RN, Rowe J, Clark AJ, King TJ, Mitrophanous KA: Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Lett. 2004, 571: 233-236. 10.1016/j.febslet.2004.06.076.
Article
CAS
PubMed
Google Scholar
Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vargiolu A: Sperm-mediated gene transfer. Reprod Fertil Dev. 2006, 18: 19-23. 10.1071/RD05124.
Article
CAS
PubMed
Google Scholar
Ahn KS, Won JY, Park JK, Sorrell AM, Heo SY, Kang JH, Woo JS, Choi BH, Chang WK, Shim H: Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer. Biochem Biophys Res Commun. 2010, 400: 667-672. 10.1016/j.bbrc.2010.08.125.
Article
CAS
PubMed
Google Scholar
Carter DB, Lai L, Park KW, Samuel M, Lattimer JC, Jordan KR, Estes DM, Besch-Williford C, Prather RS: Phenotyping of transgenic cloned piglets. Cloning Stem Cells. 2002, 4: 131-145. 10.1089/153623002320253319.
Article
CAS
PubMed
Google Scholar
Zhu H, Tamot B, Quinton M, Walton J, Hacker RR, Li J: Influence of tissue origins and external microenvironment on porcine foetal fibroblast growth, proliferative life span and genome stability. Cell Prolif. 2004, 37: 255-266. 10.1111/j.1365-2184.2004.00310.x.
Article
CAS
PubMed
Google Scholar
Prather RS, Shen M, Dai Y: Genetically modified pigs for medicine and agriculture. Biotechnol Genet Eng Rev. 2008, 25: 245-265.
CAS
PubMed
Google Scholar
Niemann H, Tian XC, King WA, Lee RS: Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction. 2008, 135: 151-163. 10.1530/REP-07-0397.
Article
CAS
PubMed
Google Scholar
Zhao J, Whyte J, Prather RS: Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res. 2010, 341: 13-21. 10.1007/s00441-010-1000-x.
Article
PubMed
Google Scholar
Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS: Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram. 2010, 12: 75-83. 10.1089/cell.2009.0038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Ross JW, Hao Y, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS: Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol Reprod. 2009, 81: 525-530. 10.1095/biolreprod.109.077016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das ZC, Gupta MK, Uhm SJ, Lee HT: Increasing Histone Acetylation of Cloned Embryos, But Not Donor Cells, by Sodium Butyrate Improves Their In Vitro Development in Pigs. Cellular Reprogramming (Formerly "Cloning and Stem Cells"). 2010, 12: 95-104. 10.1089/cell.2009.0068.
Article
CAS
Google Scholar
Enright BP, Sung LY, Chang CC, Yang X, Tian XC: Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2'-deoxycytidine. Biol Reprod. 2005, 72: 944-948.
Article
CAS
PubMed
Google Scholar
Jeong YS, Yeo S, Park JS, Koo DB, Chang WK, Lee KK, Kang YK: DNA methylation state is preserved in the sperm-derived pronucleus of the pig zygote. Int J Dev Biol. 2007, 51: 707-714. 10.1387/ijdb.072450yj.
Article
CAS
PubMed
Google Scholar
Whitworth KM, Zhao J, Spate LD, Li R, Prather RS: Scriptaid corrects gene expression of a few aberrantly reprogrammed transcripts in nuclear transfer pig blastocyst stage embryos. Cell Reprogram. 2011, 13: 191-204. 10.1089/cell.2010.0087.
Article
CAS
PubMed
Google Scholar
Fischer KM: Transgenic domestic animals provide an animal model for rheumatoid arthritis. Med Hypotheses. 1992, 38: 240-243. 10.1016/0306-9877(92)90102-I.
Article
CAS
PubMed
Google Scholar
Petters RM, Alexander CA, Wells KD, Collins EB, Sommer JR, Blanton MR, Rojas G, Hao Y, Flowers WL, Banin E: Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol. 1997, 15: 965-970. 10.1038/nbt1097-965.
Article
CAS
PubMed
Google Scholar
Olsson JE, Gordon JW, Pawlyk BS, Roof D, Hayes A, Molday RS, Mukai S, Cowley GS, Berson EL, Dryja TP: Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron. 1992, 9: 815-830. 10.1016/0896-6273(92)90236-7.
Article
CAS
PubMed
Google Scholar
Whyte JJ, Prather RS: Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev. in press
Andersen DH: Cystic fibrosis of the pancreas and its relationship to celiac disease; a clinical and pathological study. Am J Dis Child. 2011, 56: 344.
Article
Google Scholar
Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, et al: The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008, 295: L240-L263. 10.1152/ajplung.90203.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, et al: Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science. 2008, 321: 1837-1841. 10.1126/science.1163600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al: Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989, 245: 1066-1073. 10.1126/science.2475911.
Article
CAS
PubMed
Google Scholar
Grubb BR, Boucher RC: Pathophysiology of Gene-Targeted Mouse Models for Cystic Fibrosis. Physiol Rev. 1999, 79: S193-S214.
CAS
PubMed
Google Scholar
Guilbault C, Saeed Z, Downey GP, Radzioch D: Cystic Fibrosis Mouse Models. Am J Respir Cell Mol Biol. 2007, 36: 1-7.
Article
CAS
PubMed
Google Scholar
Welsh MJ, Rogers CS, Stoltz DA, Meyerholz DK, Prather RS: Development of a porcine model of cystic fibrosis. Trans Am Clin Climatol Assoc. 2009, 120: 149-162.
PubMed
PubMed Central
Google Scholar
Ostedgaard LS, Meyerholz DK, Chen JH, Pezzulo AA, Karp PH, Rokhlina T, Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, et al: The {Delta}F508 Mutation Causes CFTR Misprocessing and Cystic Fibrosis-Like Disease in Pigs. Sci Transl Med. 2011, 3: 74-ra24
Article
CAS
Google Scholar
Rogan MP, Reznikov LR, Pezzulo AA, Gansemer ND, Samuel M, Prather RS, Zabner J, Fredericks DC, McCray PB, Welsh MJ, et al: Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci U S A. 2010, 107: 20571-20575. 10.1073/pnas.1015281107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang YG, Sykes M: Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol. 2007, 07: 519-531. 10.1038/nri2099.
Article
CAS
Google Scholar
Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, et al: Targeted disruption of the [alpha]1,3-galactosyltransferase gene in cloned pigs. Nat Biotech. 2002, 20: 251-255. 10.1038/nbt0302-251.
Article
CAS
Google Scholar
Harrison SJ, Guidolin A, Faast R, Crocker LA, Giannakis C, d'Apice AJ, Nottle MB, Lyons I: Efficient generation of alpha(1,3) galactosyltransferase knockout porcine fetal fibroblasts for nuclear transfer. Transgenic Res. 2002, 11: 143-150. 10.1023/A:1015262108526.
Article
CAS
PubMed
Google Scholar
Kolber-Simonds D, Lai L, Watt SR, Denaro M, Arn S, Augenstein ML, Betthauser J, Carter DB, Greenstein JL, Hao Y, et al: Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci U S A. 2004, 101: 7335-7340. 10.1073/pnas.0307819101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA: Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003, 299: 411-414. 10.1126/science.1078942.
Article
CAS
PubMed
Google Scholar
Ramsoondar JJ, Machaty Z, Costa C, Williams BL, Fodor WL, Bondioli KR: Production of alpha 1,3-galactosyltransferase-knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase. Biol Reprod. 2003, 69: 437-445. 10.1095/biolreprod.102.014647.
Article
CAS
PubMed
Google Scholar
Sharma A, Naziruddin B, Cui C, Martin MJ, Xu H, Wan H, Lei Y, Harrison C, Yin J, Okabe J, et al: Pig cells that lack the gene for alpha1-3 galactosyltransferase express low levels of the gal antigen. Transplantation. 2003, 75: 430-436. 10.1097/01.TP.0000053615.98201.77.
Article
CAS
PubMed
Google Scholar
Takahagi Y, Fujimura T, Miyagawa S, Nagashima H, Shigehisa T, Shirakura R, Murakami H: Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol Reprod Dev. 2005, 71: 331-338. 10.1002/mrd.20305.
Article
CAS
PubMed
Google Scholar
Watt SR, Betthauser JM, Augenstein ML, Childs LA, Mell GD, Forsberg EJ, Eisen A: Direct and rapid modification of a porcine xenoantigen gene (GGTA1). Transplantation. 2006, 82: 975-978.
Article
CAS
PubMed
Google Scholar
Klymiuk N, Aigner B, Brem G, Wolf E: Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev. 2010, 77: 209-221.
CAS
PubMed
Google Scholar
Ramsoondar J, Vaught T, Ball S, Mendicino M, Monahan J, Jobst P, Vance A, Duncan J, Wells K, Ayares D: Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation. 2009, 16: 164-180. 10.1111/j.1399-3089.2009.00525.x.
Article
PubMed
Google Scholar
Herring C, Quinn G, Bower R, Parsons N, Logan NA, Brawley A, Elsome K, Whittam A, Fernandez-Suarez XM, Cunningham D, et al: Mapping full-length porcine endogenous retroviruses in a large white pig. J Virol. 2001, 75: 12252-12265. 10.1128/JVI.75.24.12252-12265.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patience C, Takeuchi Y, Weiss RA: Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997, 3: 282-286. 10.1038/nm0397-282.
Article
CAS
PubMed
Google Scholar
Ekser B, Gridelli B, Tector AJ, Cooper DK: Pig liver xenotransplantation as a bridge to allotransplantation: which patients might benefit?. Transplantation. 2009, 88: 1041-1049. 10.1097/TP.0b013e3181ba0555.
Article
PubMed
PubMed Central
Google Scholar
Oropeza M, Petersen B, Carnwath JW, Lucas-Hahn A, Lemme E, Hassel P, Herrmann D, Barg-Kues B, Holler S, Queisser AL, et al: Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation. 2009, 16: 522-534. 10.1111/j.1399-3089.2009.00556.x.
Article
PubMed
Google Scholar
Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W: Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993, 91: 301-307. 10.1172/JCI116186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC, Kessler B, Ulrichs K, Chodnevskaja I, Moskalenko V, Amselgruber W, et al: Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes. 2010, 59: 1228-1238. 10.2337/db09-0519.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fonseca VA, Zinman B, Nauck MA, Goldfine AB, Plutzky J: Confronting the type 2 diabetes epidemic: the emerging role of incretin-based therapies. Am J Med. 2010, 123: S2-S10.
Article
PubMed
Google Scholar
Shaffer C: Incretin mimetics vie for slice of type 2 diabetes market. Nat Biotechnol. 2007, 25: 263-10.1038/nbt0307-263.
Article
CAS
PubMed
Google Scholar
Baggiio LL, Drucker DJ: Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007, 132: 2131-2157. 10.1053/j.gastro.2007.03.054.
Article
CAS
Google Scholar
Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD: Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell. 1981, 27: 223-231. 10.1016/0092-8674(81)90376-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costantini F, Lacy E: Introduction of a rabbit beta-globin gene into the mouse germ line. Nature. 1981, 294: 92-94. 10.1038/294092a0.
Article
CAS
PubMed
Google Scholar
Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH: Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A. 1980, 77: 7380-7384. 10.1073/pnas.77.12.7380.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner EF, Stewart TA, Mintz B: The human beta-globin gene and a functional viral thymidine kinase gene in developing mice. Proc Natl Acad Sci U S A. 1981, 78: 5016-5020. 10.1073/pnas.78.8.5016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner TE, Hoppe PC, Jollick JD, Scholl DR, Hodinka RL, Gault JB: Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc Natl Acad Sci U S A. 1981, 78: 6376-6380. 10.1073/pnas.78.10.6376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyun S, Lee G, Kim D, Kim H, Lee S, Nam D, Jeong Y, Kim S, Yeom S, Kang S, et al: Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol Reprod. 2003, 69: 1060-1068. 10.1095/biolreprod.102.014886.
Article
CAS
PubMed
Google Scholar
Lee GS, Kim HS, Hyun SH, Lee SH, Jeon HY, Nam DH, Jeong YW, Kim S, Kim JH, Han JY, et al: Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein. Theriogenology. 2005, 63: 973-991. 10.1016/j.theriogenology.2004.04.017.
Article
CAS
PubMed
Google Scholar
Watanabe S, Iwamoto M, Suzuki S, Fuchimoto D, Honma D, Nagai T, Hashimoto M, Yazaki S, Sato M, Onishi A: A novel method for the production of transgenic cloned pigs: electroporation-mediated gene transfer to non-cultured cells and subsequent selection with puromycin. Biol Reprod. 2005, 72: 309-315. 10.1095/biolreprod.104.031591.
Article
CAS
PubMed
Google Scholar
Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD: Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA. 1985, 82: 4438-4442. 10.1073/pnas.82.13.4438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrick D, Fiering S, Martin DI, Whitelaw E: Repeat-induced gene silencing in mammals. Nat Genet. 1998, 18: 56-59. 10.1038/ng0198-56.
Article
CAS
PubMed
Google Scholar
Leahy P, Carmichael GG, Rossomando EF: Transcription from plasmid expression vectors is increased up to 14-fold when plasmids are transfected as concatemers. Nucleic Acids Res. 1997, 25: 449-450. 10.1093/nar/25.2.449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capecchi MR: The new mouse genetics: altering the genome by gene targeting. Trends Genet. 1989, 5: 70-76.
Article
CAS
PubMed
Google Scholar
Capecchi MR: Altering the genome by homologous recombination. Science. 1989, 244: 1288-1292. 10.1126/science.2660260.
Article
CAS
PubMed
Google Scholar
Koller BH, Smithies O: Altering genes in animals by gene targeting. Annu Rev Immunol. 1992, 10: 705-730. 10.1146/annurev.iy.10.040192.003421.
Article
CAS
PubMed
Google Scholar
Capecchi MR: How close are we to implementing gene targeting in animals other than the mouse?. Proc Natl Acad Sci U S A. 2000, 97: 956-957. 10.1073/pnas.97.3.956.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagy A: Cre recombinase: the universal reagent for genome tailoring. Genesis. 2000, 26: 99-109. 10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B.
Article
CAS
PubMed
Google Scholar
Watanabe M, Umeyama K, Matsunari H, Takayanagi S, Haruyama E, Nakano K, Fujiwara T, Ikezawa Y, Nakauchi H, Nagashima H: Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases. Biochem Biophys Res Commun. 2010, 402: 14-18. 10.1016/j.bbrc.2010.09.092.
Article
CAS
PubMed
Google Scholar
Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK: Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc. 2009, 4: 1471-1501. 10.1038/nprot.2009.98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Remy S, Tesson L, Menoret S, Usal C, Scharenberg AM, Anegon I: Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res. 2010, 19: 363-371. 10.1007/s11248-009-9323-7.
Article
CAS
PubMed
Google Scholar
Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF, et al: Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc. 2006, 1: 1637-1652. 10.1038/nprot.2006.259.
Article
PubMed
Google Scholar
Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC: Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005, 435: 646-651. 10.1038/nature03556.
Article
CAS
PubMed
Google Scholar
Carroll D, Beumer KJ, Morton JJ, Bozas A, Trautman JK: Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol. 2008, 435: 63-77. 10.1007/978-1-59745-232-8_5.
Article
CAS
PubMed
Google Scholar
Jakobsen JE, Li J, Kragh PM, Moldt B, Lin L, Liu Y, Schmidt M, Winther KD, Schyth BD, Holm IE, et al: Pig transgenesis by Sleeping Beauty DNA transposition. Transgenic Res. 2011, 20: 533-535. 10.1007/s11248-010-9438-x.
Article
CAS
PubMed
Google Scholar
Clark K, Carlson D, Fahrenkrug S: Pigs taking wing with transposons and recombinases. Genome Biol. 2007, 8: S13-10.1186/gb-2007-8-s1-s13.
Article
PubMed
PubMed Central
Google Scholar
Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC: Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol. 2003, 263: 191-202. 10.1016/j.ydbio.2003.07.013.
Article
CAS
PubMed
Google Scholar
Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T: Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005, 122: 473-483. 10.1016/j.cell.2005.07.013.
Article
CAS
PubMed
Google Scholar
Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB: Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA. 2002, 99: 4495-4499. 10.1073/pnas.062630599.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamlet MR, Yergeau DA, Kuliyev E, Takeda M, Taira M, Kawakami K, Mead PE: Tol2 transposon-mediated transgenesis in Xenopus tropicalis. Genesis. 2006, 44: 438-445. 10.1002/dvg.20234.
Article
PubMed
CAS
Google Scholar
Kawakami K, Shima A, Kawakami N: Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA. 2000, 97: 11403-11408. 10.1073/pnas.97.21.11403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark KJ, Carlson DF, Foster LK, Kong BW, Foster DN: Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnol. 2007, 7: 42-10.1186/1472-6750-7-42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carlson D, Garbe J, Tan W, Martin M, Dobrinsky J, Hackett P, Clark K, Fahrenkrug S: Strategies for selection marker-free swine transgenesis using the Sleeping Beauty transposon system. Transgenic Res. 2011, 20: 1-13. 10.1007/s11248-010-9446-x.
Article
CAS
Google Scholar
Carlson DF, Geurts AM, Garbe JR, Park CW, Rangel-Filho A, O'Grady SM, Jacob HJ, Steer CJ, Largaespada DA, Fahrenkrug SC: Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition. Transgenic Res. 2011, 20: 29-45. 10.1007/s11248-010-9386-5.
Article
CAS
PubMed
Google Scholar