Schnabel P, Junker K. Pulmonary neuroendocrine tumors in the new who 2015 classification: Start of breaking new grounds?. Der Pathologe. 2015; 36(3):283–92.
Article
CAS
PubMed
Google Scholar
Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001; 2(9):533–43.
Article
CAS
PubMed
Google Scholar
Minna JD, Roth JA, Gazdar AF. Focus on lung cancer. Cancer Cell. 2002; 1(1):49–52.
Article
CAS
PubMed
Google Scholar
Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer Statistics, 2006. CA Cancer J Clin. 2006; 56(2):106–30.
Article
PubMed
Google Scholar
Fontana RS, Sanderson DR, Taylor WF, Woolner LB, Miller WE, Muhm JR, Uhlenhopp MA. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the mayo clinic study. Am Rev Respir Dis. 1984; 130(4):561–5.
CAS
PubMed
Google Scholar
Frost JK, Ball Jr WC, Levin ML, Tockman MS, Baker RR, Carter D, Eggleston JC, Erozan YS, Gupta PK, Khouri NF, et al. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the johns hopkins study. Am Rev Respir Dis. 1984; 130(4):549–54.
CAS
PubMed
Google Scholar
Hussain A, Khatri M, Casali G, Batchelor T, West D. 194 follow up after lung cancer surgery: plain chest x ray does not increase diagnostic accuracy. Lung Cancer. 2014; 83:72.
Article
Google Scholar
Capelozzi VL. Role of immunohistochemistry in the diagnosis of lung cancer. J Bras Pneumol. 2009; 35(4):375–82.
Article
PubMed
Google Scholar
Marshall HM, Bowman RV, Yang IA, Fong KM, Berg CD. Screening for lung cancer with low-dose computed tomography: a review of current status. J Thorac Dis. 2013; 5(Suppl 5):524.
Google Scholar
Vazquez MF, Koizumi JH, Henschke CI, Yankelevitz DF. Reliability of cytologic diagnosis of early lung cancer. Cancer Cytopathol Interdisc Int J Am Cancer Soc. 2007; 111(4):252–8.
Google Scholar
Jantus-Lewintre E, Usó M, Sanmartín E, Camps C. Update on biomarkers for the detection of lung cancer. Lung Cancer Targets Ther. 2012; 3:21.
Google Scholar
Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microrna: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009; 10(1):42–6.
Article
CAS
PubMed
Google Scholar
Mitas M, Hoover L, Silvestri G, Reed C, Green M, Turrisi AT, Sherman C, Mikhitarian K, Cole DJ, Block MI, et al.Lunx is a superior molecular marker for detection of non-small lung cell cancer in peripheral blood. J Mol Diagn. 2003; 5(4):237–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, et al.Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 2002; 360(9329):295–305.
Article
CAS
PubMed
Google Scholar
Montani F, Marzi MJ, Dezi F, Dama E, Carletti RM, Bonizzi G, Bertolotti R, Bellomi M, Rampinelli C, Maisonneuve P, et al.Mir-test: a blood test for lung cancer early detection. JNCI: J Natl Cancer Inst. 2015; 107(6).
Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, et al.Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007; 450(7173):1235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzellati N, et al.Clinical utility of a plasma-based mirna signature classifier within computed tomography lung cancer screening: a correlative mild trial study. J Clin Oncol. 2014; 32(8):768.
Article
PubMed
PubMed Central
Google Scholar
Sozzi G, Conte D, Leon M, Cirincione R, Roz L, Ratcliffe C, Roz E, Cirenei N, Bellomi M, Pelosi G, et al.Quantification of free circulating dna as a diagnostic marker in lung cancer. J Clin Oncol. 2003; 21(21):3902–8.
Article
CAS
PubMed
Google Scholar
Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor- β–mediated suppressive activity on t lymphocytes. Cancer Res. 2006; 66(18):9290–8.
Article
CAS
PubMed
Google Scholar
Doseeva V, Colpitts T, Gao G, Woodcock J, Knezevic V. Performance of a multiplexed dual analyte immunoassay for the early detection of non-small cell lung cancer. J Trans Med. 2015; 13(1):55.
Article
CAS
Google Scholar
Goetsch CM. Genetic tumor profiling and genetically targeted cancer therapy, Vol. 27; 2011. pp. 34–44. Elsevier.
Mizuguchi S, Nishiyama N, Iwata T, Nishida T, Izumi N, Tsukioka T, Inoue K, Uenishi T, Wakasa K, Suehiro S. Serum sialyl lewisx and cytokeratin 19 fragment as predictive factors for recurrence in patients with stage i non-small cell lung cancer. Lung Cancer. 2007; 58(3):369–75.
Article
PubMed
Google Scholar
Pujol J-L, Grenier J, Daurès J-P, Daver A, Pujol H, Michel F-B. Serum fragment of cytokeratin subunit 19 measured by cyfra 21-1 immunoradiometric assay as a marker of lung cancer. Cancer Res. 1993; 53(1):61–6.
CAS
PubMed
Google Scholar
Okada M, Nishio W, Sakamoto T, Uchino K, Yuki T, Nakagawa A, Tsubota N. Effect of histologic type and smoking status on interpretation of serum carcinoembryonic antigen value in non–small cell lung carcinoma. Annals Thorac Surg. 2004; 78(3):1004–9.
Article
Google Scholar
Kang S-M, Sung H-J, Ahn J-M, Park J-Y, Lee S-Y, Park C-S, Cho J-Y. The haptoglobin β chain as a supportive biomarker for human lung cancers. Mol BioSyst. 2011; 7(4):1167–75.
Article
CAS
PubMed
Google Scholar
Sung H-J, Cho J-Y. Biomarkers for the lung cancer diagnosis and their advances in proteomics. BMB Rep. 2008; 41(9):615–25.
Article
CAS
PubMed
Google Scholar
Maciel CM, Junqueira M, Paschoal MEM, Kawamura MT, Duarte RLM, Carvalho MdGdC, Domont GB. Differential proteomic serum pattern of low molecular weight proteins expressed by adenocarcinoma lung cancer patients. J Exp Ther Oncol. 2005; 5(1).
Indovina P, Marcelli E, Maranta P, Tarro G. Lung cancer proteomics: recent advances in biomarker discovery. Int J Proteomics. 2011; 2011.
Zamay T, Zamay G, Kolovskaya O, Zukov R, Petrova M, Gargaun A, Berezovski M, Kichkailo A. Current and prospective protein biomarkers of lung cancer. Cancers. 2017; 9(11):155.
Article
PubMed Central
CAS
Google Scholar
Tomczak K, Czerwińska P, Wiznerowicz M. The cancer genome atlas (tcga): an immeasurable source of knowledge. Contemp Oncol. 2015; 19(1A):68.
Google Scholar
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, et al. The genotype-tissue expression (gtex) project. Nat Genet. 2013; 45(6):580.
Article
CAS
Google Scholar
Wang Z, Gerstein M, Snyder M. Rna-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10(1):57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. Rna-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008; 18(9):1509–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mrna-seq experiments. BMC Bioinformatics. 2010; 11(1):94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of rna-seq data. BMC Bioinformatics. 2013; 14(1):91.
Article
PubMed
PubMed Central
Google Scholar
Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting differential expression in rna-seq studies. Brief Bioinform. 2013; 16(1):59–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel D. Comprehensive evaluation of differential gene expression analysis methods for rna-seq data. Genome Biol. 2013; 14(9):3158.
Article
CAS
Google Scholar
Aran D, Camarda R, Odegaard J, Paik H, Oskotsky B, Krings G, Goga A, Sirota M, Butte AJ. Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat Commun. 2017; 8(1):1077.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al.Ncbi geo: archive for functional genomics data sets—update. Nucleic Acids Res. 2012; 41(D1):991–5.
Article
CAS
Google Scholar
Stegle O, Drewe P, Bohnert R, Borgwardt K, Rätsch G. Statistical tests for detecting differential RNA-transcript expression from read counts. Nat Precedings. 2010. https://doi.org/10.1038/npre.2010.4437.1.
Vegas E, Oller JM, Reverter F. Inferring differentially expressed pathways using kernel maximum mean discrepancy-based test. BMC Bioinformatics. 2016; 17(5):205.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola AJ. A kernel method for the two-sample-problem: Advances in Neural Information Processing Systems; 2007, pp. 513–20.
Sonnenburg S, Henschel S, Widmer C, Behr J, Zien A, Bona Fd, Binder A, Gehl C, Franc V, et al.The shogun machine learning toolbox. J Mach Learn Res. 2010; 11(Jun):1799–802.
Google Scholar
Yu G, Wang L-G, Han Y, He Q-Y. clusterprofiler: an r package for comparing biological themes among gene clusters. Omics J Integr Biol. 2012; 16(5):284–7.
Article
CAS
Google Scholar
Bressert E. SciPy and NumPy: an Overview for Developers. Sebastopol: O’Reilly Media, Inc.; 2012.
Google Scholar
Moody TW, Murphy A, Mahmoud S, Fiskum G. Bombesin-like peptides elevate cytosolic calcium in small cell lung cancer cells. Biochem Biophys Res Commun. 1987; 147(1):189–95.
Article
CAS
PubMed
Google Scholar
Moody TW, Staley J, Zia F, Coy DH, Jensen RT. Neuromedin b binds with high affinity, elevates cytosolic calcium and stimulates the growth of small-cell lung cancer cell lines. J Pharmacol Exp Ther. 1992; 263(1):311–7.
CAS
PubMed
Google Scholar
Arbabian A, Brouland J-P, Apáti Á, Pászty K, Hegedűs L, Enyedi Á, Chomienne C, Papp B. Modulation of endoplasmic reticulum calcium pump expression during lung cancer cell differentiation. FEBS J. 2013; 280(21):5408–18.
Article
CAS
PubMed
Google Scholar
Schuller HM. Beta-adrenergic signaling, a novel target for cancer therapy?. Oncotarget. 2010; 1(7):466.
Article
PubMed
PubMed Central
Google Scholar
Schuller HM, Cekanova M. Nnk-induced hamster lung adenocarcinomas over-express β2-adrenergic and egfr signaling pathways. Lung Cancer. 2005; 49(1):35–45.
Article
PubMed
Google Scholar
Wong JC, Bathina M, Fiscus RR. Cyclic gmp/protein kinase g type-i α (pkg-i α) signaling pathway promotes creb phosphorylation and maintains higher c-iap1, livin, survivin, and mcl-1 expression and the inhibition of pkg-i α kinase activity synergizes with cisplatin in non-small cell lung cancer cells. J Cell Biochem. 2012; 113(11):3587–98.
Article
CAS
PubMed
Google Scholar