Chen X, Yan CC, Zhang X, You Z. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform. 2017;18:558–76.
CAS
PubMed
Google Scholar
Bray F, Ferlay J, Soerjomataram I. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2018;68:394–424.
Article
Google Scholar
Cabanski CR, White NM, Dang HX, Silva-fisher JM, Rauck CE, Cicka D, Maher CA. Pan-cancer transcriptome analysis reveals long noncoding RNAs with conserved function. RNA Biol. 2015;12:628–42.
Article
PubMed
PubMed Central
Google Scholar
Kalia LV, Lang AE, Shulman G. Parkinson’s disease. The Lancet. 2015;386:896–912.
Article
CAS
Google Scholar
Elkouris M, Kouroupi G, Vourvoukelis A, Xilouri M, Politis PK. Long non-coding RNAs associated with neurodegeneration-linked genes are reduced in Parkinson’s disease patients. Front Cell Neurosci. 2019;13:1–13.
Article
CAS
Google Scholar
Bao Z, Yang Z, Huang Z, Zhou Y, Cui Q, Dong D. LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res. 2019;47:D1034–7.
Article
CAS
PubMed
Google Scholar
Di W, Weinan X, Xin L, Zhiwei Y, Xinyue G, Jinxue T, Mingqi L. Long noncoding RNA SNHG14 facilitates colorectal cancer metastasis through targeting EZH2-regulated EPHA7. Cell Death Dis. 2019;10:514.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Wang M, Yang H, Tian T, Sun G, Ji Y, Hu W, Liu X, Wang J, Lu H. Dopaminergic neuron injury in Parkinson ’ s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/α-synuclein pathway. Aging. 2019;11:9264–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Y, Yang Y, Yuan H, Zhang T, Sui H, Wei X, Liu L, Huang P, Zhang W, Bai Y. UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pahology. 2014;46:396–401.
CAS
Google Scholar
Bian Z, Jin L, Zhang J, Yin Y, Quan C, Hu Y, Feng Y. LncRNA—UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Sci Rep. 2016;6:23892.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu M, Sun W, Shen J, Wei M, Chen B, Qi Y, Xu C. LncRNA-UCA1 promotes PD development by upregulating SNCA. Eur Rev Med Pharmocol Sci. 2018;22:7908–15.
CAS
Google Scholar
Kraus TFJ, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar HA. Altered long noncoding RNA expression precedes the course of Parkinson ’ s disease—a preliminary report. Mol Neurobiol. 2017;54:2869–77.
Article
CAS
PubMed
Google Scholar
Ogino S, Nosho K, Shima K, Baba Y, Irahara N, Gregory J, Hazra A, De VI, Giovannucci EL, Meyerhardt JA, Fuchs CS. p21 expression in colon cancer and modifying effects of patients age and body mass index on prognosis. Cancer Epidemiol Biomark Prev. 2009;18:617–32.
Google Scholar
Park J, Kim D, Park Y, Kwon D-Y, Choi M, Jung J-H, Han K. Cancer risk in patients with Parkinson’s disease in South Korea: a nationwide, population-based cohort study. Eur J Cancer. 2019;117:5–13.
Article
PubMed
Google Scholar
Boursi B, Mamtani R, Haynes K, Yang Y. Parkinson’s disease and colorectal cancer risk—a nested case control study. Cancer Epidemiol. 2016;43:9–14.
Article
PubMed
PubMed Central
Google Scholar
Xie X, Luo X, Xie M. Association between Parkinson ’ s disease and risk of colorectal cancer. Parkinsonism Relat Disord. 2017;35:42–7.
Article
PubMed
Google Scholar
Lin P-Y, Chang S-N, Hsiao T-H, Huang B-T, Lin C-H, Yang P-C. Association between Parkinson disease and risk of cancer in Taiwan. JAMA Oncol. 2015;2015:1–8.
Google Scholar
Xu X, Zhuang C, Wu Z, Qiu H, Feng H, Wu J. LincRNA-p21 inhibits cell viability and promotes cell apoptosis in Parkinson’s disease through activating alpha-synuclein expression. Biomed Res Int. 2018;2018:8181374.
PubMed
PubMed Central
Google Scholar
Tao Z, Wanwei Z, Xiangtian YU, Xiaoping LIU, Meiyi LI. Edge biomarkers for classification and prediction of phenotypes. Sci China Life Sci. 2014;57:1103–14.
Article
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.
Article
CAS
Google Scholar
Chen J, Zhao X, Cui L, He G, Wang X, Wang F, Duan S, He L, Li Q, Yu X, Zhang F, Xu M. Genetic regulatory subnetworks and key regulating genes in rat hippocampus perturbed by prenatal malnutrition: implications for major brain disorders. Aging (Albany NY). 2020;12(9):8434–58.
Article
CAS
Google Scholar
Li H, Wang X, Lu X, Zhu H, Li S, Duan S, Zhao X, Zhang F, Alterovitz G, Wang F, Li Q, Tian XL, Xu M. Co-expression network analysis identified hub genes critical to triglyceride and free fatty acid metabolism as key regulators of age-related vascular dysfunction in mice. Aging (Albany NY). 2019;11(18):7620–38.
Article
CAS
Google Scholar
Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, Liu C. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS ONE. 2011;6:e17238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reynie D, Duval A, Selves J, Gaub MP, Marisa L, Vescovo L, Schiappa R, Guenot D, Ayadi M. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10:e1001453.
Article
CAS
Google Scholar
Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-mullen J, Shehadeh L, De AM, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet. 2007;3:e98.
Article
PubMed
PubMed Central
CAS
Google Scholar
McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fRMA). Biostatistics. 2010;11:242–53.
Article
PubMed
PubMed Central
Google Scholar
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.
Article
PubMed
Google Scholar
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ. STRING v91: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.
Article
CAS
PubMed
Google Scholar
Safran M, Dalah I, Alexander J, Rosen N, Stein TI, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, Sirota-madi A, Olender T, Golan Y, Stelzer G, Harel A, Lancet D. GeneCards version 3: the human gene integrator. Database. 2010;2010:020.
Article
Google Scholar
Lew ZX, Zhou HM, Fang YY, Ye Z, Zhong W, Yang XY, Yu Z, Chen DY, Luo SM, Chen LF, Lin Y. Transgelin interacts with PARP1 in human colon cancer cells. Cancer Cell Int. 2020;20:366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan L, Gong YZ, Shao MN, Ruan GT, Xie HL, Liao XW, Wang XK, Han QF, Zhou X, Zhu LC, Gao F, Gan JL. Distinct diagnostic and prognostic values of γ-aminobutyric acid type A receptor family genes in patients with colon adenocarcinoma. Oncol Lett. 2020;20(1):275–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Res. 2002;30:42–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Preciados M, Yoo C, Roy D. Estrogenic endocrine disrupting chemicals influencing NRF1 regulated gene networks in the development of complex human brain diseases. Int J Mol Sci. 2016;17(12):2086.
Article
PubMed Central
CAS
Google Scholar
Key J, Mueller AK, Gispert S, Matschke L, Wittig I, Corti O, Münch C, Decher N, Auburger G. Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiol Dis. 2019;127:114–30.
Article
CAS
PubMed
Google Scholar
Gil-Martinez AL, Cuenca-Bermejo L, Gallo-Soljancic P, Sanchez-Rodrigo C, Izura V, Steinbusch HWM, Fernandez-Villalba E, Herrero MT. Study of the link between neuronal death, glial response, and MAPK pathway in old Parkinsonian mice. Front Aging Neurosci. 2020;12:214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Ung TT, Nguyen TT, Sah DK, Park SY, Jung YD. Cholic acid stimulates MMP-9 in human colon cancer cells via activation of MAPK, AP-1, and NF-κB activity. Int J Mol Sci. 2020;21(10):3420.
Article
CAS
PubMed Central
Google Scholar
Chi H, Tang W, Bai Y. Molecular evidence of impaired iron metabolism and its association with Parkinson’s disease progression. 3 Biotech. 2020;10(4):173.
Article
PubMed
PubMed Central
Google Scholar
Wesołowska O, Michalak K, Błaszczyk M, Molnár J, Środa-Pomianek K. Organosilicon compounds, SILA-409 and SILA-421, as doxorubicin resistance-reversing agents in human colon cancer cells. Molecules. 2020;25(7):1654.
Article
PubMed Central
CAS
Google Scholar
Shi W, Zou R, Yang M, Mai L, Ren J, Wen J, Liu Z, Lai R. Analysis of genes involved in ulcerative colitis activity and tumorigenesis through systematic mining of gene co-expression networks. Front Physiol. 2019;10:662.
Article
PubMed
PubMed Central
Google Scholar
Zheng M, Liu C, Fan Y, Shi D, Jian W. Total glucosides of paeony (TGP) extracted from Radix Paeoniae Alba exerts neuroprotective effects in MPTP-induced experimental parkinsonism by regulating the cAMP/PKA/CREB signaling pathway. J Ethnopharmacol. 2019;245:112182.
Article
CAS
PubMed
Google Scholar
Bergantin LB. Diabetes and Parkinson’s disease: debating the link through Ca2+/cAMP signaling. Curr Diabetes Rev. 2020;16(3):238–41.
Article
CAS
PubMed
Google Scholar
Ong EL, Goldacre R, Goldacre M. Differential risks of cancer types in people with Parkinson’s disease: a national record-linkage study. Eur J Cancer. 2014;50(14):2456–62.
Article
PubMed
Google Scholar
Bonthron DT, Foulkes WD. Genetics meets pathology—an increasingly important relationship. J Pathol. 2017;241(2):119–22.
Article
PubMed
Google Scholar
Liu M, Li F, Yan H, Wang K, Ma Y. Alzheimer’s disease neuroimaging initiative, Shen L, Xu M: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage. 2020;208:116459.
Article
PubMed
Google Scholar