A multi-stage, exploratory, qualitative approach was used to develop the rich pictures. Starting with a list of stakeholders and issues known to our team from previous work in clinical genomics [16, 19, 25, 26], we constructed the first iteration of the rich picture to illustrate the interplay of factors around the introduction of clinical genomics into healthcare in Australia. Informed by the document search and analysis, researchers (JL, HG and EM) used a white board to sketch out the initial picture for discussion within the team. Then as it was refined, electronic versions of the rich picture were used to experiment with layout and facilitate accurate depictions of interactions. Creately software [27] was used to generate the picture. As interview data were collected, they were incorporated into the rich picture. Figure 1 provides an overview of the procedure. Validation of the penultimate version was conducted via an online survey. Refinements from this round of data collection produced the final version of the picture.
Data
Data from a variety of sources were collected to develop the rich picture exploring how clinical genomics was being used and developed within Australia including: Australian Genomics documents (website, Flagship project protocols, reports) and organisational reports (e.g., number of genetic counsellors, number of postgraduate students), websites (State and Federal Government Health Departments, professional and regulatory bodies, patient advocacy websites). The research team evaluated the various data sources looking for stakeholders to include in the picture, and interactions between the various components. Findings were structured around broad issues such as funding, workforce capacity, health and laboratory services, infrastructure, equity, influence of professional and regulatory bodies, and policy at the national level. Issues were explored considering how clinical genomics was being used and developed within Australia. More detail was added to each broad issue iteratively, and the interactions between issues within the system were mapped. A set of literature compiled as part of a systematic literature review [in preparation] on the implementation of clinical genomics was used to identify issues from the broader, global genomic field that were relevant to Australia, and also informed the picture.
Medical genomics maps across many areas of the health service as it is practised over a broad range of specialist fields and life stages. Outside of, and interacting with the service, our graphic mapped the broader health system. Research and educational institutions, professional bodies, government departments, insurance agencies, biotechnology industry, and consumer groups were all found to have a role and active interest in genomics, broadening our graphic’s boundary. CASs by definition have “fuzzy boundaries” so we used a pragmatic approach to this by identifying all stakeholders at the micro, meso or macro level that had a role, or potential role in medical genomics and including them. We also specifically asked our participants whether there were parts of the system that we had left out to ensure our graphic was as comprehensive as possible.
Semi-structured interviews
Ten people integrally involved in clinical genomics through Australian Genomics or partner organisations were invited to be our key informants and to contribute to the project by commenting on the rich picture in two rounds of consultation; the first consisting of a semi-structured interview commenting on an early iteration of the picture; the second round commenting via an online questionnaire on the penultimate version of the picture. Key informants held different roles in clinical genomics (e.g., health services, clinicians, laboratory, education, national level management) to ensure the main stakeholder groups were represented.
Key informants were identified and approached by an embedded researcher (SB) within Australian Genomics; those who indicated interest in participating were followed up by the external researchers. All participants were given information about the project and were required to give written consent for the first-round interview to be audio-recorded. Audio recording allowed researchers to capture, in the participants’ own words, how people working within clinical genomics frame and explain key processes. Interviews were conducted face-to-face at a mutually convenient time and venue by health services researchers JL, EM and HG with qualitative research expertise.
The interview had two parts; consideration of the picture, and commenting on three dominant themes that emerged during the planning phase of the project. During the first part of the interview, participants were shown the early version of the rich picture and given time to study it. They were informed that it was a graphic of features, influences and stakeholders involved in Australian Genomics’ endeavour to introduce genomic medicine into routine care in Australia. They were given a pencil and encouraged to draw on the graphic to add, subtract or move items and to “think out loud” while doing so [28]. Specific questions asked were: Do you think this is an accurate representation of clinical genomics at the national level? Have we missed any components or stakeholders? Have we missed any interactions or influences?
During the second part of the interview, participants were asked about the three themes: (i) funding for genomic testing; (ii) how genomics necessitates new ways of working; and iii) how genomic medicine can give rise to unpredicted or unintended consequences. These themes were identified from findings of the scoping and critical review of implementation, and previous interviews as issues that are strongly linked to the practice of genomics, have a high impact on implementation outcomes, and generate much discussion. Questions were open-ended, stating the theme (funding, new ways of working, and unintended or unpredictable consequences) then asking for the participants’ thoughts. Interviewees were not directly prompted to identify or discuss features of complexity such as feedback loops or interdependencies. Interview schedule is supplied as Additional file 1.
Analysis
Data from the first part of the recorded interviews together with the pictures the participants drew on and amended were used to further develop the rich picture; moving components around, adding interactions, feedback loops and barriers, or additional stakeholders. This was done by one researchers (HG) and then discussed and ratified by the larger team.
We then interrogated the components and interactions within the resulting rich picture individually and collectively for evidence of complexity using a framework of features associated with CAS. The framework used was developed and adapted from our previous work in complex systems [3, 29,30,31]. Two researchers (HG and JL) undertook this work before discussion and refinement with the larger team. In the next step, the three themes of interest (mentioned above) from the second part of the recorded interviews were transcribed and analysed. Data was coded using the same framework of CAS features as used above. Coding was undertaken by three researchers (HG, EM and JL) and then discussed, refined and validated with the larger team (SB, HA, KC, LE, JB). Wherever possible, CAS features from the interviews were also added to the rich picture. This provided more detail and illustrative stories around components in the rich picture. The evidence gained from the study was compiled and ways we could leverage naturally emergent network phenomena and strategically drive useful outcomes were considered.
Ethics and governance
This work was funded by Australian Genomic Health Alliance and the Murdoch Children’s Research Institute. It received approval from Macquarie University Human Research Ethics Committee (Ref: 5201701186) and was endorsed as an Australian Genomics member activity by the executive.